
RESEARCH Open Access

Metric-centered and technology-
independent architectural views for
software comprehension
Luis F. Mendivelso1,2, Kelly Garcés1* and Rubby Casallas1

* Correspondence: kj.garces971@
uniandes.edu.co
1Department of Systems and
Computing Engineering, School of
Engineering, Universidad de los
Andes, Cra 1 No 18A - 12, Bogotá,
Colombia
Full list of author information is
available at the end of the article

Abstract

The maintenance of applications is a crucial activity in the software industry. The
high cost of this process is due to the effort invested on software comprehension
since, in most of cases, there is no up-to-date abstraction or documentation to ease
this task but the source code. The goal of many commercial and academic tools is to
build software architectural views from the code. The main disadvantages of such
tools are: i) they are dependent on the language/technology on top of which the
application is built; and ii) they offer pre-defined views that are too difficult to adapt
to meet particular software comprehension needs. In this paper, we present a
Technology-independent approach which is flexible enough to allow developers to
define metric-centered architectural views by using annotations. These views display
in a single canvas architectural elements whose look and feel maps software metrics.
Our work results from joint projects with industry partners with software modernization
needs in different technologies: Oracle Forms, Java EE, and Ruby on Rails. We present
how our proposal was applied in these projects and compare the results with those of
the previously followed process.

Keywords: Software Comprehension, Software Visualization, Software Architecture,
Model-Driven Reverse Engineering, Software Metrics

1 Extension Note
This paper is an expanded and revised version of the document entitled “Vistas Arquitec-

tónicas Independientes de Tecnología para Comprensión de Software” (Mendivelso et al.

2017) presented at the Iberoamerican Conference on Software Engineering (CIbSE) 2017

in Buenos Aires (Argentina), held between May 22nd and 23rd of 2017. The paper extends

the version that appeared in the Conference as follows: i) In the ‘Motivation’ section, we

illustrate the need to have software metrics mapped to the views as a mean to leverage

software comprehension. ii) In the ‘View Generation Process’ section, we explain our con-

tribution in a deeper way compared to that of the initial version. Thus, we distinguish the

assets involved in the model transformation chain that operationalizes our approach. We

add a ‘Metrics metamodel’, a transformation to the chain, and tags to the original annota-

tions. These tags describe how to modify the views style based on the metrics. iii) In the

‘Evaluation’ section, we present the applicability of our process to three case studies. We

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Mendivelso et al. Journal of Software Engineering Research and Development
 (2018) 6:16
https://doi.org/10.1186/s40411-018-0060-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-018-0060-6&domain=pdf
http://orcid.org/0000-0002-1070-439X
mailto:kj.garces971@uniandes.edu.co
mailto:kj.garces971@uniandes.edu.co
http://creativecommons.org/licenses/by/4.0/

spell out the cost of developing a solution under our approach, its benefits and its limita-

tions. iv) In the ‘Related work’ section, we add relevant literature.

2 Introduction
According to (Minelli et al. 2014), the task of understanding a program corresponds to

more than 50% of all the maintenance activity. The main reason for this is the absence

of abstractions on the applications, generally with thousands of lines of code distributed

in hundreds of files, which makes understanding more difficult.

In cooperation with industry partners we have carried out projects to tackle dif- ferent

modernization challenges: 1) Migration from Oracle Forms to Java and .Net (Garcés et al.

2015; Wikipedia 2016; Garcés et al. 2018); 2) Restructuring of Java Enterprise Edition

(JEE) applications from mono- lithic architectures to microservices (Escobar et al. 2016);

and 3) Maintenance of Ruby on Rails (RoR) applications developed by Agile practitioners

(García and Garcés 2017). Literature (Anquetil and Laval 2011; Mancoridis et al. 1999)

and our experi- ence in these projects have shown us that, besides to the related complex-

ity with the size of the applications, the understanding of the programs is difficult for the

following reasons: i) lack of documentation about the design; ii) lack of knowledge about

architectural decisions taken in the original design because of developers’ turnover; and

iii) the degradation of previously made decisions, including additions and modifications

done over time.

For every project, we reviewed tools that allow building abstractions of higher level, i.e.,

architectural views. For example, we found tools that obtain commodity views such as

UML class (or package) diagrams from Java source code. We found that they are com-

pletely dependent on the language/technology, and that the views that they produce are

predefined and do not necessarily correspond to particular understanding needs. Based on

the experience on these projects, and taking inspi- ration from the general process defined

by (Tilley 2009), we present an approach based on Model-Driven Reverse Engineering

(MDRE) (Brunelière et al. 2014; Rugaber and Stirewalt 2004) that allows us to annotate a

Platform Independent Metamodel (PIM) (referred to as Architectural model), and gener-

ate a specification of a graphic editor (which, for purposes of the evaluation, is Sirius1

(Mendivelso et al. 2017)). Therefore, one can see in the editor different perspectives of the

application according to the views defined in the specification; e.g., level of coupling

between functional modules.

The contributions of our work are: i) A view generation process extensible to many

source application technologies and views specification frameworks. Our approach can be

applicable to many technologies by plugging new parsers to the workflow. Our proposal is

view specification agnostic because the user specifies the views at architecture level by

using annotations. The annotations are translated to the Technology Independent Views

Specification model (TIVS) first, and then to the particular view specification framework

(e.g., Sirius). ii) Clustering algorithms that group structural elements of the source applica-

tions, at an early step of the process. Thus, leveraging the last step which is views render.

iii) Annotations that help users not only to specify the structural elements to be displayed,

but also to represent particular software metrics via the elements style; that is, colour, size,

and labels. For example, if there exists a relationship between two modules A and B,

which is thicker than the relationship between B and C, then it means that the coupling

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 2 of 23

A-B is higher compared with that of B-C. Annotations refer to measures present in a

Metrics model, which are calculated by a Metrics transformation.

When comparing our approach to the closest related work (http://themoosebook.org/

book/index.html; Bergel et al. 2014), one finds that our approach resembles the competi-

tion’s in two aspects: i) both are able to take, as input, artifacts that conform to different

technologies; and ii) views style reflects software metrics. However, it distinguishes itself

from the rest because: i) Whereas related work transforms source artifacts to a unique

pivot, we have a pivot (referred to as Architecture metamodel) for each family of technolo-

gies. When having a unique pivot, there is the risk of finding no direct correspondences

between the source technology and the intermediate representation. As a consequence,

the user who develops the parser ends up establishing correspondences that suit her pur-

poses, but that are not necessarily understandable by others. Therefore, our approximation

aims at having a balance between reusability (among technologies of a same family) and

expressiveness (keeping some semantics of the source tech- nologies). As an illustration,

we have a pivot for 4GL languages that is useful to reverse engineering Oracle Forms,

Visual Basic and Delphi. ii) In related work, the elements (and metrics) displayed in the

view are limited to those explicit in the source structure. In contrast, in our approach, the

user has the possibility of defining new structural elements (and corresponding metrics)

needed for facilitating her software comprehension tasks. For example, in the Oracle

Forms projects, our partners required the notion of functional modules, which is not

present in Forms applications. iii) In related work, the views are rendered in editors under

a fixed technology. In contrast, we have the TIVS model that can be mapped to different

views specification frameworks (i.e., not only Sirius).

To validate our approach and tool, we have applied them in the concrete cases of Or-

acle Forms, Java EE and Ruby on Rails taking into account the needs that each project

had. We were able to conclude that what was originally done in a specific way for a

particular project could be largely generalized by our approach; thus, improving

flexibility in the tasks of program understanding.

The remaining of the paper is structured as follows: Section 3 presents the moti- vation

of our research based on the experience gained in the three modernization projects men-

tioned before. Section 4 elaborates on the MDE solution; i.e., the chain of model transfor-

mations to generate views for a particular source technology, and how the chain is

parameterized with annotations. Section 5 presents an evaluation. Section 6 extends related

work. Section 7 summarizes conclusions and perspectives for the future.

3 Motivation
3.1 Migration from oracle forms to java and net

Oracle Forms appeared at the end of the 1980s as a programming language and devel-

opment tool to create Client/Server applications that interact with Oracle databases.

Forms minimizes the need of developers to program common operations like transac-

tions management and coding of CRUD operations. The applications can include PL/

SQL code that allows programmers to enrich the functionality be- yond CRUD. Forms

and Tables are two of the main concepts supporting Forms applications.

The challenges in this project were related to knowing, given a form to be mi- grated,

which are the tables and forms related to it? which functional module does contain it?

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 3 of 23

http://themoosebook.org/book/index.html
http://themoosebook.org/book/index.html

and, how is that module related to others? Answering these questions was important to

delimit the migration scope. Similarly, the project was challeng- ing since it lacked:

documentation, availability of those who initially developed the legacy system, directory

hierarchy that organizes the forms, significant naming con- ventions, and relationships

embedded in the PL/SQL code, which is scattered along the elements of the forms. An-

other challenge is the size of the applications. In this project, the number of forms

ranges from 83 to 178, referenced tables from 101 to 200, blocks from 361 to 765 and

triggers from 2140 to 4406.

When reviewing the state of the art in terms of views for Oracle Forms, we found tools

that showed the graphic interface design, or a navigation tree of the application structural

elements. These tools are Oracle2Java2], Evo,3 Jheadstart,4 Pitss,5 Ormit.6 Since this was

not enough to meet the challenges, three views were proposed (Garcés et al. 2015): the

Functional modules view where each module group forms. The modules are represented

with circles which size changes according to the amount of forms in it. This view shows

the relationships between the modules that result from synthesizing dependency relation-

ships between forms. Additionally, the view hides the content of each module since it is

the access point to another more detailed view: the Forms view. This view shows the

forms of a selected module. In this view, the size of the elements depends on a metric

which is the number of elements that compose the form. Finally, the Forms and Tables

view shows the different kinds of relationships between Oracle Forms elements: between

forms and tables (e.g., simple and master/detail relations) and between forms (e.g., call

relation). Fig. 6b illustrates the Forms and Tables view.

3.2 Restructuring monolithic JEE applications with microservices

JEE is commonly used in business applications and it proposes a three-layer archi-

tecture: presentation, logic, and persistence. The project focused on the logic and

persistence layers, where there are Enterprise Java Beans (EJBs).

The challenges in this project were understanding an existent architecture (in particular,

the coupling level of the logic and persistence EJBs), and proposing a partition of the EJBs

in microservices. For the latter, it was defined as a principle that the highly coupled EJBs

were grouped together and that the loosely coupled ones were isolated and presented as

independent microservices. It was important to provide a list of relations (i.e., invocations)

between the microservices to decide whether or not a set of given EJBs may be split. At

last, it was key to understand how the microservices operate the database tables in execu-

tion time to verify that each microservice accesses different tables and, thus, respect the

isolation principle. Satisfying these challenges was important to ease architectural decision

making about how to evolve monolithic applications to microservices. With respect to the

challenge of size, the studied application had 74566 LoC, 624 classes, and 35993 methods.

We found many tools that produce UML diagrams from Java code; for example: En-

terprise Architect,7 Modelio,8 IBM Relational,9 StarUML,10 among others. However,

the proposed diagrams are very generic for the migration purpose. We proposed four

views that respond to the particular needs of the project: The EJBs clusters view in

which every cluster groups EJBs of logic and/or persistence. The clusters were repre-

sented with circles which dimension is a function of the number of contained EJBs. To

rank the number of lines of code (LOC) of a cluster, we assigned a color to each circle

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 4 of 23

by using Saffir-Simpson scale (Wikipedia 2017). The Microservices view groups the

clusters of the previous view. The Microservices and tables view shows the diverse types

of relationships that can be established between microservices and database tables:

writing, reading, updating and deletion relations. Finally, there is a view that shows the

dependencies between the logic EJBs that are in the microservices. Fig. 6d illustrates

the EJBs clusters view.

3.3 Maintenance of Ruby on rails applications

Ruby on Rails is an agile development framework for web applications that follows the

architectural pattern Model-View-Controller.

The challenge in this project was knowing which are the Rails models (i.e., per- sistence

entities, services and utilities)? how are these related to one another? and which is the type

of a given relation? This was important in the agile development context to determine the

viability of a new user story and estimate developers’ effort to implemented it. Finally,

Ruby is a dynamically typed language that has differences between its versions. Regarding

the challenge of the application size, in this project, the applications consisted of 15 to 51

Rails models.

Some of the tools we found to face this challenge were: Railroady11 and MySQL Work-

bench, 12 which offer views that are hard to navigate and lack detailed in- formation about

which are the attributes/methods of a given Rails model. That motivated a new view that

shows all the Rails models (including their attributes and methods) and the relationships

between them (i.e., simple, aggregation and composition). In contrast to the rest of

projects, Ruby on Rails did not require any view customization to reflect metrics. Fig. 6c

illustrates the Rails view.

3.4 Analysis of common features

We have observed the following common needs in the previous projects: It is re-

quired to have views that: i) show coarse-grained elements (i.e., containers) that group

fine-grained elements; ii) deploy the detail of every coarse-grained element;

iii) combine coarse and fine-grained elements (i.e., nodes) into one container; iv) show

relationships between elements; v) be navigable from a high to a low level of detail; and

vi) have visual aids (e.g., labels, colors, sizes) to reflect a software metric. Table 1 sum-

maries the views needed in each project and how technology/architec- ture concepts

map to the aforementioned view concepts.

4 Views generation process
4.1 Overview

Even though the projects worked on different technologies, at the end, as we pointed

out in Section 3.4 the architectural visualization needs are similar. Thus, we decided to

study the possibility of generating metric-centered and technology-independent archi-

tectural views. We must emphasize that our aim is creating the most common views

observed both in the literature and in our own experiences. Such views serve as a start-

ing point but may require customization to meet all the particular needs. For each new

technology we have to develop some assets (referred to as the Domain Engineering

process) that are then reused for every application that conforms to such a technology

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 5 of 23

(this is called the Application Engineering process). These terms are originally coined in

(Czarnecki and Eisenecker 2000). Figure 1 (which uses a data flow notation) shows the

two processes. The application engineering level is for the final users (such as architects,

developers, testers, etc. who carry out software comprehension tasks) to generate

metric-centered views for a particular application. The final users provides the application

data to analyze and automatically, the process generates the views of the application. This

process consists of 4 steps (represented as circles): i) data injection to obtain a memory

representation of the input software artifacts; ii) queries on the representation of step 1

that allow us to find the architectural elements of the language/technology; iii) computa-

tion of metrics related to such elements; and iv) rendering of architectural elements and

their associated metrics in an editor.

Table 1 Mapping between technology concepts and view concepts

Project View Technology concept View concept

JEE Microservices View Microservice Container

Microservice Relationship Relationship

EJB Clusters View EJB Cluster Container

EJB Cluster Relationship Relationship

Microservices and Tables View Microservice Container

Table Node

Writing Relationship Relationship

Reading Relationship Relationship

Updating Relationship Relationship

Deletion Relationship Relationship

EJB Dependencies Views Class Container

Interface Container

Attribute Node

Method Node

Generalization Relationship

Realization Relationship

Composition Relationship

Dependency Relationship

Ruby on Rails Rails View Package Container

Rails Class Container

Attribute Node

Method Node

Rails Relationship Relationship

Oracle Forms Functional Modules View Module Container

Module Relationship Relationship

Forms View Form Node

Forms and Table Views Form Node

Table Node

Single Table Relationship Relationship

Master-Detail Relationship Relationship

PL/SQL Relationship Relationship

Form Call Relationship Relationship

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 6 of 23

The domain engineering level is for an MDRE expert who has to provide part of an

infrastructure and reuses other part. Light gray squares represent the assets that the

MDRE expert has to define per each new technology or programming language of

interest. White squares represent assets at the heart of our approach that can be reused

regardless of the source technology or language. Dark gray squares represent the assets

generated per each source application to be analyzed. The assets consist of parsers,

models, metamodels and transformations. Next sections describe these assets in detail.

We use the Oracle Forms project as illustrating example.

4.2 Step 1: Parsers

For step 1, depending on the technology, the MDRE expert has to produce a model

that conforms to the language/technology metamodel from the source data. This task

means to develop or reuse one or more parsers depending on the available input data.

In our experimentation, in the case of Oracle Forms, we developed a single parser in

Java that produces a model conforming to a metamodel of Oracle Forms. For Ruby

code, we implemented two Xtext grammars13 which in turn generated the parsers and

the meta-models for SQL and Rails. For JEE, we used Modisco,14 which gives as a re-

sult a model with a full abstract syntax tree of the source code. Such a model conforms

to the standard metamodel so-called KDM.15

Besides the source code, we had dynamic data, i.e., logs that saved a trace of the SQL

operations executed. This was useful to complete the model with relationships between

the database tables and the microservices. A specific parser was built for that task.

4.3 Step 2: architecture metamodel and technology2architecture transformation

The MDRE expert has to design an architecture metamodel and a Technol- ogy2Architec-

ture transformation for this step. The architecture metamodel rep- resents the structural

elements that final users want to have in the views. The Technology2Architecture trans-

formation produces an architecture model from the step 1 model.

Fig. 2 shows the architecture metamodel for the Oracle Forms industry case. It pro-

vides a way to specify the main concepts needed to represent a typical clien- t/server

4GL application but tries to do so in a more platform independent repre- sentation

(in the MDA sense of the word). This would enable in the future to reuse most of the

metamodel in the domain engineering process of other similar languages (like Delphi

or Visual Basic).

Fig. 1 Process at application/domain engineering level

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 7 of 23

Some of the main metamodel concepts are: i) ‘Module’ that contains ‘Form’ and

‘Table’; ii) ‘ModuleRelationship’ that represents the relations between the modules; and

iii) A ‘SingleTableRelationship’ that describes a simple relation between a form and a

table. It is worth highlighting that some of these concepts have a direct corre- spon-

dence with the concepts of the technology models (i.e., Form and Table). How- ever,

others are calculated from the information contained in those models by using cluster-

ing algorithms in the Technology2Architecture transformation. A clustering algorithm

arranges fine-grained elements in coarse-grained elements by evaluating their attributes

and relationships. Previous works in software comprehension have used clustering

algorithms, see for example (Anquetil and Laval 2011; Mancoridis et al. 1999).

Clustering algorithms were needed in the three industry cases. However, their use

should be assessed on a case-by-case basis because it depends on the final users’ require-

ments and the software structure. In the next paragraphs, we spell out the requirements

and software restrictions that motivated the use of clustering in the industry cases, as well

as a brief description of the algorithms.

In the Oracle Forms case, the fact of knowing the module containing the form sub- ject

matter of modernization helps developers to delimit the modernization scope. However, it

is not always easy to get the modules because legacy software organi- zation is often quite

poor. To cope with this, we have implemented two clustering algorithms that arrange the

Fig. 2 Architecture metamodel for Oracle Forms

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 8 of 23

forms, tables and relationships into modules: Menu- based clustering algorithm and Table

betweenness clustering algorithm (Garcés et al. 2015). ‘Module’ is the result of these algo-

rithms that group in a module the forms that they have in common, or that are called

from a same menu of the graphic interface, or that depend on the same tables. In addition,

‘ModuleRelationship’ comes out the calls between forms that are contained in two differ-

ent modules (the calls are derived from CALL/OPEN queries embedded in the PL/SQL

code).

In the JEE case, developers need suggested options about how to split the legacy ap-

plications in microservices. This distribution is not trivial since stakeholders likely face

legacy code with the following problems: 1) lack of design and documentation; 2) ab-

sent reasoning on the original design and architecture decisions; 3) undermin- ing of

the original design decisions as many additions and alterations have been made. To

deal with this, we implemented an algorithm that groups together the logic EJBs that

access to the same persistence entities. In addition, we developed another algorithm

that groups clusters in microservices, taking into account the per- centage of EJBs in

common. These algorithms are referred to as EJB Clustering, and Microservice Cluster-

ing in previous work (Escobar et al. 2016).

In the Ruby on Rails case, developers need to have a wide vision of the application

before taking (re)design decisions. This vision encompasses diagrams for the logic and

persistence layers of Ruby on Rails applications. This is challenging because, in applica-

tions built on top of dynamically typed languages (like Ruby), it is not possible to have all

the information of methods and attributes that will be available in execution; besides that,

the types of the attributes are unknown and thus it is impossible to determine which clas-

ses have aggregation/composition relationships. To address this, we have implemented a

clustering algorithm that groups Rails models in packages based on namespaces and

discovered correlation between classes and database tables (García and Garcés 2017).

This helps illustrate that an intermediate representation (i.e., the architecture

model) is necessary, where information is synthesized according to interest crite-

ria through the clustering algorithms, and that occurs before views specification;

otherwise, the implementation of the latter would be very complex.

4.4 Step 3: Metrics transformation and annotations

The MDRE expert has to carry out the following three tasks in order to guarantee the

success of step 3:

1) Development of a metrics transformation that queries a model conforming to

the architecture metamodel and creates measures and measurements in an

output model. This output model is conforming to the metrics metamodel.

2) Annotation of the architecture metamodel to indicate which structural ele- ments of the

language/technology will be painted, and their appearance. This task has a strong

dependency with the previous one because the measures referenced in the annotations

are influenced by the measures introduced by the metrics transformation.We have

chosen the annotations as the expres- sion mechanism because they are metadata that

do not affect the metamodel nor the related models. Our tool validates that the

annotations have been correctly applied to the architecture metamodel.

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 9 of 23

3) Generation of a Technology-independent Views Specification (TIVS) model which is

an intermediate representation of the view specification that allows us to be

independent from the concrete graphic framework on top of which the view editor

is built. This model conforms to the TIVS metamodel (see Section 4.4.2) and is

automatically generated from the annotated architecture metamodel by using a

transformation (referred to as Annotation2TIVS in Fig. 1).

The two first tasks are manually carried out by the expert and the latter one is

automated through a transformation.

4.4.1 Metrics transformation

The metrics transformation is responsible for: i) creating measures in the metrics

model; ii) querying the architecture model to obtain measurements for the estab-

lished measures; and iii) associating architecture elements to measurements in

order to have a trace indicating where do the measurements come from. The

transforma- tion output is a model conforming to the metamodel shown in Fig. 3.

To design this metamodel, we took inspiration from the Structured Metrics Meta-

model (SMM) which is an OMG specification (OMG n.d.). The main concepts of

SMM are: Measure, Mea- surement and Observation. Measure defines a type of

software metric that can be applied to one or several architectural elements. Meas-

urement contains the concrete value of a metric for a particular architectural elem-

ent. Observation saves a trace of which tool is used to compute the measurements,

when, and who is the responsible for the observation.

In our Metrics metamodel, we keep the Measure and Measurement concepts and

leave aside the Observation concept. The latter adds no value to our approach, instead

it impacts the metrics model size and the performance of the views render.

In addition, the SMM includes a set of software measures (that extends the con- cept

Measure) but makes no claims about its standardization. Thus, We decided to put

aside these subclasses too and prefer to keep our Metrics metamodel as minimal as

possible. In fact, it is the MDRE expert the one who adds the measures of her interest

at model level.

� MetricSystem: Describes the root concept.

� Measure: Corresponds to the Measure concept from the SMM.

� Measurement: Corresponds to the Measurement concept from the SMM. It is

worth noting that the measurement has a reference whose opposite is kind of Object.

This allows us to reference any kind of element being present in the architecture model.

Listing 1 shows an excerpt of the Metrics transformation developed for the Oracle

Forms case. This excerpt is devoted to associate the measure ‘Total number of

Tables’ to the modules. To this end, the transformation: i) creates the measure (lines

1-2); ii) obtains the collection of modules contained in the application (lines 4-6); and

iii) computes the number of tables for each module and assigns this value to the meas-

urement (lines 6-8). It is worth noting that the measurement is linked to the measure

(line 9) and the architectural element (line 10) from which the value is computed.

Listing 1 Example of a Software Metrics Transformation for Oracle Forms

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 10 of 23

1 v a r measure = new Measure () ;

2 measure . name = ’ Total number o f Tables ’ ; 3

4v a r mai n App l ica t ion = OracleFormsMM ! A p p l i c a t i o n . a l l I n s t a n

c e s () . f i r s t () ; 5

6 f o r (module i n mai n App l ica t ion. . modules){

7 v a r measurement = new Measurement () ;

8 measurement. v a l u e =module. e l e m e n t s. s e l e c t (e | eocl Is Type Of

(Table)). . s i z e () ;

9 measurement. Measure =measure;

10 measurement. Element =module; 11}

12...

Fig. 3 Metrics metamodel

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 11 of 23

4.4.2 Annotations and Technology-independent Views Specification (TIVS) metamodel

The proposed annotations are aligned with the TIVS metamodel. Therefore, before

explaining the annotations, we present such a metamodel. We decided to repre- sent

metrics in a metamodel separated from the TIVS metamodel to individualize concerns.

Figure 4 shows the TIVS concepts and a basic description follows. The application of

these in the projects is introduced in the next chapter.

� System: Describes the root concept.

� Cluster: Represents a set of elements that have been grouped according to a given

criteria.

� ClusteredElement: Represents the content elements inside of a cluster.

� Relationship: Describes an association between Clusters or ClusterElements.

� Element: Abstract concept from which Cluster and ClusteredElement extends. It

allows that a relation can have as source/target two Clusters or one Cluster and one

ClusteredElement. Additionally, it allows that a Cluster can contain others Clusters

or ClusteredElements.

Annotations: In this section, we describe the annotations:

� @Cluster: It is used in a non-abstract metaclass that represents a Cluster.

� @ClusteredElement: It is used in a non-abstract metaclass that represents the

ClusteredElement of a metaclass annotated with @Cluster. The annotation cannot

Fig. 4 Technology-independent Views Specification (TIVS) metamodel

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 12 of 23

be placed on superclasses but directly on the terminal class that represents the ac-

tual element to be painted.

� @ClusteredElementCollection: It is used inside a metaclass annotated with

� @Cluster; in particular, it must be placed on composition references of that

metaclass whose type is that of classes previously annotated with @Clustere-

dElement or @Cluster.

� @Relationship: It is defined on a metaclass that represents in itself a rela- tion

between two metaclasses A and B. It is mandatory that both A and B are annotated

either with Cluster or with ClusterElement. The annotation

� @Relationship is accompanied by the following two additional annotations: i)

@source: It is used on a reference of the annotated metaclass with @Relation- ship

that points to the source of a relationship; ii) @target: It is defined on a reference of

the metaclass annotated with @Relationship and is an annotation that points to the

target of a relationship. In addition, it is possible to specify the line style, where the

possible values are: solid, dash, dot or dash-dot. If final user requires a different style,

then MDRE expert has to define it in the views specification (in this case, Sirius).

� All annotations with the exception of @ClusteredElementCollection can in- clude

three graphical properties: color, size, and label. Developers have to map these

properties to measures from the metrics model. That is, the ap- pearance of the

displayed architecture elements is changed as a function of the measurements

computed in step 3.

The List 2 shows fragments of the architecture metamodel for Oracle Forms

using the notation editor OCLinEcore.16 It also shows how the annotations have

been applied.

In the List 2, we have annotated the class ‘Module’ with ‘Cluster’ since it is the only

desirable grouper, the classes ‘Table’ and ‘Form’ with ‘ClusteredElement’ since both

are contained in the ‘Module’ to visualize, the relationship ‘elements’ between

‘Module’ and ‘Element’ with ‘ClusteredElementCollection’, which allows the access

to the tables and forms. In addition, the class ‘SingleTableRelationship’ was anno-

tated with ‘Relationship’ to obtain the link between forms and tables. Finally, we

include two graphical properties in the ‘Cluster’ annotation and one in the ‘Rela-

tionship’ annotation. The first two are size and color; these depend on the measures

“Total numbers of Forms” and “Total number of Tables” respectively. The last

property is label, and it is mapped to the “Lines Of Code” measure. The name of

measures used in the annotations must match the measures defined in the metrics

model.

Listing 2 OracleForms Architecture Metamodel Annotated

1 c l a s s A p p l i c a t i o n {. . .

2 p r o p e r t y modules: Module [∗ | 1] {c o m p o s e s}; 3}

4 @ Cluster (s i z e =’ Total numbers o f Forms’, c o l o r =’ Total number o f

Tables’)

5 c l a s s Module {. . .

6 @ C l u s t e r e d E l e m e n t C o l l e c t i o n

7 p r o p e r t y e l e m e n t s: Element [∗ | 1] {c o m p o s e s};

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 13 of 23

8 p r o p e r t y e l e m e n t R e l a t i o n s: E l e m e n t R e l a t i o n s h i p [∗ |

1] {c o m p o s e s};

9}

10 @ Clustered Element ()

11 c l a s s Form e x t e n d s Element {. ..}

12 @ Clustered Element ()

13 c l a s s Table e x t e n d s Element {. ..}

14 a b s t r a c t c l a s s E l e m e n t R e l a t i o n s h i p {. . .

15 @ source

16 p r o p e r t y s o u r c e: Form [1] ;

17}

18 @R e l a t i o n s h i p (l a b e l =’ L i n e s Of Code’, s t y l e =’ S o l i d’)

19 c l a s s S i n g l e T a b l e R e l a t i o n s h i p e x t e n d s E l e m e n t R e l a

t i o n s h i p {. . .

20 @ target

21 p r o p e r t y s i n g l e T a r g e t: Table 1;

22 }

4.5 Step 4: Views specification model

In this step, the MDRE expert uses the TIVS2ViewSpecification transformation, which

is an asset useful regardless of the source technology. This transformation takes as in-

put the TIVS model and produces as output a views specification model.

A views specification model is used for generating the graphic editor code that

will paint the elements in the views. The specification covers three aspects: i) a

graphic model that specifies the visual forms that will be used in the editor (e.g., a

gray rectangle, a continuous line); ii) a model with correspondences between the

visual forms and the metamodel elements (e.g., instances of the class X are repre-

sented by the gray rectangle specified in the graphic model); iii) actions that allow

the user to interact with the views (e.g., click on a menu to move from one view

to another); and iv) conditional style for graphical model that modifies some char-

acteristics such as colors, sizes or labels, according to a specific data (e.g., the

color of a rectangle).

In our approach, the views specification model conforms to the Sirius meta- model

and is automatically generated from the TIVS model by using the TIVS2ViewSpecifica-

tion transformation (see Fig. 1). Some of the correspon- dences between these two last

models are: an annotated class with @Cluster is mapped to instances of the classes

Viewpoint, DiagramDescription, NodeDescrip- tion and ContainerDescription. An anno-

tated class with @Relationship is mapped to EdgeDescription. Please refer to Sirius

documentation for more details about the underlying metamodel.

In the application domain phase, the architecture model and the metrics model are

taken as input by the view specification model to display, in the graphical editor, the

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 14 of 23

views for the source application. The resulting views depend on the annotated architec-

ture metamodel and can be categorized as follows:

� Clusters views: shows a set of clusters and the relationships between them.

Examples of these kinds of relationships are: functional models (Oracle Forms), EJBs

clusters and microservices (JEE).

� ClusteredElements for Cluster View: shows in detail the content elements in a selected

Cluster. As an example, there exists the Forms and tables view (Oracle Forms).

� ClusteredElements Global View: shows all ClusteredElements of the system, of a

same kind, without differentiating to what Cluster they belong. An illus- tration of

this is the Forms view (Oracle Forms).

� Cluster and ClusteredElements (or combined) view: shows Cluster and Clus-

teredElements together to discriminate what elements belong to what cluster, and

determine the relationships among these elements. An example of this view is the

(Ruby on Rails) model view.

As previously mentioned the TIVS model is an intermediate asset that allows us to

separate our solution from the graphic framework, e.g., Sirius. Our tool takes this

model as input and generates as output the Sirius specification model. Figure. 5

gives a flavor of how the Sirius specification looks like. This excerpt of the

specification was generated from the class ‘Module’ that was annotated with

’@Cluster’. A description of the elements follows:

� A Viewpoint element (called ‘Viewpoints for Cluster Module’) that contains a

‘DiagramDescription’ for each kind of view of our approach. ‘Clusters for Module’

is one of them.

� ‘Clusters for Module’ contains a ‘NodeDescription’ (i.e., ‘Cluster-Module’) that

defines a representation for the model instances conforming to ‘Module’. In the

case of ‘Total number of Tables’, the color of the ‘NodeDescription’ has to change

based on the number of tables contained in the ‘Module’. Sirius allows this via a

‘ConditionalStyle’ that consists of a set of ‘PredicateEx- pressions’. In our case, each

‘PredicateExpression’ is a query that obtains a measurement value from the metrics

model and assigns a corresponding color. A query example is shown in Listing 3.

This query seeks a measurement that meets two conditions: i) refer to the measure

‘Total numbers of Tables’; and ii) point to the current module. If the measurement

value is less than or equal to threshold, then a particular color is assigned.

Listing 3 ‘PredicateExpression’ for Oracle Forms case.

1(Metric System. a l l I n s t a n c e s ()− > c o l l e c t (measurements)− > s e l e c t

(m|m. measure. name =’ Total numbers o f Tables’ and m. element = s e l f)− > a s

Ordered Set ()

− > f i r s t (). v a l u e). f l o o r () < = 1 5;

5 Evaluation
5.1 Scope

In this section, we present an evaluation that focuses on showing the flexibility of our

solution. By ‘flexibility’ we mean the ease with which our approach can be modified for

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 15 of 23

use in various source technologies. We chose the technologies of the industrial cases (see

Section 3) which are quite different from one another: Oracle Forms is a four-generation

programming language, Java and Ruby are Object Oriented Programming languages that

range from statically to dynamically typed. We present the results obtained in the three

aforementioned industrial cases and finally a discussion is presented.

6 Results
The size of the generated views specifications ranges from 44 (for Forms) to 134

elements (for JEE). This difference is due to the fact that for each class annotated with

@Cluster, the tool creates by default the four types of view and a series of scaffolding

elements required by the technology of graphic editors, i.e., Sirius. The Figure 6a shows

the forms and tables views of Oracle Forms when the generated specification is used. In

these one, the gray rectangles represent the forms and tables, and the gray lines the

relations between them. We included this figure to illustrate the default appearance of

the views when the MDRE expert does not use the annotation elements related to size

and color.

In the case of Oracle Forms, 3 out of 3 expected views were generated. For the Forms

and Tables view of Oracle forms, an additional EgdeDescription for ‘Mas- terDetailRe-

lationship’ was included because this one, as opposed to the other ones, has a source

and two targets; this is, a form and the master and detail tables. Our approximation is

limited to relations with a unique source and target. A workaround would be to anno-

tate a same class from the metamodel with @Relationship several times, indicating for

each annotation a different pair source-target.

Fig. 5 Excerpt of the view specification model generated for the Oracle Forms case

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 16 of 23

In the JEE case, 2 of the 4 expected views were produced. The view about depen- dencies

among EJBs had to be done by hand, because in the architecture metamodel there is not a

class that represents in a synthetic way the relationships between the EJBs; what is described

is that the dependency relationships have an invoking method and one invoked. As a conse-

quence, we had to write a query that navigates dependencies between methods to, from

there, derive the calls between EJBs. Simi- larly, the specification for the Microservices and

Tables view was made by hand since the instances of ‘Table’ are contained within ‘Architec-

ture’ instead of being inside ‘Microservice’. The proposed decomposition views assume that

Fig. 6 Views obtained for applications developed under three different technologies: a and b Oracle Forms;
c Ruby on Rails; and d JEE

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 17 of 23

in the architecture model the container and content elements share a direct composition

reference.

In the case of Ruby on Rails, the expected view that combines Rails models with their

attributes, methods and relations was generated. In this case, there was no need for the

annotation elements related to graphical properties. The reason was the simplicity of

the view; Sirius’ default configuration was sufficient enough to adjust the size of Rails

models to the number of displayed attributes and methods.

Given the generated specifications, we have obtained the views (see Fig. 6) for applica-

tions written in the different technologies. In OracleForms, the specification was tested in

4 applications of the insurance and banking sector with sizes between 100 to 200 tables,

and 83 to 178 forms. In JEE, in 3 applications of the academic, commerce and government

domains, with sizes of up to 624 classes. In Ruby on Rails, in 3 applications designed for

professional and educational services with a size of between 45 and 153 Rails models. Fig.

6d demonstrates that the size and color of EJBs clusters (represented as ellipsis) are differ-

ent among them. In the architecture metamodel for this case, the MDRE expert defined

that the size and color of the EJBs clusters depend on the number of EJBs and LOC

contained respectively.

7 Discussion
7.1 Cost of developing a solution

The cost of a solution for a particular technology/language depends on the effort of

developing the assets (represented as light gray squares in Fig. 1) required in each step

of the views generation process. The assets of steps 1-2 are mandatory regardless of

whether our approach is being used or not (Tilley 2009). Instead, the adoption of our

approach results in savings in steps 3-4 because the MDRE expert designs the views by

annotating the architecture metamodel without caring about the scaf- folding needed in

the particular views specification framework (e.g., Sirius). Let us explain the scaffolding

needed in a Sirius specification (i.e., .odesign file).

The MDRE expert has to establish correspondences between the architecture meta-

model and Sirius concepts: i) The ‘Module’ class contains the forms and tables that one

wants to see and therefore the module should be mapped to ContainerDe- scription ii)

The ‘Table’ and ‘Form’ classes are fine-grained elements so that they correspond to

NodeDescription, and iii) The ‘SingleTableRelationship’ class has to be visualized as a

link whose source points to a form and target points to a table; therefore, it corre-

sponds to EdgeDescription.

In addition to establishing the correspondences, it is necessary to delimit the ele-

ments that are going to be shown through OCL queries as the ones in the List 4. From

lines 1 to 4 there are queries that return a collection of forms and tables, where self

represents a previous selected module. In addition, on line 5 there is a query that

returns all the ‘SingleTableRelationships’ of the given application and then the technol-

ogy of the graphic editor (i.e., Sirius) leaves the ones that have as source/target the

forms and tables resulting from lines 1-4. Finally, in lines 5 to 11 there is a query that

defines the color of a module based on the number of contained tables. For example, if

the number of tables is less than or equal to a threshold, then the selected color is blue.

Listing 4 Example of OCL Queries needed in Sirius

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 18 of 23

1 c o n t e x t Module:: t a b l e s: C o l l e c t i o n

2 s e l f. e l e m e n t s. s e l e c t (c | c. o c l I s T y p e O f (Table));

3 c o n t e x t Module:: forms: C o l l e c t i o n

4 s e l f. e l e m e n t s. s e l e c t (c | c. o c l I s T y p e O f (Forms));

5 c o n t e x t Module:: module Color: Color

6 i f s e l f. elements − > s e l e c t (o c l I s T y p e O f (Table)). s i z e () < = t h r e

s h o l d then

7 Color#Blue

8 e l s e

9 . . .

10 10 e n d i f.

11 ;

Instead of developing this scaffolding, the MDRE expert has to establish the cor-

respondences between architectural concepts and views specification by annotating the

architecture metamodel. The queries from lines 1-4 are automatically generated from

the annotations. The query from lines 5-11 is replaced by a snippet in the Metrics

transformation (see Listing 1) and a query in the odesign file (Listing 3). Note that the

query references to the measure ‘Total number of Tables’ previously calculated by the

transformation. The snippet is manually developed by the expert and the query is auto-

matically generated.

7.2 Limitations

The main benefit of our approach is the Independence of the technology that allows us to

be flexible in terms of the language we can process and the views we can obtain. However,

this benefit is, at the same time, a limitation because there is a need for an MDRE expert

to build the assets which are non-trivial. However, that task has to be done only once per

technology and can be reused as many applications as desired. The cost of the solution is

cost-effective if final users are going to reuse the assets many times, either because it is ap-

plied in many different applications or in the same application that evolves constantly.

7.3 Related work

Our approach was designed based on two main requirements: i) software visualiza-

tion; and ii) modeling of software metrics that impact the views. In this section we clas-

sify related work whose requirements are similar to ours.

7.4 Software visualization

There are several academic approaches on architectural views oriented to soft- ware

comprehension tasks, for example: CodeCity (Wettel et al. 2011), eCity+ (Khan et al.

2014), AIVA (Snajberk et al. 2012; najberk et al. 2013), SAABs (Osman et al. 2014),

Softwarenaut (Lungu et al. 2014), VizDSL (Morgan et al. 2018), Modigen (Gerhart and

Boger 2016), EuGENia,17 Moose,18 and GRAPH (Bergel et al. 2014).

Several of these approaches (except by VizDSL, Modigen, EuGENia, Moose, and

GRAPH) create views for a restricted number of technologies and languages; e.g.,

Smalltalk, Java, C++ and ADA. In the same way, the views are predefined and it is not

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 19 of 23

possible to easily define new ones. CodeCity and eCity+ generate views whose notation is

based on the city metaphor: the neighborhoods represent packages and the buildings repre-

sent classes. In the case of SAABs, UML classes diagrams are obtained. In Softwarenaut,

module views and their dependencies are obtained. Fi- nally, AIVA produces components

and classes views. In contrast, our approximation is open from the technology point of view

for several reasons. Firstly, according to the working technology, it allows new parsers to be

plugged to the rest of infrastruc- ture. Secondly, it allows the definition of new views with

the relevant architectural elements for the developer. Thirdly, it gives freedom to define the

used notation instead of using something fixed such as UML (Snajberk et al. 2012) because

not all the technologies obey the object oriented programming paradigm.

VizDSL is a visual DSL based on the Interaction Flow Modeling Language (IFML) to

design and create interactive visualizations. Modigen is a textual DSL to spec- ify

graphical editors DSLs based on node and edge diagrams. These are, together with an

EMF metamodel, the input for a generator that produces an Eclipse-based graphical

Editor. VizDSL and Modigen are generic workbenches not specially tar- geting

metric-centered architectural views for software.

Like EuGENia, our tool generates an editor specification from an annotated meta-

model. When using EuGENia developers define the view look-and-feel in a static manner.

In contrast, when rendering our views their look-and-feel can dynamically change since

Sirius takes as values of graphical properties (i.e., color, size, and labels) the measurements

computed prior to visualization.

We found that our approximation resembles Moose in many aspects: it is possible to

connect parsers for new technologies, there is an intermediate (meta)model on top of

which queries can be made and new views can be specified. Following Moose, the same

research group proposes GRAPH: A DSL to specify views that represent software

dependencies. Software structural elements and their relationships are re- ferred to as

nodes and edges of a graph. The views style (i.e., color, size) is defined in terms of

metrics; for example, the number of methods in a class determines the size of nodes.

The comparison of our work with Moose and GRAPH is explained in Section 2.

7.5 Modeling of software metrics

In (Bagnato et al. 2017), a profile of the Structure Metrics Metamodel (SMM) is con-

tributed. The authors take advantage of Modelio tool19 to annotate diagrams with

concepts coming from the profile. Diagrams are made from scratch by final users. In

contrast, our approach generates diagrams from source applications.

In (Stevanetic et al. 2014), authors define a DSL that serves to express architectural

abstractions of software applications. The specification is used to track architectural

changes in a given application and check compliance with a reference architecture.

Authors present the language constructs to specify understandability metrics so that

users can check if the current version of an application is between predefined ranges.

Software visualization is out of the scope.

8 Conclusions and future work
Our approach based on annotations generates specifications of graphic editors that

have architectural views that show a decomposed application from a high level to a low

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 20 of 23

level, according to the comprehension necessities based in software metrics. This allows

developers to obtain graphic editors in less time, regardless of technology.

Since our experiments have shown that the editor’s performance can decrease with

large architecture models, a future direction is to study mechanisms that increase the

performance of the queries included in the view specification model (i.e. mainly the

queries that navigate the metrics model).

A DSL is a language tailored to a specific application domain. It consists of an abstract

syntax, a concrete syntax, and semantics. We have targeted a more DSL- oriented ap-

proach for specifying software views. We are reaching the goal incremen- tally. We have

moved a step forward by defining the abstract syntax (our TIVS and Metrics metamodels)

and semantics (encapsulated in the transformations). For the time being, we are lacking a

dedicated concrete syntax and the workaround is the use of annotations. The latter is

because we are collecting lessons and experiences from the use of our approach with stu-

dents and practitioners in order to provide a language expressive enough. However, this

shortfall does not prevent the use of the approach since developers are used to employing

annotations. We consider that a textual syntax would be a “nice to have” feature and,

therefore, the definition of a textual concrete syntax is part of our research agenda.

Finally, another future work is to extend our approach to deal with the limitations

observed in the evaluation; e.g., relationships with multiple targets.

9 Endnotes
1Sirius is a free platform that generates graphic editors from views specification

models; we have chose it for many reasons: simplicity to specify diagrams, capacity to

draw big models, and an active developers community.http://www.eclipse.org/sirius.
2http://composersolutions.com/
3http://vgosoftware.com/
4https://www.oracle.com/technetwork/developer-tools/jheadstart/overview/

index.html
5https://pitss.com/
6http://www.renaps.com/ormit-java-adf.html
7http://www.sparxsystems.com/products/ea/
8https://www.modelio.org/
9https://www.ibm.com/us-en/marketplace/rational-software-architect-designer
10http://staruml.io/
11Railroady - https://github.com/preston/railroady
12MySQL Workbench - https://www.mysql.com/products/workbench/
13http://www.eclipse.org/Xtext/
14https://eclipse.org/MoDisco/
15http://www.omg.org/technology/kdm/
16https://wiki.eclipse.org/OCL/OCLinEcore
17https://www.eclipse.org/epsilon/doc/eugenia/
18http://moosetechnology.org/
19https://www.modelio.org/

Abbreviations
CRUD: Create, read, update and delete; EJB: Enterprise java bean; JEE: Java enterprise edition; KDM: Knowledge
discovery metamodel; LOC: Lines of code; MDRE: Model-driven reverse engineering; MVC: Model-view-controller;

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 21 of 23

http://www.eclipse.org/sirius
http://composersolutions.com/
http://vgosoftware.com/
https://www.oracle.com/technetwork/developer-tools/jheadstart/overview/index.html
https://www.oracle.com/technetwork/developer-tools/jheadstart/overview/index.html
https://pitss.com/
http://www.renaps.com/ormit-java-adf.html
http://www.sparxsystems.com/products/ea/
http://www.modelio.org/
https://www.ibm.com/us-en/marketplace/rational-software-architect-designer
http://staruml.io/
https://github.com/preston/railroady
http://www.mysql.com/products/workbench/
http://www.eclipse.org/Xtext/
https://eclipse.org/MoDisco/
http://www.omg.org/technology/kdm/
https://wiki.eclipse.org/OCL/OCLinEcore
http://www.eclipse.org/epsilon/doc/eugenia/
http://moosetechnology.org/
http://www.modelio.org/

OMG: Object management group; PIM: Platform independent metamodel; PL/SQL: Procedural language/structured
query language; RoR: Ruby On rails; SMM: Structured metrics modetamodel; UML: Unifired modeling language

Acknowledgements
The authors thank Diego Castiblanco for helping in the translation of the article.

Funding
The research was funded by Universidad de Los Andes.

Availability of data and materials
Please contact authors for data requests.

Authors’ contributions
LFM contributed in the design of the approach. He fully developed the tool and the experiments. KGP stated the
problem out and participated in the design of the approach. RC helped to draft the manuscript. All authors
contributed writing, reading and approving the final manuscript.

Authors’ information
LFM is software architect of the Technology, Networking and Information Systems Management Office at Universidad
de Ibagué. Prior to this, he was assistant researcher in the Department of Systems and Computing Engineering at
Universidad de los Andes, where he finished his master degree in Software Engineering.
KGP is assistant professor of the Department of Systems and Computing Engineering at Universidad de los Andes. Prior to
this, she was R & D Engineer / Software Engineer at Netfective Technology SA. She received her Ph.D. in September 2010
from the University of Nantes. In 2011, she was a post-doctoral fellow in INRIA lab. She has participated in research and
development projects (proprietary or Open Source) since 2005. Her research interests are software engineering, evolution
and maintenance of software and model-driven engineering.
RC is full professor of the Department of Systems and Computing Engineering at Universidad de los Andes. Her
research interest are: Software development based on models, Software product lines, and Modeling specific domains.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Systems and Computing Engineering, School of Engineering, Universidad de los Andes, Cra 1 No 18A
- 12, Bogotá, Colombia. 2Gestión de Tecnologías, Redes y Sistemas – GTRES, Universidad de Ibagué, Cra 22 Cl 67 B/
Ambalá, Ibagué, Colombia.

Received: 25 March 2018 Accepted: 20 November 2018

References
Anquetil N, Laval J (2011) Legacy software restructuring: Analyzing a concrete case. 15th European Conference on Software

Maintenance and Reengineering. IEEE, Germany, p 279–286
Bagnato A, Sadovykh A, Dahab S, Maag S, Cavalli A, Stefanescu A, Rocheteau J, Mallouli S, Mallouli W (2017) Modeling omg

smm metrics using the modelio modeling tool in the measure project
Bergel A, Maass S, Ducasse S, Girba T (2014) A domain-specific language for visualizing software dependencies as a graph.

2014 Second IEEE Working Conference on Software Visualization. IEEE, Canada, p 45–49. https://doi.org/10.1109/VISSOFT.
2014.17

Brunelière H, Cabot J, Dupé G, Madiot F (2014) Modisco: A model driven reverse engineering framework. Inf Softw Technol
56(8):1012–1032. https://doi.org/10.1016/j.infsof.2014.04.007

Czarnecki K, Eisenecker UW (2000) Generative Programming: Methods, Tools, and Applications. ACM Press/Addison-Wesley
Publishing Co., New York

Escobar D, Cárdenas D, Amarillo R, Castro E, Garcés K, Parra C, Casallas R (2016) Towards the understanding and evolution of
monolithic applications as microservices. 2016 XLII Latin American Computing Conference (CLEI). IEEE, Chile, p 1–11.
https://doi.org/10.1109/CLEI.2016.7833410

Garcés K, Casallas R, Álvarez C, Sandoval E, Salamanca A, Viera F, Melo F, Soto JM (2018) White-box modernization of legacy
applications: The oracle forms case study. Comput Stand Interfaces 57:110–122

Garcés K, Sandoval E, Casallas R, Alvarez C, Salamanca A, Pinto S, Melo F (2015) Aiming Towards Modernization: Visualization
to Assist Structural Understanding of Oracle Forms Applications. ICSEA 2015, Tenth International Conference on Software
Engineering Advances. IARIA, Spain, p 86–95

García J, Garcés K (2017) Improving understanding of dynamically typed software developed by agile practitioners.
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.ESEC/FSE 2017. ACM, Germany,
p 908–913. https://doi.org/10.1145/3106237.3117772

Gerhart M, Boger M (2016) MODIGEN: Model-Driven Generation of Graphical Editors in Eclipse. Int J Comput Sci Inf Technol
8;73-91. https://doi.org/10.5121/ijcsit.2016.8506

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 22 of 23

https://doi.org/10.1109/VISSOFT.2014.17
https://doi.org/10.1109/VISSOFT.2014.17
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1109/CLEI.2016.7833410
https://doi.org/10.1145/3106237.3117772
https://doi.org/10.5121/ijcsit.2016.8506

Khan T, Humayoun SR, Amrhein K, Barthel H, Ebert A, Liggesmeyer P (2014) eCITY+: A Tool to Analyze Software Architectural
Relations Through Interactive Visual Support. Proceedings of the 2014 European Conference on Software Architecture
Workshops. ECSAW ’14, New York, pp 36–1364. https://doi.org/10.1145/2642803.2642839

Lungu M, Lanza M, Nierstrasz O (2014) Evolutionary and Collaborative Software Architecture Recovery with Softwarenaut. Sci
Comput Program 79:204–223. https://doi.org/10.1016/j.scico.2012.04.007

Mancoridis S, Mitchell BS, Chen Y, Gansner ER (1999) Bunch: a clustering tool for the recovery and maintenance of software
system structures. Proceedings IEEE International Conference on Software Maintenance, 1999. (ICSM ‘99). IEEE, England,
p 50–59

Mendivelso, L. Garcés, K. Casallas, R. Vistas arquitectónicas independientes de tecnología para compresión de software.
Proceedings of the 20th Conferencia Iberoamericana en Software Engineering (CIbSE 2017). Buenos Aires, pp 71-84

Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program comprehension with interaction data. 2014 14th
International Conference on Quality Software. IEEE, USA, p 276–285. https://doi.org/10.1109/QSIC.2014.11

Morgan R, Grossmann G, Schrefl M, Stumptner M, Payne T (2018) VizDSL: a visual DSL for interactive information visualization.
In: Krogstie J, Reijers H (eds) Advanced Information Systems Engineering. CAiSE 2018. Lecture Notes in Computer
Science, vol 10816. Springer, Cham

Najberk J, Holy L, Brada P (2013) Visualization of component-based applications structure using AIVA. 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE, Italy, p 409–412. https://doi.org/10.1109/CSMR.2013.60

OMG: Structured Metrics Metamodel (SMM). http://www.omg.org/spec/SMM/1.0/ Accessed 08 Mar 2018
Osman MH, Chaudron MRV, van der Putten P (2014) Interactive Scalable Abstraction of Reverse Engineered UML Class Diagrams,

vol 1. 2014 21st Asia-Pacific Software Engineering Conference. IEEE, South Korea, p 159–166. https://doi.org/10.1109/APSEC.
2014.34

Rugaber S, Stirewalt K (2004) Model-driven reverse engineering. IEEE Softw 21(4):45–53. https://doi.org/10.1109/MS.2004.23
Snajberk J, Holy L, Brada P (2012) AIVA vs UML: Comparison of component application visualizations in a case-study. 2012

16th International Conference on Information Visualisation. IEEE, France, p 54–61. https://doi.org/10.1109/IV.2012.20
Stevanetic S, Haitzer T, Zdun U (2014) Supporting software evolution by integrating DSL-based architectural abstraction and

understandability related metrics. ACM International Conference Proceeding Series. ACM, Austria. https://doi.org/10.1145/
2642803.2642822

Tilley S (2009) Documenting software systems with views VI: lessons learned from 15 Years of research & practice.
Proceedings of the 27th ACM International Conference on Design of Communication. SIGDOC ’09, New York, pp 239–
244. https://doi.org/10.1145/1621995.1622043

Wettel R, Lanza M, Robbes R, Software Systems A (2011) Cities: a controlled experiment. Proceedings of the 33rd International
Conference on Software Engineering. ICSE ‘11, New York, pp 551–560. https://doi.org/10.1145/1985793.1985868

Wikipedia: Creative Commons Attribution-ShareAlike License. Page Version ID: 755202644 (2016)
Wikipedia: Saffir–Simpson scale. Page Version ID: 786709578 (2017). https://en.wikipedia.org/w/index.php?title=Saffir%E2%80%93Simpson_

scale&oldid=786709578 Accessed 29 June 2017

Mendivelso et al. Journal of Software Engineering Research and Development (2018) 6:16 Page 23 of 23

https://doi.org/10.1145/2642803.2642839
https://doi.org/10.1016/j.scico.2012.04.007
https://doi.org/10.1109/QSIC.2014.11
https://doi.org/10.1109/CSMR.2013.60
http://www.omg.org/spec/SMM/1.0/
https://doi.org/10.1109/APSEC.2014.34
https://doi.org/10.1109/APSEC.2014.34
https://doi.org/10.1109/MS.2004.23
https://doi.org/10.1109/IV.2012.20
https://doi.org/10.1145/2642803.2642822
https://doi.org/10.1145/2642803.2642822
https://doi.org/10.1145/1621995.1622043
https://doi.org/10.1145/1985793.1985868
https://en.wikipedia.org/w/index.php?title=Saffir%E2%80%93Simpson_scale&oldid=786709578
https://en.wikipedia.org/w/index.php?title=Saffir%E2%80%93Simpson_scale&oldid=786709578

	Abstract
	Extension Note
	Introduction
	Motivation
	Migration from oracle forms to java and net
	Restructuring monolithic JEE applications with microservices
	Maintenance of Ruby on rails applications
	Analysis of common features

	Views generation process
	Overview
	Step 1: Parsers
	Step 2: architecture metamodel and technology2architecture transformation
	Step 3: Metrics transformation and annotations
	Metrics transformation
	Annotations and Technology-independent Views Specification (TIVS) metamodel

	Step 4: Views specification model

	Evaluation
	Scope

	Results
	Discussion
	Cost of developing a solution
	Limitations
	Related work
	Software visualization
	Modeling of software metrics

	Conclusions and future work
	Sirius is a free platform that generates graphic editors from views specification models; we have chose it for many reasons: simplicity to specify diagrams, capacity to draw big models, and an active developers community.http://www.eclipse.org/sirius.
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	Author details
	References

