
RESEARCH Open Access

On the benefits and challenges of using
kanban in software engineering: a
structured synthesis study
Paulo Sérgio Medeiros dos Santos* , Alessandro Caetano Beltrão, Bruno Pedraça de Souza
and Guilherme Horta Travassos

* Correspondence:
pasemes@cos.ufrj.br
Program of Systems Engineering
and Computer Science – PESC/
COPPE, Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil

Abstract

Context: Kanban is increasingly being used in diverse software organizations. There
is extensive research regarding its benefits and challenges in Software Engineering,
reported in both primary and secondary studies. However, these results have not
been synthesized yet.

Goal: to investigate and identify the actual benefits and challenges of using Kanban
in Software Engineering to support practitioners in understanding and analyzing the
benefits and challenges of adopting Kanban in their software projects.

Method: to use the Structured Synthesis Method to aggregate existing empirically-
grounded evidence in the published primary studies regarding using Kanban in
Software Engineering.

Results: from the 20 selected primary studies in which over 16 benefits were
identified, four had the most robust results in the aggregation, i.e., with the most
confidence associated, namely: ‘work visibility,’ ‘control of project activities and tasks,’
‘flow of work,’ and ‘time-to-market.’ Furthermore, the ‘organizational culture’ was
identified as the most dominant challenge in Kanban implementations.

Conclusions: Syntheses studies represent a fundamental step in organizing the body of
evidence as an empirically-grounded reference for decision-making in practice.
The benefits with most confidence indeed appear to be the ones intrinsically
linked to the Lean thinking and the Kanban approach. As Kanban originated in
the manufacturing, it is interesting to observe this kind of confirmation in the
software domain. Still, there are several benefits and challenges which still lacks
the appropriate level of evidence. We also noticed the absence of negative
results reported in the technical literature. These aspects need the additional
attention of the research community.

Keywords: Kanban, Benefits and challenges, Structured synthesis method

1 Introduction
The emphasis on delivering business value was one of the leading driving forces behind

the adoption of most agile software development approaches. This goal also motivated

the introduction of lean thinking in the software development processes, with the elim-

ination of waste as a core principle – along with the continuous learning through short

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

dos Santos et al. Journal of Software Engineering Research and Development
 (2018) 6:13
https://doi.org/10.1186/s40411-018-0057-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-018-0057-1&domain=pdf
http://orcid.org/0000-0001-9502-1362
mailto:pasemes@cos.ufrj.br
http://creativecommons.org/licenses/by/4.0/

cycles and frequent builds, and the promotion of late changes and fast iterations

(Poppendieck and Cusumano 2012).

These movements took place in the context of a business shift to the digital trans-

formation era, in which disruptive business processes and models are seen as necessary

paths to promote competitiveness, mainly for those companies that are not willing to

give significant control of their processes to big software vendors (Andriole 2017).

Together with the technological evolution (e.g., cloud computing), this compelled the

software industry to recall the programming-in-the-small (DeRemer and Kron 1976)

principles and to revisiting the overwhelming technical complexity and inflexibility of

huge, standardized software systems and processes (Andriole 2017). Hence, the need to

eliminating waste with unnecessary complexity or promote late changes to keep the

software systems up-to-date with the business processes changes.

Despite its origins in manufacturing, lean principles are continuously being explored

in new industries, even among those involving intensive knowledge work as in the case

of Software Engineering (SE). Staats et al. (2011) state that “knowledge work not only

has a context separate from manufacturing but also differs fundamentally in structure,

calling into question lean principles’ universal applicability.” By one hand, agile software

development approaches succeeded attaining goals such as adaptability and iterative

processes (Abrantes and Travassos 2013), although being very developer-centric and

relatively opaque to management regarding effort estimation, duration, and develop-

ment costs (Maglyas et al. 2012; Fitzgerald et al. 2014). Lean approaches, on the other

hand, are more geared towards quantitative measurement and decision making based

on evidence (Fitzgerald et al. 2014).

One of the leading lean approaches used in SE is Kanban, which has been increas-

ingly adopted by software organizations (Versionone 2017). Given its rising in popular-

ity, researchers are increasing their attention to this theme, as can be seen in the four

secondary studies analyzing different perspectives regarding Kanban (Corona and Pani

2013; Ahmad et al. 2013; Al-Baik and Miller 2015; Ahmad et al. 2018) covering over 20

primary studies. The technical literature is quite comprehensive reporting evidence

regarding the benefits expected from Kanban and the challenges involved in its

utilization.

However, despite the essential efforts in organizing a body of knowledge as observed

in these four secondary studies (systematic reviews and mappings), there is still a lack

of synthesis of the benefits and challenges of Kanban. Research syntheses are essential

to provide a summarization, integration, combination, and comparison of findings from

different studies. They are proposed on the premise that single studies are limited in

the extent to which they may be generalized (Cruzes and Dybå 2011). Thus, a research

synthesis represents a vital knowledge tool employed to manage and put scientific find-

ings to use (Santos and Travassos 2016).

The primary goal of this paper is to investigate and identify the benefits and

challenges of using Kanban in SE evidenced in the technical literature. It is a fun-

damental step in organizing an empirically-grounded reference for supporting the

decision-making on this subject in SE. Also, the aggregated evidence presented in

this paper aims to help software practitioners to understand and analyze the bene-

fits and challenges of adopting and using Kanban in their software projects. Be-

sides, to support SE researchers to identify areas where further research is needed

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 2 of 29

to consolidate, understand or evolve the current knowledge regarding the use of

Kanban in SE.

This paper is organized as follows. The next section briefly presents the basic

concepts of Kanban and lean thinking. In Section 3, the study methodology is de-

tailed, showing how primary studies were selected and aggregated using the Struc-

tured Synthesis Method (SSM). Section 4 describes how the primary studies were

analyzed before aggregation. In the SSM, the primary studies have to be translated

into diagrammatic representations used to aggregate the studies’ outcomes. In

Section 5, the aggregation process and results are presented. The main benefits

and challenges are explained and detailed. Then, Section 6 examines the results in

the light of the existing body of evidence and discusses what can be learned from

the aggregation. The threats to the validity of this synthesis study are explored in

Section 7, and Section 8 concludes this paper.

2 Background
The Lean Methodology, also known as the Toyota Production System, is a production

management process developed by Taiichi Ohno in the 40’s in the Japanese manufac-

turing industry context. In its conception, the term “Lean” was primarily associated

with the reduction of costs (Ohno and Bodek 1988) through the “elimination of waste”

or “doing more with less” (Conboy 2009). In the course of time, it became also focused

on value for the customer and flow of work. It is common to refer to the lean concept

as “lean thinking,” meaning that it is a mental model of how the world works (Poppendieck

and Poppendieck 2013). In Womack and Jones (1997) the core lean principles are defined

as follows:

� Value: can only be defined by the customer. Also, it must be expressed regarding a

specific product;

� Value stream: the course of action through which a specific product must go to

make it available;

� Flow: the pursuit of continuous production keeping interruptions at a minimal

level;

� Pull: the customer pulls the product from the producer when it is needed rather

than pushing the products, often unwanted, onto the customer;

� Perfection: a virtuous cycle is created by the interaction of the previous four

principles. “Organizations begin to accurately specify value, identify the entire value

stream, make the value-creating steps for specific products flow continuously, and

let customers pull value from the enterprise.”

The Lean philosophy uses a number of tools to support management its oper-

ation. One of these tools is called kanban (based on Toyota Production System). In

contrast, there is an adaptation of the kanban, made by Anderson (2010), which is

called Capital K (or Kanban). In this paper, our focus is on the latter, the Kanban

with Capital K used in the software development context. Kanban is an approach

to visualize the workflow of a production system. It makes use of the queue theory

to control and improve the value stream by aiming attention at the production

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 3 of 29

flow. In SE, David Anderson was the first to use Kanban in 2004 with a software

development team at Microsoft. According to Anderson (2010), Kanban has five

principles:

� Visualize workflow: The board is the primary tool used to visualize and coordinate

teamwork. Its columns show a sequence of activities, where the cards represent the

features under work;

� Limit work in progress: WIP is a way to manage and limit the amount of

working in progress. There should always be a way to limit and signal to

pull a new task;

� Measure and manage flow: different statistics and diagrams can be used to

monitor the Kanban process such as cycle/lead time, queue size, and cumulative

flow diagrams;

� Make process policies explicit: policies are an essential part of assuring that the

flow is achieved. They establish the conditions to make the pull system work. They

include, for instance, how to assign tasks and activities to developers and when a

work item can be pulled from one state to another;

� Use models to recognize improvement opportunities: three models are

suggested (i) the Theory of Constraints, (ii) a subset of ideas from Lean Thinking

that identifies wasteful activities as economic costs, and (iii) some variants that

focus on understanding and reducing variability.

In SE, a Kanban system is usually implemented as a board on a wall with columns

representing the different development process stages, i.e., the value stream (Poppendieck

and Cusumano 2012). Cards are used to describe pieces of work or tasks, which are

moved through the chart columns. A typical configuration used in a Kanban chart in the

software context contains at least columns for the stages of specification, development,

test, and deploy (Corona and Pani 2013). For each column, a limit for the work in

progress is determined. As a result, flow and bottlenecks are usually the main issues

addressed in daily meetings and play a crucial role in identifying improvement opportun-

ities. Furthermore, as a visual tool, the chart stimulates the value stream evaluation mate-

rialized in it, also prompting not only the process improvement itself but also the defined

policies supporting it.

3 Study method
The fundamental research question regarding our work refer to “What are the trends

observed in empirical studies available in the technical literature regarding the benefits

and challenges of using Kanban in software organizations?” To answer this research

question, we aggregated the results of primary studies regarding Kanban using the

SSM. The SSM allows the aggregation of qualitative and quantitative evidence through

the use of diagrammatic models (Santos and Travassos 2013). As both qualitative and

quantitative research synthesis method, the SSM briefly depicts the essential contextual

aspects and informs the effects trend (e.g., positive or negative), as well as a certainty

estimation about them. Therefore, the SSM provides balanced information regarding

the phenomena, neither aggregating precise quantitative findings nor rich qualitative

descriptions.

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 4 of 29

This blend of integrative and interpretive synthesis (Cruzes and Dybå 2011) was the

primary reason for deciding to use the SSM as our research method since the primary

studies regarding the use of Kanban in SE report both quantitative and qualitative evi-

dence. In the SSM, interpretative synthesis aspects are concerned with the organization

and development of concepts to describe contextual aspects of evidence whereas

integrative features are focused on pooling data about cause-effect or moderation rela-

tions taking into account the uncertainty estimated for each evidence. Besides, the SSM

offers tool support to model and synthesize evidence (Santos et al. 2015; Santos and

Travassos 2017a), including facilities for graphical modeling, evidence search, and

support for the synthesis. Another essential functionality is the evidence model

comparison used to aggregate evidence, which has mechanisms for ‘conflict resolution’

between the models. The Evidence Factory tool including all the results of the synthesis

presented in this paper can be accessed at http://evidencefactory.lens-ese.cos.ufrj.br/

synthesis/editor/80416.

In general terms, an SSM synthesis study follows three steps: (i) the selection of pri-

mary studies, (ii) the analysis and representation of evidence acquired by such studies,

and (iii) evidence synthesis. The basic idea involving these three steps is to collect evi-

dence then represent them from the same perspective so that the results can be consol-

idated and synthesized. It is similar to statistical meta-analysis studies – which is a kind

of integrative synthesis – where the effect size is used to get a uniformed view over the

studies outcomes, which is also used in their aggregation (Borenstein et al. 2009).

Next, we describe how we applied the SSM to synthesize the research on benefits

and challenges of using Kanban in SE. We also provide some descriptions of the SSM

definition and utilization necessary for understanding how this synthesis study was

conducted. We refer the reader to the following work Santos and Travassos (2013) for

further details regarding the method, and to Martinez-Fernandez et al. (2015), Chapetta

(2016), and Santos and Travassos (2017b) to find examples of its application.

3.1 SSM step 1: Selecting primary studies

As there are four secondary studies regarding Kanban including one (Ahmad et al.

2018) that has been recently published, there is no reason to perform some of the typ-

ical procedures involved in this step, such as defining a search string and selecting the

studies based on inclusion and exclusion criteria. Instead, we used the datasets from

these secondary studies to form the set of primary studies to be aggregated. We have

taken the primary studies from the two most recent secondary studies (Al-Baik and

Miller 2015; Ahmad et al. 2018). Regarding the other two, one (Ahmad et al. 2013) is

updated by Ahmad et al. (2018), and the other (Corona and Pani 2013) is focused on

the tools available for Kanban boards in software development. Only the papers report-

ing results from primary studies (i.e., case study, survey, controlled experiment, or

simulation study) on using Kanban in SE were selected from the two secondary studies.

Grey literature and experience reports that were considered in these two secondary

studies were excluded from the synthesis.

Ahmad et al. (2018) enumerate 23 technical papers as primary studies (and other 23

as experience reports). However, we have found that three of them (Corona and Pani

2013; Ahmad et al. 2013; Al-Baik and Miller 2015) were, in fact, secondary studies.

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 5 of 29

http://evidencefactory.lens-ese.cos.ufrj.br/synthesis/editor/80416
http://evidencefactory.lens-ese.cos.ufrj.br/synthesis/editor/80416

Also, one additional paper was excluded (Heikkilä et al. 2016), since the only challenge

it reported, called “Setting up and maintaining Kanban”, has not been translated as it

did not represent a moderator – more details about the benefits and challenges of using

Kanban in SE considered in each primary study is shown in Table 1 (Section 4). Thus,

from the 23 primary studies, 19 were included in the synthesis.

Al-Baik and Miller (2015) enumerate 37 papers as studies from which six studies we

could classify as primary studies. Only one of the six primary studies was not included

in Ahmad et al. (2018) and, thus, was also included in the synthesis. The remaining 31

papers were excluded because of the following reasons: (i) grey literature (19 papers);

(ii) experience reports (six papers – all included in Ahmad et al. (2018)); (iii) it is not

an empirical study (five papers); and (iv) not reporting results describing the benefits

and challenges of Kanban use (one paper). Appendix B lists all the primary studies. It

also should be noticed that all included papers are from the Software Engineering

realm. That is, they investigate Kanban as a software technology (i.e., a set of

techniques and tools employed in software development).

3.2 SSM step 2: Analysis and evidence representation

In this step, the goal is to put the selected primary studies under the same perspective

so they can be aggregated. The idea is similar to the statistical meta-analysis, in which

all primary studies are represented by a numerical value called effect size and then

aggregated by combining those values (Borenstein et al. 2009). In the case of SSM, each

primary study is represented by an evidence model, which is denominated theoretical

structure. The evidence models describe the primary studies’ contextual aspects and

the effects/moderators expected from the object of study – Kanban, in this synthesis.

These descriptions are used as input for determining the evidence compatibility and for

the aggregation itself.

As 20 primary studies were selected, we have had to create 20 theoretical structures.

The name theoretical structure is related to the origin of the model constructs, which

were taken from a representation created for theory building (Sjøberg et al. 2008). Since

the model was adapted for the purpose of research synthesis, we use the name theoret-

ical structure to bring attention to the model structure instead of the epistemological

aspects related to theory building. In fact, this emphasis is also reflected in the method

name Structured Synthesis Method. In the following paragraphs, we describe the

evidence model constructs.

The ten semantic constructs used in the theoretical structures are shown in Fig. 2.

There are three possible types of structural relationships in the representation: is a,

part of and property of. All of them have counterparts in UML, respectively:

generalization, composition and class attributes. The is a and part of relationships use

the same UML notation for generalization and composition. Dashed connections

denote properties. The relationships are used to link two types of concepts – value and

variable.

A value concept represents a particular variable value, usually an independent vari-

able. Rectangles represent value concepts. They are classified in archetypes (the root of

each hierarchy), causes (indicated by the use of bold font and a ‘C1’ following the name

denoting that it is the ‘cause 1’ (e.g., ‘Kanban’), and contextual aspects (e.g., ‘Distributed

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 6 of 29

Project’). The four archetypes – activity, actor, system, and technology – were

suggested by Sjøberg et al. (2008) in an attempt to capture the typical scenario in SE

described by an actor applying a technology to perform activities in a software system.

A variable concept focuses on value variations usually associated with a dependent

variable. Variable concepts are represented by ellipses or parallelograms symbolizing

effects (e.g., ‘Work Visibility’) and moderators (e.g., ‘Training), respectively. Also, effects

are not connected to cause using lines as they are assumed to exist when reading the

diagram. Lines are also lacking in the link between moderators and the (moderated)

effects. In this case, a textual hint (e.g., ‘M1’) is shown beside both the moderated effect

and moderator. Both relationships, cause-effect, and moderation, are denominated

influence relationships.

A seven-point Likert scale is used to indicate an effect size. The scale ranges from

strongly negative to strongly positive. It is indicated above the ellipse (e.g., indicates

that ‘Collaboration’ is between weakly positively and positively affected by ‘Kanban’ –

the number of arrows indicates the value in the scale; represents strongly negative

and strongly positive, and half arrows indicate a range such as in the case of

‘Collaboration’). The other type of variable concepts, namely moderators, indicates that

some positive or negative effect is moderated (i.e., reduced) when it increases or

decreases. It has a scale with three values indicating the moderation direction: inversely

proportional, indifferent, and directly proportional. For instance, the moderator

‘Training’ has an inversely proportional influence on ‘Collaboration,’ which means that

the more it is present, the less it exerts a moderation influence. The last aspect related

to variable concepts is the association of a belief value (ranging from 0% to 100% or 0

to 1) to estimate the confidence in the observed effects and moderations. The bar under

each element represents the belief value, e.g., ‘Flow of work’ has 47% of belief value.

3.2.1 Extracting information to build evidence models

In order to create the evidence models, it is necessary to extract information from the

primary studies. The goal is to determine and define the concepts (contextual aspects,

moderators, and effects) that will form the evidence model, and to estimate the

confidence (i.e., belief value) over the variable concepts (moderators and effects). This is

usually performed in two stages one for determining the concepts and other for

estimating the confidence. These two stages are described next.

In the first stage, the procedures are analog to the coding process (Auerbach and

Silverstein 2003), but with the specific goal of developing concepts and relating them

according to the diagrammatic model definitions given earlier. Hence, the coding in the

SSM does not necessarily need to go through a continuous and iterative process of

small steps as it is usually indicated for coding, but it can be focused on the elements

of the theoretical structures. There are several recommendations for performing this

coding process in the SSM. For instance, one of the recommendations is the translation

procedure (Britten et al. 2002). In the SSM, as the goal is to aggregate evidence by

combining the compatible theoretical structures, the translation procedure can support

the identification of concepts, which at first glance are not comparable, but when trans-

lated to the proper concept they become comparable. One example in software context

would be translating Understandability and Learnability by a more generic concept, for

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 7 of 29

instance, Usability.1 This kind of generalization is not free from threads and should be

considered in case by case basis according to the researchers’ interpretations. Readers

interested in a detailed view regarding the recommendations and heuristics for the

coding process in the SSM can find in Santos (2015).

During the coding, besides the evidence model concepts, it is also necessary to deter-

mine the effects intensity and the moderators direction. For qualitative studies, the

adverbs and adjectives used to qualify the reported outcomes are translated to the

seven-point Likert scale describing the effect size or intensity. When there was no

indication of the effect intensity we were conservative and decided to define a range of

values to represent the imprecision regarding the intensity, e.g., ‘between weakly posi-

tive and positive.’ For the quantitative studies, on the other hand, we need to arbitrate

ranges of values using the domain of the dependent variable scale as input to be able

to translate it to the seven-point Likert scale. For instance, in Fitzgerald et al. (2014)

“the overall cycle time was reduced from almost 100 days to just over 60 days, a

significant improvement” – the authors qualified the difference of 40 days as a signifi-

cant improvement, which was used to determine this effect as strongly positive in the

Likert scale.

In the second stage, with the concepts and their relationships defined, the SSM needs

further definitions to determine the confidence (i.e., the belief value) related to the

effects and moderators. Two inputs are used to that end. One is the study type of which

evidence was acquired. The SSM uses the GRADE evidence hierarchy (Atkins et al.

2004) to split the 0–1 belief value range into four subranges: unsystematic observations

[0.00, 0.25]; observational studies [0.25, 0.50]; quasi-experiments [0.50, 0.75]; and

randomized controlled [0.75, 1]. The second input is the quality assessment which is

translated into the 0.25 subrange. The SSM proposes to use two checklists to assess the

quality of each study, which are explained in Santos and Travassos (2013). Based on

this, the belief values listed in Table 5 (Appendix A) are calculated, e.g., the study P1

was observational (0.25), and in the performed quality assessment using the checklists,

it got 0.17 out of 0.25. As one can see, the estimation procedure give lower belief values

for less reliable studies and higher values for the more reliable ones. Thus, the basic

idea is to reflect the reliability of the evidence represented by a theoretical structure.

Details regarding the quality assessment for each study can be found in the Evidence

Factory tool.

For performing these two stages for translating evidence from the primary studies

into the diagrammatic evidence models, three researchers – the first three authors –

organized the tasks in the following manner.

First, the 20 papers were evenly distributed among the researchers. Each of them

thoroughly read the papers and extracted the relevant information to create the

evidence models. The benefits and challenges enumerated in the secondary study by

Ahmad et al. (2018) were used as the primary source for identifying the effects (i.e.,

benefits) and moderators (i.e., challenges) in the primary studies’ reports. It should be

noticed that this process is usually performed inductively based on the primary studies

textual report, but in the specific case of this study we used the work of Ahmad et al.

(2018) as the benefits and challenges represent the codes extracted from the primary

studies. Still, we were not able to find all the benefits and challenges in the papers as

indicated in Ahmad et al. (2018) – the differences are presented in Section 4. On the

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 8 of 29

other hand, contextual aspects were identified using the different SSM recommenda-

tions and heuristics.

Second, after the evidence models’ creation, the researchers discussed the models

together. Each researcher summarized his papers and presented the models for the

other two. During this process, three mains aspects were focused: (i) assessing the

understanding of the primary studies’ context and outcomes, (ii) indicating the trace

between the theoretical structures’ concepts and the excerpts from which they were

extracted, and (iii) reaching a consensus regarding the theoretical structures’ concepts

definition (e.g., guided by the reciprocal translation procedure indicated in the SSM –

adapted from Meta-Ethnography (Da Silva et al. 2013)).

3.3 SSM step 3: Evidence synthesis

In this step, the evidence extracted from the primary studies are aggregated based on

the evidence models. Therefore, it is essential to define what makes theoretical struc-

tures to match, i.e., what makes them compatible and allowing to aggregate evidence.

The SSM defines two theoretical structures are compatible when their value concepts

are the same or have the same meaning, which includes the cause, archetypes, and

contextual aspects. Once the researcher determines that the theoretical structures can

be compatible, then their effects and moderators are combined according to their

directions and intensities.

Pair-by-pair comparisons determine the compatibility among theoretical structures.

When a pair is found to be compatible, the combined theoretical structure is formed

by the common value concepts of both theoretical structures being compared and by

the variable concepts present in at least one of the two structures. Archetypes and

contextual aspects, represented by value concepts, describe the conditions under which

the aggregation is valid. For instance, in order to an evidence model be compatible with

the one shown in the Fig. 1, it must have the same value concepts, namely: ‘portfolio

management,’ ‘software development process,’ ‘software project,’ ‘distributed project,’

‘software team,’ ‘medium-scale system,’ and ‘Kanban.’

After identifying compatibility based on the value concepts, the variable concepts’

(i.e., effects and moderators) intensity (e.g., positive or negative) and uncertainty (i.e.,

belief value) are pooled, in such a way that their intensity reflects the resulted agree-

ment on the combined evidence. To that end, an uncertainty formalism is necessary to

combine the results – otherwise, a simple vote counting strategy would be used. In the

SSM, the Mathematical Theory of Evidence (Shafer 1976) (also known as Dempster-

Shafer theory, DST) is the mathematical formalism that enables obtaining the pooled

outcomes. The DST uses two primary inputs to combine two pieces of evidence. One

is the hypotheses believed to have a chance to be true – a belief value greater than zero

– and the other is the belief values themselves. Hypotheses are defined as sets of the

powerset of the defined frame of discernment set whereas the belief value is estimated

based on the procedures described in the previous step.

In order to perform the aggregation in the SSM using the DST formalisms, the differ-

ent intensity values that an effect is possible to assume is represented as the frame of

discernment. Since the intensity of an effect uses a seven-point Likert scale, the corre-

sponding frame of discernment in the DST is defined as Θ = {SN, NE, WN, IF, WP, PO,

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 9 of 29

SP} – the element names are abbreviations for the Likert scale terms, e.g., SN is

‘strongly negative’, IF is ‘indifferent’, and WP is ‘weakly positive.’ Likewise, the frame of

discernment for moderators is formed by three values that are used to indicate the

moderation direction: Θ = {IP, IF, DP} – ‘inversely proportional,’ ‘indifferent,’ and

‘directly proportional,’ respectively.

Once hypotheses and belief values are defined for each evidence, then the Dempster’s

Rule of Combination is applied. Eq. (1) shows that the aggregated belief value for each

hypothesis C is equal to the sum of the product of the hypotheses’ belief values whose

intersection between all hypotheses Ai and Bj of both evidence is C. The function m is

called basic probability assignment function which, as the name implies, is used to

assign a belief value to the different hypotheses of the powerset.

m3 Cð Þ ¼

X

i; j
Ai∩Bj ¼ C

m1 Aið Þ m2 Bið Þ

1−K
;where K ¼

X

i; j
Ai∩Bj ¼ ∅

m1 Aið Þ m2 Bið Þ ð1Þ

When the intersection between two hypotheses is an empty set, we say that there is a

conflict. A conflict is, then, redistributed to the aggregated hypotheses – that is the

function of 1 - K in the denominator. More details about how DST is used in SSM are

available in Santos and Travassos (2013). At the end of Section 5, the reader finds an

example of how to compute it.

4 Representation of the benefits and challenges of Kanban
Before presenting the aggregated results, in this Section we describe the coding process

involved in modeling the theoretical structures and the concepts developed in that

process. For the sake of readability and reasonable manuscript size, only two models

are detailed since 20 theoretical structures were created. The chosen models (one is

qualitative and the other quantitative) are representative of the overall set of studies.

Besides, they have different levels of complexity as the quantitative investigated only

three benefits and the qualitative study covers several benefits and challenges.

As stated in Section 3.2.1 (SSM Step 2), the benefits and challenges were

pre-determined using those enumerated in Ahmad et al. (2018). However, since the

benefits and challenges were not thoroughly defined, we possibly interpreted some of

them differently. For instance, the benefits ‘identify impediments to flow’ and ‘improve

workflow’ relate to each other, but the exact intended difference between them is not

explicit.

Using the SSM jargon, the benefits were defined as effects (positive influence) and the

challenges as moderators. Not all challenges could be interpreted as moderators since

some of them are more associated with an intrinsic characteristic of Kanban use than

an external aspect moderating the effects of its utilization. For instance, ‘setting up and

maintaining Kanban’ is a Kanban usage aspect itself, not an external issue that whether

not addressed can moderate the effects. Another example is the ‘poor understanding of

Kanban concepts and practices,’ which is a direct Kanban use consequence, while the

challenge ‘lack of training’ reflects an external aspect that can address the ‘poor under-

standing of Kanban concepts and practices.’ Furthermore, the SSM uses concepts, also

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 10 of 29

denominated as constructs, in the theoretical structures. Therefore, we had to code the

benefits and challenges enumerated in Ahmad et al. (2018) to constructs. Then, for each

construct, we provided a definition for it based on the technical literature. For instance,

‘improve quality’ was coded as ‘internal quality’ since the quality improvement aspect

reported in the primary studies was always related to an internal property of the

software product. Once this interpretation was made, we provided a definition based

on ISO (2017a). Also, any adjectives were removed since the effect intensity represents

it – e.g., ‘improve communication’ became ‘communication.’ The output of these inter-

pretations and considerations are shown in Table 6 (Appendix A).

Effects and moderators account for the variable concepts only. Regarding the value

concepts, they were coded directly from the primary studies. Although most of the

papers were observational and provided a relatively wealthy description of the studies’

context, few of them explicitly stated what factors were determinant for the results

found. Under these circumstances, the researcher constructing the theoretical struc-

tures needs to use their understanding of these factors to decide when they are relevant

enough to be made explicit in the evidence models. An alternative to this approach

would be to describe all contextual aspects reported in the studies, such as program-

ming languages and types of products developed. However, besides adding a consider-

able amount of complexity to the aggregation process as all conflicts between the

models need to be resolved in the Evidence Factory tool, the decision of whether a

conflict represents inadmissible evidence (i.e., the results cannot be aggregated) would

still be a researcher interpretation. Given this line of reasoning and with the goal of

generalizing the results, we adopted the first approach to describe the essential context-

ual aspects in our interpretations. As we discuss in the next section, this keeps the ag-

gregation in a manageable size and brings the focus to the essential contextual aspects.

Figure 1 presents evidence representation for the study P10 (Fitzgerald et al. 2014).

The model has three reported benefits ‘time-to-market’, ‘control of project activities and

tasks,’ and ‘continuous learning.’ Also, besides the cause ‘Kanban’ and the archetypes, it

has six value concepts describing the context: ‘portfolio management,’ ‘software devel-

opment process,’ ‘software project,’ ‘distributed project,’ ‘software team,’ and ‘medium-

scale system.’ The paper reports a study in a Polish company in which the researchers

used a mathematical model (Erlang-C model) to gather and analyze data to improving

the decision-making process regarding the Kanban process used for portfolio

Fig. 1 Evidence model representing the results of P10

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 11 of 29

management. Projects of medium-scale systems formed the company portfolio: “very

common category of development projects at Ericpol was one where the inflow of projects

was random and not controlled by the software development function, where fast response

time and short service time were crucial, work effort was relatively small, and technical

complexity was usually moderate.” As it can be seen, the three most salient contextual as-

pects are ‘portfolio management,’ ‘distributed project,’ and ‘medium-scale system.’ They

can be used as a starting point for explanations in case of contradictory results.

From the three evidence model effects, two were quantitative (‘time-to-market’ and

‘control of activities and tasks’) based on the Erlang-C model and one qualitative using

field observations. ‘Time-to-market’ was measured regarding the cycle time (in days):

“the overall cycle time was reduced from almost 100 days to just over 60 days, a signifi-

cant improvement.” Moreover, ‘control of activities and tasks’ was extracted from the

analysis of the Erlang-C model: “the bigger an organization is (the more teams it has),

the less sensitive it is to fluctuations in the average inflow … This suggests that … all the

teams across different sites should work on a common input queue or backlog for

software development.” Notice that for the ‘time-to-market’ concept the effect intensity

was defined as {PO, SP} since it was considered a significant improvement by the

authors whereas for ‘control of activities and tasks’ the intensity was defined as {WP,

PO} since the authors indicated that it was a “suggestion” that the tasks and activities

should be put on a common queue. The third, and last, effect ‘continuous learning’ was

extracted from the following excerpt: “it demonstrates how an organization can make

better decisions based on data gathered and analyzed using a model (in this case,

Erlang-C) that is highly relevant in the organization’s context.” In this case, “highly rele-

vant” was the qualification that to define the ‘continuous learning’ intensity as {PO, SP}.

The second evidence model presented in Fig. 2 is a study (Dennehy and Conboy

2017) concerned with the investigation of what the authors denominate ‘flow tech-

niques’ to which Kanban, particularly the board, is directly related. According to the

authors, citing (Womack and Jones 1997), flow in product development is defined as

“the progressive achievement of tasks along the value stream so that a product proceeds

from design to launch, order to delivery, and raw materials into the hands of the

customer with no stoppages, scrap, or backflows.” The investigation was based on the

Fig. 2 Evidence model representing the results of P9

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 12 of 29

Activity Theory, which is a framework for studying different forms of human practice

as historically developing cultural systems. It is used to identify the contradictions and

congruencies among the six constructs of the model, namely, tools and signs, subject,

object, rules and norms, community, and division of labor. This analysis, using the

Activity Theory, was performed in two large software companies (with a workforce of

more than 100,000 employees) in a multiple-case design with cross-case analysis.

The richness of the investigations and analysis with the Activity Theory is reflected in

the evidence model. It contains five effects, two moderators, and six contextual aspects.

For instance, the improvement of the ‘flow of work,’ which was the main focus of the

study, was explained in the following excerpt: “after an initial period of using the

physical Kanban, a congruency in the work activity emerged between the subject and

the tool, as well as the community. A manager at Company B explained that by using

the physical Kanban, it was ‘enacting everyone involved by basically seeing where the

problems are.’” In the coding process, ‘flow of work’ was always associated with the

identification of impediments to the flow (see Table 6 in Appendix A). Also, as the au-

thors indicate a complete congruency for this issue, the effect intensity was defined as

Table 1 Effects and moderators as reported in the selected studies

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 13 of 29

{PO, SP}. One last example is regarding a moderator, the ‘management’ ‘expertise.’ In

P9, the possible moderation of the management expertise was described as follows: “a

deeper analysis revealed that this change could be linked to the creation of another

contradiction between the tools that was caused by the introduction of flow. That is, be-

tween the expertise and knowledge of the project manager (mental tool) and the capabil-

ity offered by the Kanban (physical tool). It led to a shift in rules and norms concerning

the activity. Evidence of this contradiction is captured by a manager at Company B who

acknowledged that he was initially skeptical of the tool (Kanban) because it ‘looked very

gimmicky and I just don’t trust pieces of paper stuck to the wall.’” Regarding the value

concepts, the ‘distributed project’ is the only one representing a distinctive P9 study

characteristic and as mentioned in the first evidence model can be used for explana-

tions of contradictory results. Also, it is interesting to notice the absence of the ‘system’

archetype as in P9 there was no effect, moderator or contextual aspect related to it.

These two evidence models give a glimpse of how the coding process regarding the

Kanban studies was performed using the SSM. For completeness, we show in Table 1 all

the effects intensities and moderators directions, in addition to their belief values. Given

our understanding and interpretation of the benefits and challenges (Table 6 in Appendix

A), their identification in the primary studies diverged from the ones indicated in Ahmad

et al. (2018). Shaded cells indicate that these were indicated as a benefit or challenge for

the respective study in Ahmad et al. (2018), but we could not identify it in our study. Be-

lief values in italic font represent the benefits or challenges that we were not confident

about their identification in the respective study – for those cases; we applied a 50% dis-

count on the belief value. Moreover, the ones in bold font are those which we identified in

the respective study, but they were not indicated in Ahmad et al. (2018). Apart from that,

the effects intensities were represented using the notation presented in Section 3.2; and

the moderators use for directly proportional and for inversely proportional.

5 Results
The aggregation was performed following the procedures described in Section 3.3. We

first present the results of the primary aggregation focus, which is the pooled effects

and moderators. Then, at the end of this Section, we detail some aspects of the aggrega-

tion process such as how the pooled results were computed and how the evidence

models compatibility was analyzed.

Table 2 shows the results after performing the aggregation of evidence on the benefits

and challenges of using Kanban in SE. Apart from this section as a whole, Table 2

synthesizes the answer to the research question defined at the beginning of Section 3.

The first column shows the reported effect (i.e., benefit) caused by or the moderator

(i.e., challenge) influencing the introduction of Kanban in the organization. The second

column indicates the primary studies that have reported this effect and the third the

number of papers. The fourth column shows the aggregated effect intensity about how

the use of Kanban causes such effect (e.g., positive or negative). The fifth column

represents the aggregated belief of such effect. It is one of the most exciting results of

the aggregation. Table 2 shows in bold the effects and moderators in the upper quartile

(Q3) and underlined those equal or higher than the median (Q2) after the aggregation

– the quartile calculation was separated for effects (Q2 = 75.5; Q3 = 93.75) and modera-

tors (Q2 = 73; Q3 = 85). The sixth column shows whether there was a conflict while

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 14 of 29

aggregating that effect. It is essential to analyze and to characterize different contexts

from which the evidence was gathered. Lastly, the seventh column shows the difference

between the belief max value in individual papers and the gained confidence after the

aggregation. Therefore, a positive difference indicates the effects that have been rein-

forced after the aggregation whereas a negative difference shows that the evidence is

somewhat contradictory.

The aggregation indicates that ‘work visibility,’ ‘control of project activities and

tasks,’ ‘flow of work,’ and ‘time-to-market’ are the main benefits of Kanban by using

the criteria of belief values in the upper quartile. The evidence regarding these

benefits is vast and consensual. Among the moderators, a Kanban successful adop-

tion is most conditioned to the ‘organizational culture.’ It should be noticed that

we ignored the effect intensity selection strategy used by default in the SSM to use

the quartile criteria. The strategy tries to balance outcomes precision and confi-

dence, by selecting a singleton (a value in the Likert scale) or a compound (a range

in the Likert scale) hypothesis as an aggregation result. The use of this strategy is

just a suggestion of the SSM since, as discussed in Santos and Travassos (2013),

this is a definition related to the Mathematical Theory of Evidence and there is no

consensual way to perform this selection (Bloch 1996). With this default strategy,

we would have three different results in Table 2: (i) ‘work visibility’ with PO inten-

sity and 84% of belief, (ii) ‘control of project activities and tasks’ with PO intensity

and 83% of belief, and (iii) ‘flow of work’ with PO intensity and 77% of belief.

These results are more precise, but with the tradeoff of lower confidence. As in

the case of this synthesis, all effects in the evidence models were modeled using an

intensity range (see Section 3.2.1), then we opted to keep the range for the out-

comes as well despite the default strategy of the SSM. Still, it shows that for these

three effects, contrarily to the others, there is a significant amount of belief

Table 2 Aggregated effects and moderators of Kanban use

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 15 of 29

assigned to the singleton. It demonstrates how the Mathematical Theory of

Evidence converges with the accumulation of evidence. For instance, ‘flow of work’

has three evidence models (P3, P15, and P22) with {WP, PO} intensity and five

models (P1, P5, P9, P17, and P20) with {PO, SP} intensity. As one can see, {PO} is

the intersection between the two ranges.

Kanban {positively – strongly positively} affects the ‘work visibility’ of software devel-

opment projects. Indeed, Kanban is by definition regarded as a visualization tool to

introduce Lean ideas. “The Kanban board offers better transparency of the development

process and shows which developer is working on which task” (P20). Comparing to

Scrum, “the difference is the Scrum board resets between each iteration while the

Kanban board is normally persistent and doesn’t need to reset and start over. Further,

tasks are visualized on the Scrum board for each sprint, while Kanban visualizes tasks

that can be pulled at any time to respect WIP limits; this restricts the allowed number

of tasks in every workflow state” (P1). Moreover, even in the educational environment,

the “overall perception of students (55%) about the Kanban board was positive. It helps

in visualizing and prioritizing an entire work project more efficiently” (P2).

Kanban {positively – strongly positively} affects the ‘flow of work’ of the software

development process. Associated with the ‘work visibility,’ the ‘flow of work’ is

another Kanban core aspect as it “provides greater visibility into what teams are

doing… improving the feedback loops [and] exposing resource constraints and even

capacity utilization” (P9). Thus, it can support organizations in making its value

stream as efficient as possible avoiding any impediments or overworking. As a

result, team members become aware that “organizational entities cannot work inde-

pendently because the outcome is related to their cooperative capabilities to create

value. Interacting components are important for reaching smooth value streams and

avoiding local optimizations” (P22).

The use of Kanban {positively – strongly positively} affects the ‘control of project activities

and tasks’ of software development projects. One crucial aspect of this improved control is

focusing the work conducted by the software team since the “work in progress limit helps

teams to avoid working on too many parallel tasks and are forced to work on those tasks that

deliver value to the project” (P1). This focus is important even in higher levels of manage-

ment for managing the work of more than one team as stated in P10: “all the teams across

different sites should work on a common input queue or backlog for software development.”

The use of Kanban {weakly positively – positively affects} the ‘time-to-market’ of

software products. It was one of the few effects having quantitative data since it has a

natural surrogate which is a cycle or lead time. In P16, the “the great majority of teams

reduced their average lead time, some of them for more than 30%”. Kanban helps the

features to be released as soon as possible as in the case of P23 in which “variation in

delivery times reduced by 78% from 30.5 to 6.8, and the mean time to develop fewer

and smaller software features declined by 73% from 9.2 to 2.5 working days.”

Other benefits that can be expected from Kanban – belief value equal to or higher

than the median – are ‘workflow,’ ‘communication,’ ‘motivation,’ and ‘customer satisfac-

tion.’ These represent effects that are likely to be observed on adopting Kanban in

software organizations. Moreover, an appropriate level of ‘expertise’ and ‘supporting

practices’ – usually agile practices such as test-driven development and pair program-

ming – need close attention to operate Kanban in its full extent. The other effects and

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 16 of 29

moderators have a relatively lower belief value and seem to not appear in practice as

fewer studies reported them, or they are not completely congruent. Not complete con-

gruency means that results are not the same, but they have an intersection – for in-

stance, the intensities for ‘external quality’ {WP, PO} in P14, {WP, PO} in P17, and {IF,

WP} in P21.

It is also noticeable the virtual absence of conflicts in the aggregation. A conflict oc-

curs when the intersection between two results is empty, such as between {WN, IF}

and {PO, SP} as occurred for ‘team cohesion’ in the evidence models of papers P20 and

P5, respectively. The reasons for this are twofold. First, it is related to how we opted to

model the effect intensity. As almost all primary studies are observational and qualita-

tive, the benefits descriptions were not precise enough to define a single value in the

seven-point Likert scale. Thus, the aggregation of range intensities is less susceptible to

conflict. Second, it is due to research nature on this topic. The point in question is it

seems that negative results are not being published, which represents an important

limitation of the current body of knowledge regarding the use of Kanban in SE. The

only conflict presented in Table 2 was associated precisely with a negative influence of

Kanban to the ‘team cohesion’ in the study P20.

As described in Section 3.3, the aggregation was performed using the Dempster’s

Rule of Combination (see eq. 1). To illustrate how it is computed, let’s take as an

example the ‘team cohesion’ effect. Table 3 below is a schematic representation for

computing the Dempster’s Rule of Combination using eq. 1. Notice how the conflict is

redistributed among the hypotheses. The highest belief value (excluding the frame of

discernment {Θ} itself) is assigned to {WN, IF} with 0.306.

The values for the combined mP5-team cohesion⊕ mP20-team cohesion are:

κ = 0.168 and 1 - κ = 0.832,

mP5⊕mP20 ({PO,SP}) = 0.229/0.832 = 0.275,

mP5⊕mP20 ({WN,IF}) = 0.255/0.832 = 0.306,

mP5⊕mP20 ({Θ}) = 0.348/0.832 = 0.418,

mP5⊕mP20 is 0 for all other sets of the powerset of Θ.

Another vital aggregation process aspect is the determination of evidence compatibility.

All the studies outcomes were considered compatible and for this reason, aggregated. To

reach this conclusion the general orientation was to seek generalization. It was only pos-

sible due to the relatively high number of studies. Thus, we first assumed generalization,

and if the results were conflicting, then explanations would be sought. Table 4 enumerates

the generalizations applied in the aggregation. All the different kinds and size of software

systems, such as ‘web system’ and ‘large-scale system,’ were ignored. Another important

generalization was related to the primary goal of using Kanban. Most papers report the

utilization of Kanban in a typical software development environment, i.e., in the commer-

cial or controlled construction of software products. However, five studies were very dis-

tinct on the Kanban use primary goal. Two of them investigated the use of Kanban in

Table 3 Combination of two basic probability assignment functions (for ‘team cohesion’)

mP5-team cohesion \ mP20-team cohesion {WN,IF} (0.423) Θ (0.577)

{PO,SP} (0.397) Ø (0.168) {PO,SP} (0.229)

Θ (0.603) {WN,IF} (0.255) Θ (0.348)

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 17 of 29

‘portfolio management,’ and three used Kanban in ‘education’ as a tool for learning

software concepts. Some studies were also conducted in a ‘distributed project’ setting and

one with the specific purpose of software ‘maintenance.’

6 Discussion
Despite the important differences in the studies’ context, the aggregation did not

present significant conflict in the results. The resulting aggregated evidence model indi-

cates that Kanban main benefits are ‘work visibility,’ ‘control of project activities and

tasks,’ ‘flow of work,’ and ‘time-to-market’ regardless the type of software systems under

development or whether they are collocated or distributed. Also, the same results are

achieved in the specific settings of ‘portfolio management’ and ‘education.’ Still, the

software organizations need to have close attention to its ‘organizational culture’, the

‘expertise’ of their management, and the right set of ‘supporting practices’ in place to

obtain these improvements.

This work contributes to the body of knowledge on using Kanban in SE by

strengthening evidence of its benefits and challenges. For most of the benefits

(effects) and challenges (moderators), the results followed the trends indicated in

the previous investigations. This observation helped to see what effects are general

to different settings in which Kanban is used in software organizations. We believe

that the aggregated results point to more generalized perceptions and stronger

Table 4 Applied generalizations in the aggregation process

Paper ID Contextual aspect removed from the
aggregated evidence model

Contextual aspect merged with another concept in
the aggregated evidence model

P1 ‘Maintenance’ -

P2 ‘Education’ -

P3 ‘Portfolio management.’ -

P4 - -

P5 ‘Education’ -

P9 ‘Distributed project.’ -

P10 ‘Portfolio management.’
‘Medium-scale system.’
‘Distributed project.’

-

P11 - -

P13 ‘Web System’ -

P14 - ‘CS & SE students’ ➔ ‘Software team.’

P15 - -

P16 ‘Education’
‘Small-sized system.’

-

P17 ‘Large-scale web system.’ -

P18 - -

P19 ‘Distributed project’ ‘Scrumban’ ➔ ‘Kanban’

P20 - -

P21 ‘Large-scale system.’ -

P22 ‘Distributed project.’ -

P23 ‘Large-scale web system.’ -

P24 ‘Medium-scale web system.’ -

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 18 of 29

indications of its applicability. Thus, it is expected that practitioners benefit from

these indications to support their decision making regarding Kanban in practice.

Besides decision making, the synthesis indications provide the basis to detect when

Kanban is not producing the expected outcomes, allowing software organizations

to act upon accordingly. Also, it may indeed be the case that the benefits could

not be observed in some settings. These situations should be documented appro-

priately and incorporated into the synthesis to keep it up to date.

Previous primary studies already reported the effects caused by and moderators influ-

encing the use of Kanban. However, most of them bring detailed qualitative observa-

tions from interviews and surveys while few others present quantitative data regarding

specific aspects of ‘time-to-market’ and ‘external quality.’ Hence, this synthesis, besides

strengthening evidence of Kanban benefits and challenges, also presents a concise and

organized view of previous works regarding this theme.

On the other hand, previous secondary studies focused on different aspects of the

body of knowledge than this synthesis study. Corona and Pani (2013) cover how

Kanban boards are used, what is typically represented, and which tools are being

employed to support software development teams. They identified and analyzed the

most commonly represented activities in Kanban boards. Nine activities were identified

from all the boards analyzed, namely Specification, Analyze, Build, Development, Test,

Acceptance, Deploy/Delivery, Release Ready, and Documentation. Al-Baik and Miller

(2015) is mostly a conceptual paper focused on describing how the main elements are

discussed in the technical literature and how they relate to the lean thinking. Based on

37 studies the authors identified 20 different concepts, principles, and techniques related

to Kanban, such as ‘pull system,’ ‘prioritized queue,’ ‘done item,’ and ‘validated learning.’

As mentioned in Section 3.1, Ahmad et al. (2013) was updated in Ahmad et al. (2018).

And the last paper (Ahmad et al. 2018) is a mapping study showing, as a typical study of

this kind, a broad overview of Kanban publications, including their venues, number of

published papers over the years, and the research methods used in the studies.

Besides the aspects previously mentioned, both Al-Baik and Miller (2015) and Ahmad

et al. (2018) dedicate part of their reports to enumerate and analyze the Kanban

reported benefits and challenges, which is directly related to this synthesis study. Not

by chance, these two works were used as the basis for the identification of the primary

studies and as the source for the aggregated benefits and challenges. However, since

the benefits and challenges were not the sole goals of these two works, the way that

these issues were addressed is relatively more straightforward compared to this synthe-

sis. They used an approach that can be directly related to the vote-counting strategy,

which limitations are broadly discussed in the technical literate (Pickard et al. 1998).

Thus, this synthesis study represents an additional contribution to these secondary

studies.

Turning the attention back to the aggregated results, although the synthesis shows

the main benefits of Kanban, it should be noticed that there are several other factors

with fewer studies investigating them. Thus, either they rarely appear in practice (and

for this reason not considered in the investigations), or they still need further studies to

improve confidence in them. Particularly regarding the effect ‘team cohesion’ we should

add our interpretations for this divergence. The studies P5 and P20 have very distinct

context. P5 was conducted in an educational environment whereas P20 in a large

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 19 of 29

software process improvement initiative in a software organization. Interestingly

enough, the negative intensity for ‘team cohesion’ came from the second study.

The authors of P20 did not present their thoughts about this specific result since

this was part of a questionnaire answered by the organization employees. The

question was put in a ‘social factors’ section of a questionnaire. The only consider-

ation in P20 was that “process transition has impacted the social factors the least.”

Participants of P5, on the other hand, were more open for collaboration and

obtaining new skills as this was precisely the capstone course goal in which the

study was conducted. Using Kanban resulted in “building positive relationships

among team members, effective task management, development of a shared vision

and responsibility sharing.” We hypothesize that Kanban can help to improve so-

cial factors such as ‘team cohesion,’ but for this to happen the team members

need to be open for the new mindset imposed by the Lean thinking and Kanban

concepts.

7 Threats to validity
Aggregating qualitative and quantitative evidence is by nature an endeavor subject to

different risks. To mitigate this significant threat a method appropriate for that goal the

SSM has been used. The SSM method aims to support the SE community to construct

and consolidate empirically-grounded knowledge (Santos and Travassos 2013). It has

been used in different research topics such as software reference architecture

(Martinez-Fernandez et al. 2015), software productivity (Chapetta 2016), and software

inspections (Santos and Travassos 2017b). This section discusses possible threats to

validity and emphasizes the mitigation actions used.

For the threat of missing critical primary studies, we used two secondary studies as a

source of primary studies. We obtained a set of 20 studies reporting evidence on

Kanban, which is a high number in SE considering that they report the same effects

(i.e., benefits and drawbacks of Kanban). During this process, we discarded studies that

only reported opinions, rather than empirically-grounded evidence.

We are aware that each selected study poses its validity threats; therefore, we

carefully assessed them together with the studies’ context to interpret their results

appropriately. Furthermore, while representing empirical evidence from individual

studies, researchers can reflect their own opinion and, thus, bias the representation. A

researcher first prepared the definition and analysis of each evidence model from each

selected primary study and validated together with two other researchers to mitigate

these subjective issues. During this process we experienced some semantic issues,

meaning that different studies referred to the same concept using different terms. This

would lead to a wrong aggregation. To avoid this, we created a glossary of terms that

was represented in the evidence models and kept track of the matching terms.

To improve the aggregated evidence interpretation, we used some suggested strat-

egies (Santos and Travassos 2013). For instance, we recorded the diverse context of

each study, so we could better reflect and understand the aggregated evidence. It is

important to note that our aggregated results are based on what the authors reported

in their papers. Hence, there is always the risk that valuable information might not have

been reported. Also, even although Al-Baik and Miller (2015) and Ahmad et al. (2018)

indicate what papers report each benefit and challenge, we read each paper to seek

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 20 of 29

them again. It generated some divergences as listed in Table 1 to which we attribute

the definitions of the benefits and challenges as listed in Table 6 (Appendix A).

Our results show that some effects got higher degrees of belief while others did not.

Being aware of the correct interpretation of these results is essential. On the one hand,

the effects and moderators that got higher belief are potentially those that have been

further studied and agreed among the studies. On the other hand, those effects that got

lower belief values (or even negative) are those that were just partially approached by

the available evidence (or got contradictory results among the studies). Therefore, these

effects are relevant topics that need to be further studied. We highly encourage the SE

community interested on using Kanban to investigate the effects that do not have a high

confidence value yet, to increase knowledge and consolidate the beliefs of the benefits

and challenges of using Kanban in SE.

8 Conclusions
This paper presented a synthesis study regarding the benefits and challenges of using

Kanban in SE. Despite being a relatively recent research topic, there is an extensive

amount of available evidence regarding this topic, which supported the achievement of

high confidence for several benefits and challenges worked out in the synthesis.

The primary contribution of this paper is to present a condensed view of the benefits

and challenges regarding Kanban use in software organizations as reported in primary

studies in the field. It brings an objective indication of what are the more relevant ones

considering the knowledge available in the technical literature, which is an essential re-

sult of a synthesis study in comparison to the individual results of the primary studies

that were aggregated. Also, it strengthens the understanding of which aspects Kanban

can improve in software organizations and what factors should be addressed to achieve

the best results considering all studies as a whole.

The benefits ‘work visibility’, ‘control of project activities and tasks,’ ‘flow of work,’ and

‘time-to-market’ indeed appear to be the ones intrinsically linked to the Lean thinking

and the Kanban approach. Moreover, given the synthesis results, they do seem to be

present in software projects as well. Still, the results must be taken with caution. We

missed primary studies with negative results regarding Kanban implementations in

software organizations. According to Staats et al. (2011), failed implementations are

common outside the manufacturing realm, and it is quite surprising that the secondary

studies used to select the primary studies for this synthesis did not find any.

The synthesis reported in this paper can be evolved from the point where its scope

has been delimited. All the data is available in the Evidence Factory tool, and the SSM

allows to add new primary studies as necessary. One exciting addition would be the in-

clusion of the 23 experience reports listed in Ahmad et al. (2018). It can reinforce some

of the effects and moderators which lacks evidence and can bring new insights regard-

ing the Kanban use in software organizations.

9 Endnotes
1Understandability, Learnability and Usability terms were taken from the software

quality terminology presented in Kitchenham and Pfleeger (1996). The possibility

of generalizing Understandability and Learnability by Usability was also taken from

there.

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 21 of 29

10 Appendix A

Table 5 Primary studies
Study
Id

Study Type:
Instruments

Participants Company/
Environment
Characteristics

Application Domain Beliefb &
Evidence
Type

Development/
Portfolio/
Maintenance

Year

P1 Observational
Multiple Case
Study
Interviews
(Skype and
Face-to-face)

2 Product
Owners
3 Coaches
3 Project
Managers
3 Scrum
Masters
6 Developers

Two Large
Multinational
Finnish Software
Companies

Businesses for the New
Digital Economy

42%
Qualitative

Maintenance 2016

P2 Observational
Online Survey

19 Master
Degree
Students

University of Oulu
Software Factory

Not Specified 38%
Quantitative
and
Qualitative

Education 2014

P3 Observational
Interview
(Audio and
Transcript)

1 Director Of
R&D
1 Senior
Manager
1Head of
Quality and
Environment
1 CEO
1 Business
Manager
1 Senior
Consultant
1 Internal
Coach
1 Agile Coach

Agile and Lean
Finnish Software
Companies

Computer Security,
Embedded Systems, IT
Services, Telecon Network,
Telecon, Consultancy

42%
Qualitative

Portfolio 22,017

P4 Observational
Online Survey

146 from
LinkedIn
LeanKanban
Incorporated
group
27
Organizations

LinkedIn Group IT Services Hardware
Manufacturing
Telecommunication

42%
Quantitative
and
Qualitative

Development 2016

P5 Observational
Online Survey

51 Master
Degree
Students

University of Oulu
Software Factory

Not Specified 40%
Quantitative
and
Qualitative

Education 22,014

P9 Observational
Multiple Case
Study
Interview

15 Various
Roles
IT Director
Portfolio
Manager
System
Integration
Manager
Financial
Controller

Two Companies
Multinational

Technology Services
Telecommunication

47%
Qualitative

Development 22,017

P10 Observational
Case Study

467 Software
Projects
Over 22 Month
Period

Ericpol Engineering
Company
Multinational

Communications
Healthcare
Finance

45%
Quantitative

Portfolio 22,014

P11 Observational
Action
Research
Questionnaire
Weekly Notes
Personal Notes

8 Students Not Specified Open Software Project 43%
Qualitative

Maintenance 22,016

P13 Observational
Semi-
Structured
Interview

13 Master
Degree
Students

University Of
Helsinki
R&D Software
Factory

Web Services 44%
Qualitative

Development 22,010

P14 Observational
Case Study

12 Master
Degree
Students

University Of
Helsinki
R&D Software
Factory
Educational

Business Prototype
Web Application

43%
Qualitative

Development 22,011

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 22 of 29

Table 5 Primary studies (Continued)
Study
Id

Study Type:
Instruments

Participants Company/
Environment
Characteristics

Application Domain Beliefb &
Evidence
Type

Development/
Portfolio/
Maintenance

Year

P15 Observational
Semi-
Structured
Interview

10 Software
Development
Practitioners

Iceland Industry Agile Consultancy
Telecommunication
Web Services

44%
Qualitative

Development 22,015

P16 Non-
Systematic
Study

62
Undergraduate
Students
16 Teams

University of
Ljubljana

Educational
Undergrad
Students

15%
Quantitative
and
Qualitative

Education 2015

P17 Observational
Exploratory
Case Study

9 Staff
Project
Manager
Business
Analyst
Software
Architect
Tester
Lead Developer

BBC Worldwide
London

Web Development 44%
Quantitative

Development 22,012

P18 Observational
Case Study
Semi-
Structured
Interviews

7 Software
Practitioners
2 Software
Developer
1 Scrum Master
1 Area Product
Owner
1 Kanban
Consultant
1 Software
Specialist
1 Senior
Manager

Two Large Scale
Companies from
Northern Europe

Not Specified 49%
Qualitative

Development 22,015

P19 Observational
Action
Research
Unstructured
Interviews
Email
Online
Conversations

15–20
Developers

Vietnamese Office
of Swedish Software
Company CMSiPro

Content Management
System

38%
Qualitative

Development 2012

P20 Observational
Action
Research
Interviews
Email
Online
Conversations

15–20
Developers

Swedish Office of
Swedish Software
Company CMSiPro

Content Management
System

42%
Qualitative

Development 22,011

P21 Observational
Case Study

100 Developers
and Specialists

Multinational
Scandinavian
Software Company

Not Specified 41%
Quantitative

Development 22,012

P22 Observational
Case Study
Focus Group
Survey

49 Employees Elektrobit Finnish
Software Company

Wireless and Embedded
Systems

44%
Qualitative

Development 22,014

P23 Observational
Synthesis

9 Staff
Project
Manager
Business
Analyst
Software
Architect
Tester
Lead Developer

BBC Worldwide
London

Web Development 46%
Quantitative

Development 22,011

P24 Randomized
Controlled
Simulation

10 Developers Simulation Not Specified 92%
Quantitative

Development 22,011

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 23 of 29

Table 6 Effects and moderators’ definitions

Benefit – as in Ahmad et al.
(2018)

Effect Description

Improve visibility and
transparency

Work visibility Work is visible when any software project member is
able to obtain the information necessary to
determine the state of the project tasks.

Better control of project
activities and tasks

Control of project
activities and tasks

The availability or implementation of tools,
techniques, or practices to handle, avoid, or mitigate
unpredictable tasks during the software
development.

Identify impediments to
flow

Flow of work The flow of work through the software development
process.

Improve workflow Workflow An orchestrated and repeatable pattern of business
activity enabled by the systematic organization of
resources into processes that transform materials,
provide services, or process information. (ISO 2017b)

Faster time-to-market Time-to-market Time-to-market is the strategy of focusing on
reducing the time to introduce new products to
market. (Pawar et al. 1994)

Improve prioritization of
products and tasks

Task prioritization As a principle, it means doing ‘first things first;’ as a
process, it means evaluating a group of items and
ranking them in their order of importance or
urgency. (Barney 1986)

Decrease defects and
bugs

External Quality A measure of the degree to which a software
product enables the behavior of a system to satisfy
stated and implied needs when the system
including the software is used under specified
conditions. NOTE: Attributes of the behavior can be
verified and/or validated by executing the software
product during testing and operation.(ISO 2017a)

Improve quality Internal Quality A measure of the degree to which a set of static
attributes of a software product satisfy stated and
implied needs when the software product is used
under specified conditions. NOTE 1: Static attributes
include those that relate to the software architecture,
structure, and its components. NOTE 2: Static
attributes can be verified by the review, inspection,
simulation and/or automated tools. (ISO 2017a)

A lightweight, intuitive
method

Conformance The concept of an agreement between a process
and its model is what is referred to as process
conformance.

Improve communication
and collaboration

Collaboration To work jointly with others or together especially in
an intellectual endeavor. (Stevenson 2010)

Improve communication
and collaboration

Communication The imparting or exchanging of information by
speaking, writing or using some other medium.

Improve team motivation Motivation The personnel or team motivation may come from
job satisfaction, job involvement, and organizational
commitment.

Team building and
cohesion

Team Cohesion According to COCOMO II, the Team Cohesion
accounts for the sources of project turbulence and
entropy due to difficulties in synchronizing the
project’s stakeholders: users, customers, developers,
maintainers, interface designers, others. These
difficulties may arise from differences in stakeholder
objectives and cultures; difficulties in reconciling
objectives; and stakeholder’s lack of experience and
familiarity in operating as a team.

Increase customer
satisfaction

Customer Satisfaction Customer satisfaction is a perception. It’s also a
question of degree.
It can vary from high satisfaction to low satisfaction.
If customers
believe that you’ve met their requirements, they
experience high

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 24 of 29

10.1 Appendix B. Primary studies

The studies P5, P6, P7, and P12 were not included in the synthesis because of the rea-

sons explained in Section 3.1. However, they were kept on this list for the IDs continu-

ity since they were referenced in the Evidence Factory tool.

P1. Ahmad MO, Kuvaja P, Oivo M, Markkula J (2016) Transition of Software

Maintenance Teams from Scrum to Kanban. In: 2016 49th Hawaii International

Conference on System Sciences (HICSS). pp. 5427–5436.

P2. Ahmad MO, Liukkunen K, Markkula J (2014) Student perceptions and attitudes

towards the software factory as a learning environment. In: 2014 IEEE Global

Engineering Education Conference (EDUCON). pp. 422–428.

P3. Ahmad MO, Lwakatare LE, Kuvaja P, Oivo M, Markkula J (2016) An empirical

study of portfolio management and Kanban in agile and lean software companies.

Journal of Software: Evolution and Process.

Table 6 Effects and moderators’ definitions (Continued)

Benefit – as in Ahmad et al.
(2018)

Effect Description

satisfaction. If they believe that you’ve not met their
requirements,
they experience low satisfaction. (ISO 2005)

Promoting a culture of
continuous learning

Continuous learning The process by which individual and/or
organizational learning is fostered on an ongoing
basis. (Tannenbaum 1997)

Strategic alignment Strategic alignment Alignment is related to the establishment of a
shared view about software features between
stakeholders. Alignment is usually necessary at any
level of software development. For instance,
developers should adopt the same perspective
when refactoring source code. Alignment is also
necessary between information systems departments
and the business as a whole.

Challenges – as in Ahmad
et al. (2018)

Moderator Description

Setting up and
maintaining Kanban

This challenge does not represent a moderator.

Management not ready
for new method

Expertise Expert skill or knowledge in a particular field.
(Stevenson 2010)

Poor understanding of
Kanban concepts and
practices

This challenge does not represent a moderator.

Managed
communication between
teams and customer

Managed communication
between teams and
customer

The imparting or exchanging of information by
speaking, writing or using some other medium.
(Stevenson 2010)

Changing organizational
culture

Organizational culture A complex set of values, beliefs, assumptions, and
symbols that define the way in which a firm
conducts its business. (Barney 1986)

Lack of supporting
practices around the use
of Kanban

Supporting practices Supporting practices necessary or essential for the
use of a method, technique or procedure.

Lack of training Training The process of learning the skills you need to do a
particular job or activity. (Stevenson 2010)

Poor knowledge
management

This challenge was present only in one study, which was not included in the
synthesis.

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 25 of 29

P4. Ahmad MO, Markkula J, Oivo M (2016) Insights into the Perceived

Benefits of Kanban in Software Companies: Practitioners’ Views. In: Agile

Processes, in Software Engineering, and Extreme Programming. Springer,

Cham, pp. 156–168.

P5. Ahmad MO, Markkula J, Oivo M (2014) Kanban for software engineering teaching

in a software factory learning environment. World Transactions on Engineering and

Technology Education 12:338–343.

P6. Ahmad MO, Markkula J, Oivo M (2013) Kanban in software development: A

systematic literature review. In: 2013 39th Euromicro Conference on Software

Engineering and Advanced Applications. pp. 9–16.

P7. Al-Baik O, Miller J (2015) The Kanban Approach, Between Agility and Leanness:

A Systematic Review. Empirical Softw Engg 20:1861–1897. doi: https://doi.org/

10.1007/s10664-014-9340-x

P8. Corona E, Pani FE (2013) A review of lean-kanban approaches in the soft-

ware development. Transactions on Information Science and Applications:

10(1):1–13.

P9. Dennehy D, Conboy K (2017) Going with the flow: An activity theory analysis of

flow techniques in software development. Journal of Systems and Software 133:160–

173. doi: https://doi.org/10.1016/j.jss.2016.10.003

P10. Fitzgerald B, Musiał M, Stol K-J (2014) Evidence-based Decision Making in

Lean Software Project Management. In: Companion Proceedings of the 36th

International Conference on Software Engineering. ACM, New York, NY, USA,

pp. 93–102.

P11. Harzl A (2016) Combining FOSS and Kanban: An Action Research. In: Open

Source Systems: Integrating Communities. Springer, Cham, pp. 71–84.

P12. Heikkilä VT, Paasivaara M, Lassenius C (2016) Teaching University Students

Kanban with a Collaborative Board Game. In: 2016 IEEE/ACM 38th International

Conference on Software Engineering Companion (ICSE-C). pp. 471–480.

P13. Ikonen M, Kettunen P, Oza N, Abrahamsson P (2010) Exploring the Sources

of Waste in Kanban Software Development Projects. In: 2010 36th EUROMICRO

Conference on Software Engineering and Advanced Applications. pp. 376–381.

P14. Ikonen M, Pirinen E, Fagerholm F, et al. (2011) On the Impact of Kanban on

Software Project Work: An Empirical Case Study Investigation. In: 2011 16th IEEE

International Conference on Engineering of Complex Computer Systems. pp. 305–314.

P15. Law EL-C, Lárusdóttir MK (2015) Whose Experience DoWe Care About? Ana-

lysis of the Fitness of Scrum and Kanban to User Experience. International Journal of

Human-Computer Interaction 31:584–602. doi: https://doi.org/10.1080/

10447318.2015.1065693

P16. Mahnic V (2015) From Scrum to Kanban: Introducing Lean Principles to a

Software Engineering Capstone Course. International Journal of Engineering Education

31:1106–1116.

P17. Middleton P, Joyce D (2012) Lean Software Management: BBC Worldwide Case

Study. IEEE Transactions on Engineering Management 59:20–32. doi: https://doi.org/

10.1109/TEM.2010.2081675

P18. Tripathi N, Rodríguez P, Ahmad MO, Oivo M (2015) Scaling Kanban for

Software Development in a Multisite Organization: Challenges and Potential Solutions.

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 26 of 29

https://doi.org/10.1007/s10664-014-9340-x
https://doi.org/10.1007/s10664-014-9340-x
https://doi.org/10.1016/j.jss.2016.10.003
https://doi.org/10.1080/10447318.2015.1065693
https://doi.org/10.1080/10447318.2015.1065693
https://doi.org/10.1109/TEM.2010.2081675
https://doi.org/10.1109/TEM.2010.2081675

In: Agile Processes in Software Engineering and Extreme Programming. Springer,

Cham, pp. 178–190.

P19. Nikitina N, Kajko-Mattsson M, Stråle M (2012) From scrum to scrumban: A case

study of a process transition. In: 2012 International Conference on Software and Sys-

tem Process (ICSSP). pp. 140–149.

P20. Nikitina N, Kajko-Mattsson M (2011) Developer-driven Big-bang Process Transi-

tion from Scrum to Kanban. In: Proceedings of the 2011 International Conference on

Software and Systems Process. ACM, New York, NY, USA, pp. 159–168.

P21. Sjøberg DIK, Johnsen A, Solberg J (2012) Quantifying the Effect of Using Kanban

versus Scrum: A Case Study. IEEE Software 29:47–53. doi: https://doi.org/10.1109/

MS.2012.110

P22. Rodríguez P, Partanen J, Kuvaja P, Oivo M (2014) Combining Lean Thinking and

Agile Methods for Software Development: A Case Study of a Finnish Provider of

Wireless Embedded Systems Detailed. In: 2014 47th Hawaii International Conference

on System Sciences. pp. 4770–4779.

P23. Senapathi M, Middleton P, Evans G (2011) Factors Affecting Effectiveness of

Agile Usage – Insights from the BBC Worldwide Case Study. In: Agile Processes in

Software Engineering and Extreme Programming. Springer, Berlin, Heidelberg, pp.

132–145.

P24. Cocco L, Mannaro K, Concas G, Marchesi M (2011) Simulating Kanban and

Scrum vs. Waterfall with System Dynamics. In: Agile Processes in Software

Engineering and Extreme Programming. Springer, Berlin, Heidelberg, pp. 117–131.

Abbreviations
DP: Directly proportional; DST: Dempster-shafer theory; IF: Indifferent; IP: Inversely proportional; NE : Negative;
PO: Positive; SE: Software engineering; SN : Strongly negative; SP: Strongly positive; SSM: Structured synthesis method;
WN: Weakly negative; WP: Weakly positive

Acknowledgments
Not applicable.

About the authors
Paulo Sérgio M. dos Santos holds a D.Sc. in Systems Engineering and Computer Science from COPPE/UFRJ. His
research interests are primarily concerned with scientific knowledge representation and its relation to research
synthesis. Also, he investigates continuous experimentation in the particular context of the internet of things. He
participates in several program committees, such as the Workshop on Managing Quality in Agile and Rapid Software
Development Processes, the International Conference of the Chilean Computer Science Society, and the Brazilian
Symposium on Software Quality.
Alessandro C. Beltrão is currently cursing a Master’s degree on the topic of Experimental Software Engineering at
COPPE/UFRJ. He’s graduated in Software Engineering at the University of Brasilia and had experience as an exchange
student at Auckland University of Technology.
Bruno P. de Souza is a Master’s student in the Program Systems Engineering and Computer Science at COPPE/UFRJ.
He holds a degree in Software Engineering from Federal University of Amazonas (UFAM). His areas of interest are:
Software Engineering, Software Ecosystem, Developer Experience, Experimental Software Engineering and Human-
Computer Interaction.
Guilherme H. Travassos is a professor of Software Engineering at COPPE/UFRJ and a CNPq (Brazilian Research Council)
Researcher. He holds a D.Sc. in Systems Engineering and Computer Science from COPPE/UFRJ, with a postdoc in
Experimental Software Engineering at UMCP/USA. He leads the Experimental Software Engineering Group at COPPE/
UFRJ and is a member of ISERN, SBC, and ACM. Apart from that, he takes part in the editorial board of Elsevier - IST,
World Scientific - IJSEKE and Springer - JSERD. Further information at http://www.cos.ufrj.br/~ght.

Funding
We thank CAPES for the postdoctoral and CNPq for the graduate grants. Professor Travassos is a CNPq Researcher.

Availability of data and materials
As indicated in the paper, most of the synthesis data is available in the Evidence Factory tool. The synthesis presented
in this paper can be accessed at http://evidencefactory.lens-ese.cos.ufrj.br/synthesis/editor/80416.
Additional data used in the analysis, which are important for understanding and interpreting the results, were
presented in the two appendices at the end of this paper.

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 27 of 29

https://doi.org/10.1109/MS.2012.110
https://doi.org/10.1109/MS.2012.110
http://www.cos.ufrj.br/~ght
http://evidencefactory.lens-ese.cos.ufrj.br/synthesis/editor/80416

Authors’ contributions
PSMS, the first author, conceived, planned, and executed the study. ACB and BPS executed the study with the first
author and assisted with data handling and tabulation. The last author, GHT, helped with conceiving and planning the
study. Besides, he heavily worked in defining the text structure and in its revision. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 March 2018 Accepted: 28 September 2018

References
Abrantes JF, Travassos GH (2013) Towards pertinent characteristics of agility and agile practices for software processes. CLEI

Electron J 16:6–6
Ahmad MO, Dennehy D, Conboy K, Oivo M (2018) Kanban in software engineering: a systematic mapping study. J Syst Softw

137:96–113. https://doi.org/10.1016/j.jss.2017.11.045
Ahmad MO, Markkula J, Oivo M (2013) Kanban in software development: a systematic literature review. In: 2013 39th

Euromicro conference on software engineering and advanced applications, pp 9–16
Al-Baik O, Miller J (2015) The kanban approach, between agility and leanness: a systematic review. Empir Softw Eng 20:1861–

1897. https://doi.org/10.1007/s10664-014-9340-x
Anderson DJ (2010) Kanban: successful evolutionary change for your technology business, 3.8.2010. Blue Hole Press, Sequim
Andriole SJ (2017) The death of big software. Commun ACM 60:29–32. https://doi.org/10.1145/3152722
Atkins D, Best D, Briss PA et al (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490. https://

doi.org/10.1136/bmj.328.7454.1490
Auerbach CF, Silverstein LB (2003) Qualitative data: an introduction to coding and analysis. New York University Press,

New York
Barney JB (1986) Organizational culture: can it be a source of sustained competitive advantage? Acad Manag Rev 11:656–665
Bloch I (1996) Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking

partial volume effect into account. Pattern Recogn Lett 17:905–919. https://doi.org/10.1016/0167-8655(96)00039-6
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-analysis, 1 edition. Wiley, Chichester
Britten N, Campbell R, Pope C et al (2002) Using meta ethnography to synthesise qualitative research: a worked example. J

Health Serv Res Policy 7:209–215. https://doi.org/10.1258/135581902320432732
Chapetta WA (2016) Proposal for the Definiton of a theoretical model for observing productivity in software processes.

Qualifying Examination Proposal, Federal University of Rio de Janeiro
Conboy K (2009) Agility from first principles: reconstructing the concept of agility in information systems development. Inf

Syst Res 20:329–354. https://doi.org/10.1287/isre.1090.0236
Corona E, Pani F (2013) A review of lean-Kanban approaches in the software development. WSEAS Trans Inf Sci Appl 10:1–13
Cruzes DS, Dybå T (2011) Research synthesis in software engineering: a tertiary study. Inf Softw Technol 53:440–455. https://

doi.org/10.1016/j.infsof.2011.01.004
Da Silva FQB, Cruz SSJO, Gouveia TB, Capretz LF (2013) Using Meta-ethnography to synthesize research: a worked example of

the relations between personality and software team processes. In: 2013 ACM / IEEE international symposium on
empirical software engineering and measurement. pp 153–162

Dennehy D, Conboy K (2017) Going with the flow: an activity theory analysis of flow techniques in software development. J
Syst Softw 133:160–173. https://doi.org/10.1016/j.jss.2016.10.003

DeRemer F, Kron HH (1976) Programming-in-the-large versus programming-in-the-small. IEEE Trans Softw Eng SE-2:80–86.
https://doi.org/10.1109/TSE.1976.233534

Fitzgerald B, Musiał M, Stol K-J (2014) Evidence-based decision making in lean software Project Management. In: Companion
proceedings of the 36th international conference on software engineering. ACM, New York, pp 93–102

Heikkilä VT, Paasivaara M, Lassenius C (2016) Teaching University students Kanban with a collaborative board game. In:
Proceedings of the 38th international conference on software engineering companion. ACM, New York, pp 471–480

ISO (2005) ISO 9000:2005 — quality management systems — fundamentals and vocabulary. International Organization for
Standardization, Geneva

ISO (2017a) ISO 25010:2011 — systems and software engineering — systems and software quality requirements and
evaluation (SQuaRE) — system and software quality models. International Organization for Standardization, Geneva

ISO (2017b) ISO 12052:2017 — health informatics — digital imaging and communication in medicine (DICOM) including
workflow and data management. International Organization for Standardization, Geneva

Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target [special issues section]. IEEE Softw 13:12–21. https://doi.
org/10.1109/52.476281

Maglyas A, Nikula U, Smolander K (2012) Lean solutions to software product management problems. IEEE Softw 29:40–46.
https://doi.org/10.1109/MS.2012.108

Martinez-Fernandez S, Santos PSM, Ayala CP et al (2015) Aggregating empirical evidence about the benefits and drawbacks
of software reference architectures. In: 2015 ACM/IEEE international symposium on empirical software engineering and
measurement (ESEM), pp 1–10

Ohno T, Bodek N (1988) Toyota production system: beyond large-scale production, 1st edn. Productivity Press, Cambridge
Pawar KS, Menon U, Riedel JCKH (1994) Time to market. Integr Manuf Syst 5:14–22. https://doi.org/10.1108/09576069410815765

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 28 of 29

https://doi.org/10.1016/j.jss.2017.11.045
https://doi.org/10.1007/s10664-014-9340-x
https://doi.org/10.1145/3152722
https://doi.org/10.1136/bmj.328.7454.1490
https://doi.org/10.1136/bmj.328.7454.1490
https://doi.org/10.1016/0167-8655(96)00039-6
https://doi.org/10.1258/135581902320432732
https://doi.org/10.1287/isre.1090.0236
https://doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/10.1016/j.jss.2016.10.003
https://doi.org/10.1109/TSE.1976.233534
https://doi.org/10.1109/52.476281
https://doi.org/10.1109/52.476281
https://doi.org/10.1109/MS.2012.108
https://doi.org/10.1108/09576069410815765

Pickard LM, Kitchenham BA, Jones PW (1998) Combining empirical results in software engineering. Inf Softw Technol 40:811–
821. https://doi.org/10.1016/S0950-5849(98)00101-3

Poppendieck M, Cusumano MA (2012) Lean software development: a tutorial. IEEE Softw 29:26–32. https://doi.org/10.1109/
MS.2012.107

Poppendieck M, Poppendieck T (2013) The lean mindset: ask the right questions, 1st edn. Addison-Wesley Professional,
Upper Saddle River

Santos PSM (2015) Evidence representation and aggregation in software engineering using theoretical structures and belief
Fuctions. Thesis, Federal University of Rio de Janeiro

Santos PSM, Travassos GH (2017a) Structured synthesis method: the evidence factory tool. In: 2017 ACM/IEEE international
symposium on empirical software engineering and measurement (ESEM), pp 480–481

Santos PSM, Nascimento IE, Travassos GH (2015) A computational infrastructure for research synthesis in software
engineering. In: XVIII Ibero-American conference on software engineering, track: XVII workshop on experimental software
engineering. Lima: Curran Associates, pp 309–322

Santos PSM, Travassos GH (2013) On the representation and aggregation of evidence in software engineering: a theory and
belief-based perspective. Electron Notes Theor Comput Sci 292:95–118. https://doi.org/10.1016/j.entcs.2013.02.008

Santos PSM, Travassos GH (2016) Scientific knowledge engineering: a conceptual delineation and overview of the state of
the art. Knowl Eng Rev 31:167–199. https://doi.org/10.1017/S0269888916000011

Santos PSM, Travassos GH (2017b) Evidence of usage-based Reading effects by using the structured synthesis method.
Technical Report, Federal University of Rio de Janeiro (UFRJ/COPPE)

Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
Sjøberg DIK, Dybå T, Anda BCD, Hannay JE (2008) Building theories in software engineering. In: Shull F, Singer J, Sjøberg DIK

(eds) Guide to advanced empirical software engineering. Springer London, London, pp 312–336
Staats BR, Brunner DJ, Upton DM (2011) Lean principles, learning, and knowledge work: evidence from a software services

provider. J Oper Manag 29:376–390. https://doi.org/10.1016/j.jom.2010.11.005
Stevenson A (2010) Oxford Dictionary of English, 3rd Revised ed. Oxford University Press, New York
Tannenbaum SI (1997) Enhancing continuous learning: diagnostic findings from multiple companies. Hum Resour Manag 36:

437–452. https://doi.org/10.1002/(SICI)1099-050X(199724)36:4<437::AID-HRM7>3.0.CO;2-W
Versionone (2017) The 11th annual state of agile survey. https://explore.versionone.com/state-of-agile. Accessed 28 Jan 2018
Womack JP, Jones DT (1997) Lean thinking—banish waste and create wealth in your corporation. J Oper Res Soc 48:1148–

1148. https://doi.org/10.1057/palgrave.jors.2600967

dos Santos et al. Journal of Software Engineering Research and Development (2018) 6:13 Page 29 of 29

https://doi.org/10.1016/S0950-5849(98)00101-3
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1016/j.entcs.2013.02.008
https://doi.org/10.1017/S0269888916000011
https://doi.org/10.1016/j.jom.2010.11.005
https://doi.org/10.1002/(SICI)1099-050X(199724)36:4<437::AID-HRM7>3.0.CO;2-W
https://explore.versionone.com/state-of-agile
https://doi.org/10.1057/palgrave.jors.2600967

	Abstract
	Context
	Goal
	Method
	Results
	Conclusions

	Introduction
	Background
	Study method
	SSM step 1: Selecting primary studies
	SSM step 2: Analysis and evidence representation
	Extracting information to build evidence models

	SSM step 3: Evidence synthesis

	Representation of the benefits and challenges of Kanban
	Results
	Discussion
	Threats to validity
	Conclusions
	Understandability, Learnability and Usability terms were taken from the software quality terminology presented in Kitchenham and Pfleeger (1996). The possibility of generalizing Understandability and Learnability by Usability was also taken from there...
	Appendix A
	Appendix B. Primary studies
	Abbreviations

	Acknowledgments
	About the authors
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

