
Balera and Santiago Júnior Journal of Software Engineering Research and
Development (2017) 5:10
DOI 10.1186/s40411-017-0043-z

RESEARCH Open Access

An algorithm for combinatorial
interaction testing: definitions and rigorous
evaluations
Juliana M. Balera* and Valdivino A. de Santiago Júnior

*Correspondence:
juliana.balera@inpe.br
Laboratório Associado de
Computação e Matemática
Aplicada, Instituto Nacional de
Pesquisas Espaciais (INPE), Av. dos
Astronautas, 1758, São José dos
Campos, SP, Brazil

Abstract
Background: Combinatorial Interaction Testing (CIT) approaches have drawn
attention of the software testing community to generate sets of smaller, efficient, and
effective test cases where they have been successful in detecting faults due to the
interaction of several input parameters. Recent empirical studies show that greedy
algorithms are still competitive for CIT. It is thus interesting to investigate new
approaches to address CIT test case generation via greedy solutions and to perform
rigorous evaluations within the greedy context.

Methods: We present a new greedy algorithm for unconstrained CIT, T-Tuple
Reallocation (TTR), to generate CIT test suites specifically via the Mixed-value Covering
Array (MCA) technique. The main reasoning behind TTR is to generate an MCAM by
creating and reallocating t-tuples into this matrixM, considering a variable called goal
(ζ). We performed two controlled experiments addressing cost-efficiency and only
cost. Considering both experiments, we did 3200 executions related to 8 solutions. In
the first controlled experiment, we compared versions 1.1 and 1.2 of TTR in order to
check whether there is significant difference between both versions of our algorithm.
In such experiment, we jointly considered cost (size of test suites) and efficiency (time
to generate the test suites) in a multi-objective perspective. In the second controlled
experiment we confronted TTR 1.2 with five other greedy algorithms/tools for
unconstrained CIT: IPOG-F, jenny, IPO-TConfig, PICT, and ACTS. We performed two
different evaluations within this second experiment where in the first one we addressed
cost-efficiency (multi-objective) and in the second only cost (single objective).

Results: Results of the first controlled experiment indicate that TTR 1.2 is more
adequate than TTR 1.1 especially for higher strengths (5, 6). In the second controlled
experiment, TTR 1.2 also presents better performance for higher strengths (5, 6) where
only in one case it is not superior (in the comparison with IPOG-F). We can explain this
better performance of TTR 1.2 due to the fact that it no longer generates, at the
beginning, the matrix of t-tuples but rather the algorithm works on a t-tuple by t-tuple
creation and reallocation intoM.

Conclusion: Considering the metrics we defined in this work and based on both
controlled experiments, TTR 1.2 is a better option if we need to consider higher
strengths (5, 6). For lower strengths, other solutions, like IPOG-F, may be better
alternatives.

Keywords: Software testing, Combinatorial interaction testing, Combinatorial testing,
Mixed-value covering array, T-Tuple reallocation, Controlled experiment

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-017-0043-z&domain=pdf
http://orcid.org/0000-0001-6481-5362
mailto: juliana.balera@inpe.br
http://creativecommons.org/licenses/by/4.0/

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 2 of 41

1 Introduction
The academic community has been making efforts to reduce the cost of the software
testing process by decreasing the size of test suites while at the same time aiming at main-
taining the effectiveness (ability to detect defects) of such sets of test cases. Hence, several
contributions exist for test suite/case minimization (Yoo and Harman 2012; Ahmed 2016;
Huang et al. 2016; Khan et al. 2016) where the goal is to decrease the size of a test suite
by eliminating redundant test cases, and hence demanding less effort to execute the test
cases (Yoo and Harman 2012). One of the approaches to reduce the number of test cases
is Combinatorial Interaction Testing (CIT) (Petke et al. 2015), also known as Combina-
torial Testing (CT) (Kuhn et al. 2013; Schroeder and Korel 2000), Combinatorial Test
Design (CTD) (Tzoref-Brill et al. 2016), or Combinatorial Designs (CD) (Mathur 2008).
CIT relates to combinatorial analysis whose objective is to answer whether it is possi-
ble to organize elements of a finite set into subsets so that certain balance or symmetry
properties are satisfied (Stinson 2004).
There are reports which claim the success of CIT (Dalal et al. 1999; Tai and Lei 2002;

Kuhn et al. 2004; Yilmaz et al. 2014; Qu et al. 2007; Petke et al. 2015). Such approaches
have drawn attention of the software testing community to generate sets of smaller (lower
cost to run) and effective (greater ability to find faults in the software) test cases where
they have been successful in detecting faults due to the interaction of several input
parameters (factors).
CIT approaches to generate test cases can be divided in four main classes: Binary Deci-

sion Diagrams (BDDs) (Segall et al. 2011), Satisfiability (SAT) solving (Cohen et al. 1997;
Yamada et al. 2015; Yamada et al. 2016), meta-heuristics (Garvin et al. 2011; Shiba et al.
2004; Hernandez et al. 2010), and greedy algorithms (Lei and Tai 1998; Lei et al. 2007)1.
Recent CIT test case generation methods based on BDD and SAT are interesting to
constrained (there are restrictions related to parameter interactions) problems but they
perform worse compared with greedy algorithms/tools in the context of unconstrained
(there are no restrictions at all) problems.
To corroborate this claim, in (Segall et al. 2011) a BDD-based approach, implemented in

the Focus tool, was better in terms of cost than the greedy solutions Advanced Combina-
torial Testing System (ACTS) (Yu et al. 2013), Pairwise Indepedent Combinatorial Testing
(PICT) (Czerwonka 2006), and jenny (Jenkins 2016) in the constrained domain. However,
their method was worse than such greedy solutions for unconstrained problems.
A recent SAT-based approach (Yamada et al. 2016), implemented in the Calot tool,

performed well in terms of efficiency (time to generate the test suites) and cost (test
suite sizes) comparing again with the greedy tools ACTS (Yu et al. 2013) and PICT
(Czerwonka 2006). Despite the advantages of the SAT-based approach, ACTS was much
more faster than Calot for many 3-way test case examples. Moreover, if unconstrained
CIT is considered, ACTS again was remarkable faster than Calot for large SUT models
and higher-strength test case generation.
In the context of CIT, meta-heuristics such as simulated annealing (Garvin et al. 2011),

genetic algorithms (Shiba et al. 2004), and Tabu Search Approach (TSA) (Hernandez
et al. 2010) have been used. Recent empirical studies show thatmeta-heurisitic and greedy
algorithms have similar performance (Petke et al. 2015). Hence, early fault detection via
a greedy algorithm with constraint handling (implemented in the ACTS tool (Yu et al.
2013)) was no worse than a simulated annealing algorithm (implemented in the CASA

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 3 of 41

tool (Garvin et al. 2011)). Moreover, there was not enough difference between test suites
generated by ACTS and CASA in terms of efficiency (runtime) and t-way coverage. All
such previous remarks, some of them based on strong empirical evidences, emphasize
that greedy algorithms are still very competitive for CIT.
Even if some authors have argued that CIT resides in the constrained domain in real-

world applications (Bryce and Colbourn 2006; Cohen et al. 2008; Petke et al. 2015), it is
important to mention that unconstrained CITmay be interesting from a practical point of
view, especially for critical applications such as satellites, rockets, airplanes, controllers of
an unmanned train metro system, etc. For such types of applications, robustness testing
is very important. In the context of software systems, robustness testing aims to ver-
ify whether the Software Under Test (SUT) behaves correctly in the presence of invalid
inputs. Therefore, even though an unconstrained CIT-derived test case may seem point-
less or even somewhat difficult to execute, it may still be interesting to see how the
software will behave in the presence of inconsistent inputs.
Let us consider that we need to test a communication protocol implemented in several

critical embedded systems. If each field of such a protocol is a parameter, it is interesting
to impose no restriction (no constraint) in the parameter interactions so that a certain
Protocol Data Unit (PDU) sent from system A to system Bmay have values not allowed in
the combination of the fields (parameters) of the PDU. In other words, if the specification
says that when field fi = 1, possible values of field fj are between 20 and 70 (20 ≤ fj ≤ 70),
and other field fk < 5, then a test case where fi = 1, 1 ≤ fj ≤ 4, and fk < 5 is clearly
inconsistent because of the value of fj. But, this can precisely the goal of the test designer
because he/she wants to check how the receiving system (B) will act upon receiving a
PDU like that from A. This is an example where unconstrained CIT is relevant. It is
important to mention that the argument is not that constraints can not be used for test-
ing critical systems but rather that, for certain types of tests (robustness), constraints are
not as relevant.
Based on the context and motivation previously presented, this research relates to

greedy algorithms for unconstrained CIT. In (Pairwise 2017), 43 algorithms/tools are
presented for CIT and many more not shown there exist. Some of these solutions are
variations of the In-Parameter-Order (IPO) algorithm (Lei and Tai 1998) such as IPOG,
IPOG-D (Lei et al. 2007), IPOG-F, IPOG-F2 (Forbes et al. 2008), IPOG-C (Yu et al. 2013),
IPO-TConfig (Williams 2000), ACTS (where IPOG, IPOG-D, IPOG-F, IPOG-F2 are
implemented) (Yu et al. 2013), and CitLab (Cavalgna et al. 2013). All IPO-based proposals
have in common the fact that they perform horizontal and vertical growths to construct
the final test suite. Moreover, some need two auxiliary matrices which may decrease
its performance by demanding more computer memory. Such algorithms accomplish
exhaustive comparisons within each horizontal extension which may penalize efficiency.
PICT can be regarded as one baseline tool where other approaches have been done

based on it (PictMaster 2017). The algorithm implemented in this tool works in two
phases, the first being the construction of all t-tuples to be covered. This can often be a
not interesting solution since many t-tuples may require large disk space for storage.
Thus, it is interesting to think about a new greedy solution for CIT that does not

need, at the beginning, to enumerate all t-tuples (such as PICT) and does not demand
many auxiliary matrices to operate (as some IPO-based approaches). Although we have
some recent rigorous empirical evaluations comparing greedy algorithms with meta-

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 4 of 41

heuristics solutions (Petke et al. 2015) and greedy approaches against SAT-based
methods (Yamada et al. 2016), there are no rigorous empirical assessments compar-
ing greedy algorithms/tools, representative of the unconstrained CIT domain, among
each other.
In this paper, we present a new algorithm, called T-Tuple Reallocation (TTR), to gen-

erate CIT test suites specifically via the Mixed-value Covering Array (MCA) technique.
The main reasoning behind TTR is to generate an MCAM by creating and reallocating t-
tuples into this matrixM, considering a variable called goal (ζ). TTR is a greedy algorithm
for unconstrained CIT.
Three versions of the TTR algorithm were developed and implemented in Java. Version

1.0 is the original version of TTR (Balera and Santiago Júnior 2015). In version 1.1 (Balera
and Santiago Júnior 2016), wemade a change where we do not order the input parameters.
In the last version, 1.2, the algorithm no longer generates the matrix of t-tuples (�) but
rather it works on a t-tuple by t-tuple creation and reallocation intoM. Moreover, version
1.2 was also implemented in C.
We performed two controlled experiments addressing cost-efficiency and only cost.

Considering both experiments, we performed 3,200 executions related to 8 solutions. In
the first controlled experiment, our goal was to compare versions 1.1 and 1.2 of TTR (in
Java) in order to check whether there is significant difference between both versions of
our algorithm. In such experiment, we jointly considered cost (size of test suites) and effi-
ciency (time to generate the test suites) in a multi-objective perspective.We conclude that
TTR 1.2 is more adequate than TTR 1.1 especially for higher strengths (5 and 6).
We then carried out a second controlled experiment where we confronted TTR 1.2 with

five other greedy algorithms/tools for unconstrained CIT: IPOG-F (Forbes et al. 2008),
jenny (Jenkins 2016), IPO-TConfig (Williams 2000), PICT (Czerwonka 2006), and ACTS
(Yu et al. 2013). We performed two evaluations where in the first one we compared TTR
1.2 with IPOG-F and jenny since these were the solutions we had the source code (to
precisely measure the time). Hence, a cost-efficiency (multi-objective) assessment was
accomplished. In order to address a possible evaluation bias in the time measures due to
different programming languages, we compared the implementation of TTR 1.2 (in Java)
with IPOG-F (in Java), and the implementation of TTR 1.2 (in C) with jenny (in C). In
the second assessment, we did a cost (single objective) evaluation where TTR 1.2 (Java)
was compared with PICT, IPO-TConfig, and ACTS. The conclusion is the same as before:
TTR 1.2 is better for higher strengths (5 and 6).
In this paper, we extend our previous works where we presented version 1.0 of TTR

(Balera and Santiago Júnior 2015), and version 1.1 together with another controlled
experiment (Balera and Santiago Júnior 2016). The contributions of this work are:

• Even though we considered version 1.1 of TTR in (Balera and Santiago Júnior 2016),
we did not detail this version since the focus of this previous paper was this other
controlled experiment. Thus, we highlight the key features of TTR 1.1 here;

• We created another version of our algorithm, 1.2, where, at the beginning, TTR does
not generate the matrix of t-tuples. Our goal here is trying to avoid an exhaustive
combination of t-tuples as might happen with other classical greedy approaches.
Moreover, we rely on just one auxiliary matrix which is different from other greedy
solutions which require two auxiliary matrices;

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 5 of 41

• We performed two controlled experiments in the unconstrained CIT domain (TTR
1.1 × TTR 1.2; TTR 1.2 × IPOG-F, jenny, IPO-TConfig, PICT, ACTS) with almost
three times more participants, in each experiment, than in the previous one (Balera
and Santiago Júnior 2016). In addition, we run each participant (instance) 5 times with
different input orders of parameters and values to address the nondeterminism of the
solutions. To the best of our knowledge, no previous research presented rigorous
empirical evaluations for greedy solutions within the unconstrained CIT domain;

• We really accomplished a multi-objective (cost-efficiency) evaluation in both
controlled experiments (in the second one, we did it in the first assessment).
Previously (Balera and Santiago Júnior 2016), we analyzed cost and efficiency in
isolation.

This paper is structured as follows. Section 2 presents an overview of the main
concepts related to CIT. In Section 3, we show the main definitions and procedures of
versions 1.1 and 1.2 of our algorithm. Section 4 shows all the details of the first con-
trolled experiment when we compare TTR 1.1 against TTR 1.2. In Section 6, the second
controlled experiment is presented where TTR is confronted with the other 5 greedy
tools. Section 7 presents related work. In Section 8, we show the conclusions and future
directions of our research.

2 Background
In this section we present some basic concepts and definitions (Kuhn et al. 2013; Petke
et al. 2015; Cohen et al. 2003) related to CIT. A CIT algorithm receives as input a number
of parameters (also known as factors), p, which refer to the input variables. Each parame-
ter can assume a number of values (also known as levels) v. Moreover, t is the strength of
the coverage of interactions. For example, in pairwise testing, the degree of interaction is
two, so the value of strength is 2. In t-way testing, a t-tuple is an interaction of parameter
values of size equal to the strength. Thus, a t-tuple is a finite ordered list of elements, i.e.
it is a set of elements.
A Fixed-value Covering Array (CA) denoted by CA(N , p, v, t) is an N × p matrix of

entries from the set {0, 1, · · · , (v − 1)} such that every set of t-columns contains each
possible t-tuple of entries at least a certain number of times (e.g. once). N is the number
of rows of the array (matrix). Note that in a CA, entries are from the same set of v values.
A Mixed-value Covering Array (MCA)2 it is an extension of a CA and it is more

flexible because it allows parameters to assume values from different sets. Hence, it is
represented as MCA

(
N , vp11 vp22 ...vpmm , t

)
, where N is the number of rows of the matrix,

m∑

i=1
pi is the number of parameters, each vi is the number of values for each parameter pi,

and t is the strength.
Therefore, in CIT a CA or MCA is a test suite and each row of such matrices is a

test case. Suppose that we need to generate a pairwise unconstrained CIT test suite
considering the following parameters and their respective values:

OS = {macOS, Linux,Windows},
Protocol = {IPv4, IPv6},
DBMS = {MySQL,PostgreSQL,Oracle}.

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 6 of 41

We can formulate this problem as MCA
(
N , 2132, 2

)
which is denoted as a model for the

CIT problem. In other words, we have one parameter (Protocol) which can assume two
values, two parameters (OS, DBMS) which can assume three values, and t = 2.
As we have mentioned in Section 1, CIT is an interesting solution for the test suite

minimization problem. As a matter of perspective, let us consider that there are 10
parameters (A,B, · · · , J) and that each parameter has 5 values, i.e. A = {a1, a2, · · · , a5},
B = {b1, b2, · · · , b5}, ..., J = {j1, j2, · · · , j5}. If we performed an exhaustive combina-
tion, there would be 510 = 9.765.625 test cases generated where each test case is:
tci = {ak , bk , · · · jk}. By using version 1.2 of TTR with t = 2, even in a unconstrained con-
text, the test suite reduces to 45 test cases. This gives an idea of the strength of CIT for
test suite minimization.
Note that the concepts and definitions we provided in this section are related

to the context in which our work is inserted: unconstrained CIT. In case of con-
strained CIT, constraints must be considered and other definitions can be used (see e.g.
(Yamada et al. 2016)).

3 TTR: a new algorithm for combinatorial interaction testing
In this section we detail versions 1.1 and 1.2 of our algorithm. The three versions (1.0
(Balera and Santiago Júnior 2015), 1.1, and 1.2) of TTR were implemented in Java.

3.1 TTR: Version 1.1

Version 1.0 of TTR (Balera and Santiago Júnior 2015) can be summarized as follows: (i)
it generates all possible t-tuples that have not yet been covered. The Constructor proce-
dure constructs the matrix �; (ii) it generates an initial solution, the matrix M; and (iii)
it reallocates the t-tuples from � in order to achieve the best final solution (M) via the
Main procedure. Then, the final set of test cases is updated in thematrixM. An important
point here is that we order the parameters and values that are submitted to the algo-
rithm. In other words, if we submit five parameters A,B,C,D,E with 10, 4, 3, 8, 5 values
respectively, TTR orders these five parameters in ascending order: A,D,E,B,C. The goal
is trying to be insensitive to the input order of parameters and values.
The same steps described above also exist in TTR 1.1. However, comparing with version

1.0 (Balera and Santiago Júnior 2015), in version 1.1 we do not order the parameters and
values submitted to our algorithm. The result is that test suites of different sizes may be
derived if we submit a different order of parameters and values. The motivation for such
a change is because we realized that, in some cases, less test cases were created due to
non-ordering of parameters and values.
Let us consider the running example in Fig. 1 with the strength, t, equals to 2. It is

important to note that this is a unit testing level and hence each one of the parame-
ters of register is an input parameter sumitted to TTR. Thus, there are 3 parameters:
bank, function and card. We assume that there are two banks (bankA, bankB), two
functions (debit, credit), and three types of cards (cardA, cardB, cardC) to deal with.
Therefore, there are 2, 2, and 3 values of bank, function and card, respectively, as shown
in Table 1.
A high-level view of version 1.1 of TTR is in Algorithm 1. The main reasoning of TTR

1.1 is to build an MCA M through the reallocation of t-tuples from a matrix � to this
matrixM, and then each reallocated t-tuple should cover the greatest number of t-tuples

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 7 of 41

Fig. 1 A running example: register method

not yet covered, considering a parameter called a goal (ζ). Also note that P is the submit-
ted set of parameters, V is the set of values of the parameters, and t is the strength. As we
have just pointed out, TTR 1.1 follows the same general 3 steps as we have in TTR 1.0.

Algorithm 1 High-level view: TTR 1.1
input: Set of parameters, P; Set of values, V ; Strength, t
output:Matrix,M
1: � ← Constructor(P,V , t)
2: while � �= ∅ do
3: M ← AddTestCase(�, t)
4: ζ ← calculateZeta(M, t)
5: [M,�]← Main(M,�, ζ , t)
6: end while

Before going on with the descriptions of the procedures of our algorithm, we need to
define the following operators applied to the structures (set, sequence, matrix) we handle.
We also present some examples to better illustrate how such operators work.

Definition 1 Let A be a sequence and B be a set. The addition sequence-set operator, �,
is such that A�B is a sequence where the elements of B are added after the last position of A.
Thus, if |A| is the length of sequence A and |B| is the cardinality of set B, |A�B| = |A|+|B|.
Example: Let us consider sequence A = {1, 2, 3} and set B = {4, 5}. Then, A � B =

{1, 2, 3, 4, 5}.

Definition 2 Let A and B be two sequences with the same length, i.e. |A| = |B|. The
addition sequence-sequence operator, ⊕, is such that A⊕B is a sequence where the element
in position i of A ⊕ B, abi, is ai, the element of A in position i, or bi, the element of B in
position i. Also note the definition of an “empty" element, λ, within a sequence which is
an element with no value. This operator then assumes that if ai �= λ and bi �= λ then
abi = ai = bi. However, if ai = λ and bi �= λ then abi = bi. On the other hand, if ai �= λ

and bi = λ then abi = ai. Note that |A ⊕ B| = |A| = |B|.
Example: Let us consider sequences A = {1, 2, λ} and B = {λ, 2, 3}. Then, A ⊕ B =

{1, 2, 3}.

Table 1 Example of parameters and values: Fig. 1

Parameter Values

Bank bankA, bankB

Function debit, credit

Card cardA, cardB, cardC

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 8 of 41

Definition 3 Let A and B be two sequences. The removal operator, �, is such that A� B
is a sequence obtained by “removing” each element of B, bi, from A. This operator assumes
that the original sequences A and B are known so that A � B = A.
Example: Let us consider that originally we have sequences A = {1, 2, λ}, B = {λ, 2, 3},

and A ⊕ B = {1, 2, 3}. Then A � B = A = {1, 2, λ}.

Definition 4 Let A and B be two sets. The set difference operator, \, is as defined in set
theory.
Example: Let us consider we have sets A = {1, 2, 3} and B = {2, 3}. Then A \ B = {1}.

Definition 5 Let A be a matrix and B be a sequence. The concatenation operator, •, is
such that A • B is a matrix where a new row (sequence) B is added after the last row of A.
Example: Let us consider the matrix A below and sequence B = {10, 11, 12}. The matrix

A • B is shown below.

A =

⎡

⎢⎢
⎣

1 2 3

4 5 6

7 8 9

⎤

⎥⎥
⎦

A • B =

⎡

⎢⎢⎢⎢
⎢
⎣

1 2 3

4 5 6

7 8 9

10 11 12

⎤

⎥⎥⎥⎥
⎥
⎦

Definition 6 Let A be a matrix and B be a sequence. The removal frommatrix operator,
◦, is such that A ◦ B is a matrix obtained by removing the entire row (sequence) B from the
last row of matrix A. This operator assumes that the original matrix A and sequence B are
known so that A ◦ B = A
Example: Let us consider we have matrix A and sequence B presented in the previous

example. Then A ◦ B = A as shown below.

A ◦ B = A =

⎡

⎢⎢
⎣

1 2 3

4 5 6

7 8 9

⎤

⎥⎥
⎦

3.1.1 The constructor procedure

According to the specified input (parameters and values), the Constructor procedure
aims to generate all t-tuples that needs to be covered. Each t-tuple is in the matrix
�|C|×|P| 3 where |C| represents the number of t-tuples, t is the strength, and |P| is the
number of parameters.
Each row, θi, of � is a t-tuple that has not yet been covered and it has a variable,

flag, associated with it whose purpose is to aid in the reallocation process of the t-
tuple into the final solution. Note that since the order matters, each t-tuple θi is indeed
a sequence and not a set. Moreover, flag does not belong to �. Table 2 shows the

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 9 of 41

Table 2Matrix � for the example in Fig. 1

θi Bank Function Card Flag

1 bankA debit λ false
2 bankA credit λ false
3 bankB debit λ false
4 bankB credit λ false
5 bankA λ cardA false
6 bankA λ cardB false
7 bankA λ cardC false
8 bankB λ cardA false
9 bankB λ cardB false
10 bankB λ cardC false
11 λ debit cardA false
12 λ debit cardB false
13 λ debit cardC false
14 λ credit cardA false
15 λ credit cardB false
16 λ credit cardC false

matrix � for the example shown in Fig. 1 and t = 2. Note that interactions are made
for the values of bank\function, bank\card, and function\card. Then, a t-tuple corre-
sponding to the interaction of factors bank\function can be written in the form θi =
{bankA, debit, λ}. Initially, all values of flag are false. Algorithm 2 shows the Constructor
procedure.

Algorithm 2 The Constructor procedure: TTR 1.1
input: P = {pj | j = 1...|P|},V = {vk | k = 1...|V |}, t
output: �|C|×|P| = {θi | i = 1...m}
1: E ← enumerator(|P|, t)
2: let Il ⊂ E
3: let p1 ⊂ Il
4: let θi ⊂ �

5: for all {vk} ∈ p1 do
6: θi ← θi � {vk}
7: � ← � • θi
8: end for
9: while E �= ∅ do

10: let Il ⊂ E
11: let pj ⊂ Il
12: Aux ← �

13: while pj ⊂ Il, j > 1 do
14: for all {vk} ∈ pj do
15: for all θi ⊂ Aux do
16: � ← � • (θi � {vk})
17: end for
18: end for
19: end while
20: � ← � \ Aux
21: E ← E \ Il
22: end while

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 10 of 41

Constructor operates as follows: based on the set of parameters (domain), P, and the
strength (t), interactions between the parameters are generated through the enumeration
procedure, and stored in a set named E (line 1). For example, we have 3 parameters (bank,
function and card) and t = 2 thus we know that the enumerator will generate the inter-
actions 2 per 2 (t = 2) between these 3 parameters. Thus E = {I1, I2, I3} where we have
the sets I1 = {bank, function, λ}, I2 = {bank, λ, card}, and I3 = {λ, function, card}. For
better understanding, we denote the elements of Il in this way: bank\function, bank\card
and function\card. Then, the interactions (Il) are selected one at a time (line 2), and dur-
ing this selection, t-tuples are constructed based on each parameter of that interaction: in
line 5, the first parameter of the first interaction, p1, is selected. Note that each parame-
ter, pj, is indeed another set composed of values, vk . Thus, p1 = bank = {bankA, bankB},
p2 = function = {debit, credit}, and p3 = card = {cardA, cardB, cardC}. Therefore, each
of the values (vk) is added in t-tuples (θi) (line 6) and also in � (line 7). Recall that θi is
indeed a sequence. From now on, subsequent parameters are selected one by one, and
a new t-tuple is generated from the combination between each of the values (vk) with
each of the preexisting t-tuples (θi) in � (line 16). For example, the algorithm selects the
first generated interaction, I1, bank\function and construct all t-tuples between these two
parameters. After processing each interaction, Il, the Constructor procedure removes it
from the set E (line 21).
Note that the main difference between TTR 1.0 and 1.1 is that TTR 1.0 performs the

ordering of the domain, P, that is the parameters are ordered according to the amount of
values they have: from the highest to the lowest quantity. For example, considering Fig. 1
and this input order: bank, function, and card. In version 1.0, parameters are stored in an
ordered way: the first parameter becomes card (3 values), the second parameter is bank
(2 values) and the last parameter is function (2 values). In version 1.1, there is no such
ordering and this explains why bank and function generate the first rows (t-tuples) of �

(see Table 2).

3.1.2 The initial solution and addition of test cases

The matrixMN×(|P|+1) is the MCA we need to construct where there are N rows (i.e. test
cases) and |P| parameters. The (|P|+1)-th column is not used to represent any parameter
but rather to mean the value of the goal (ζ) associated with that test case. There exists an
initial solution for the matrix M that is obtained by selecting the parameters interaction
Il that has the largest amount of uncovered t-tuples (line 3 in Algorithm 1). Considering
the input order bank, function, card, I2 = bank\card that is chosen because it has 6 t-
tuples and it appears first than I3 = function\card. All t-tuples derived via I2 in the initial
solution are combined with empty test cases, respecting the order of input of the parame-
ters/values submitted to TTR 1.1 as shown in Table 3 (see t-tuples θ5 = {bankA, λ, cardA},
θ6 = {bankA, λ, cardB}, · · · from � (Table 2) in the initialM).
In the same way, to the extent that existing test cases are no longer sufficient to allo-

cate the remaining t-tuples in the � matrix, the same procedure is used to include new
test cases in matrixM. In other words, when reallocation of t-tuples becomes inefficient,
it is necessary to include new test cases. Thus, as in the construction of the initial solu-
tion, the interaction of factors Il that has the largest amount of uncovered t-tuples is
selected, so that these will become new test cases. This strategy is performed on line 3 of
Algorithm 1.

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 11 of 41

Table 3 InitialM: example of Fig. 1

Bank Function Card ζ

bankA λ cardA 2

bankA λ cardB 2

bankA λ cardC 2

bankB λ cardA 2

bankB λ cardB 2

bankB λ cardC 2

3.1.3 Goals

In order to modify the current solution to obtain the final solution, the test suite M,
we rely on the variable goal (ζ). For each row of M, i.e. for each test case, there is an
associated goal.
As the objective is to address the largest number of uncovered t-tuples, the goal is calcu-

lated according to the maximum number of uncovered t-tuples which potentially may be
covered when a t-tuple θi is moved from � toM. This results in a temporary test case τr .
In order to find ζ , it is necessary to take into account: (i) the disjoint parameters, Pd, cov-
ered by the union between t-tuple θi and a test case fromM; (ii) the number of parameter
interactions, y, which τr has already covered; and (iii) the strength t. Therefore:

ζ =
(
Pd
t

)
− y.

Let us consider again Fig. 1 and t = 2. According to � (see Table 2), the initial solution,
M, is composed by the t-tuples due to parameters bank\card. This is because the I2 =
bank\card has 6 tuples, I3 = function\card has 6 t-tuples, and I1 = bank\function has
4 t-tuples. As bank\card appears first than function\card and both have 6 tuples, so the
algorithm selects it for reallocating intoM.
The number of disjoint parameters, Pd, is equal to 3. As the interaction bank\card is

already contemplated in matrix M, the next parameter interaction providing the largest
number of non-addressed t-tuples is function\card. Then we have all 3 parameters with
bank\function and function\card which explains Pd = 3. As t = 2, we have

(3
2
) = 3.

However, one of the 3 parameter interactions has already been covered during the initial
solution (bank\card), so we need to cover only 2 parameter interactions. Thus, for each
t-tuple in the initial solutionM, there remains to be covered:

ζ =
(
3
2

)
− 1 = 2.

This explains the goal (ζ) in Table 3. It is very important that y is subtracted in order to
find ζ . If this is not done, the final goal will never bematched, since there are no uncovered
t-tuples that correspond to this interaction.
Even considering y, it is also important to note that not always the expected targets will

be reached with the current configurations of the M and � matrices. In other words, in
certain cases, there will be times when no existing t-tuple will allow the test cases of the
M matrix to reach its goals. It is at this point that it becomes necessary to insert new
test cases in M. This insertion is done in the same way as the initial solution for M is
constructed, as described in the section above.

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 12 of 41

3.1.4 TheMain Procedure

TheMain procedure is presented in Algorithm 3. After the construction of the matrix �,
the initial solution, and the calculation of the goals of all t-tuples,Main sort � so that the
elements belonging to the parameter interaction with the greatest amount of t-tuples get
ahead (line 1). However, these t-tuples will not be reallocated from � to M at once. This
is done gradually, one by one, as goals are reached (line 7 to 11). Since the matrix M is
being traversed in the loop (line 4), it will be updated every time a t-tuple is combined
with some of its test cases (note ⊕ in line 5).

Algorithm 3 TheMain procedure: TTR 1.1
input: �|C|×|P| = {θi | i = 1...m},MN×(|P|+1) = {τr | r = 1..N}
output:MN×(|P|+1) = {τr | r = 1..N}
1: � ← sort(�)
2: for all θi ⊂ � do
3: while θi �⊂ M do
4: for all τr ⊂ M do
5: τr ← τr ⊕ θi (matrixM update)
6: if goal(τr) then (test case τr matches the goal)
7: � ← � ◦ θi
8: else
9: τr ← τr � θi (matrixM update)

10: end if
11: end for
12: mark(θi) (flag is changed to true)
13: end while
14: end for

Let us consider Fig. 2. All matrices in this figure represent snapshots of M. The upper
left matrix (a) is the initial solution. As long as there exists t-tuples (θi) in �, the Main
procedure works. Thus, Main selects from � the largest amount of uncovered t-tuples.
In Table 2, t-tuples were selected from the parameter interactions I3 = function\card.
Every t-tuple of the function\card interaction is combined with each test case in M until
the t-tuple matches some goal (line 7).
When an uncovered t-tuple fits into a row ofM to complete a test case and this t-tuple

is not removed on the line 9 in Algorithm 3, it means that the goal for that row of M is
reached. Take the first row of the initial M (Table 3) which is a test case (τr) originated
from θ5 = {bankA, λ, cardA}, and the first t-tuple of function\card interaction not yet cov-
ered in �, θ11 = {λ, debit, cardA}. The addition of θ11 = {λ, debit, cardA} inM is accepted
because ζ = 2 is reached. Note that the initialM, with test cases τr , is also an input parame-
ter of this procedure. Hence, in line 5,M is updated due to the addition sequence-sequence
operator (⊕). In addition, note that τr is also a sequence as θi. In other words, by insert-
ing θ11 = {λ, debit, cardA}, we have a complete test case τr = {bankA, debit, cardA}. In this
way, the other two interactions bank\function (θ1 = {bankA, λ, debit}) and function\card
(θ11 = {λ, debit, cardA}) are covered, and the goal is achieved. The upper right matrix (b)
in Fig. 2 shows the result of this first addition.

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 13 of 41

Fig. 2 Snapshots ofM: a initial solution; b and c intermediate matrices; d final test suite

After all combinations between t-tuples and test cases aremade, that is, when procedure
ends, the new ζ is calculated. The bottom left matrix (c) shows the new values of ζ (see
rows 3 and 6). Thus the steps described above are repeated with the insertion/reallocation
of t-tuples into the matrixM. Once an uncovered t-tuple of � is included inM and meets
the goal, that t-tuple is excluded from � (line 7). Note that if t-tuple does not allow the
test to which it was combined to reach the goal, it is “unbound” (line 9) from this test case
so that it can be combined with the next test case. The final test suite is the matrix M
shown at the bottom right (d).
It is possible that a certain uncovered t-tuple does not fit intoM. Consequently, the flag

variable associated with this t-tuple in � is signed as true so that the Main procedure
knows that such a t-tuple can no longer be compared with rows ofM.Main continues as
long as there are uncovered t-tuples. Table 4 shows part of � after the first iteration. Note
that t-tuples θ13 = {debit, cardC} and θ16 = {credit, cardC} of the function\card interaction
are not inserted intoM (see the values true).
This exception is ilustred in Table 4, with θ13 = {λ, debit, cardC} and θ16 =

{λ, credit, cardC} happens because the tests generated by these t-tuples and the available
rows of the matrix M address t-tuples already covered in �. Assuming that the test con-
sists of the combination of a t-tuple and row 3 of M, only one t-tuple is covered since
there is no more t-tuples to be covered in bank\card and bank\function, as illustrated in
Table 4. However, ζ = 2 is not satisfied and these t-tuples can not be removed from �.
Then it is necessary to recalculate the goals according to the parameter interactions that
have been already addressed.

3.2 TTR: version 1.2

The high-level view of the new version of TTR, 1.2, is in Algorithm 4. This new version
no longer uses the Constructor procedure since t-tuples are generated one at a time as

Table 4 Part of �: unfitness

θi Bank Function Card Flag

13 λ debit cardC true

16 λ credit cardC true

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 14 of 41

Fig. 3 A second running examples: updatemethod

they are reallocated. In other words, there is no more �, a matrix of t-tuples. What we
have now is only ϕ which is a matrix of parameter interactions. TTR 1.2 works as follow:
(i) generates only the parameter interactions (it does not generate the t-tuples yet); (ii)
generates an initial solution, the matrix M; and (iii) the t-tuples are generated from ϕ in
order to get the final solution (M) via theMain procedure.

Algorithm 4 High-level view: TTR 1.2
input: Set of parameters, P; Set of values, V ; Strength, t
output:Matrix,M
1: while ∃ τr | τr ∈ M ∧ ζ > 0 do
2: M ← AddTestCase(P,V , t)
3: [M,ϕ]← Main(M,ϕ, ζ , t)
4: ζ ← calculateZeta(M, t)
5: end while

Let us consider the code in Fig. 3 where parameters and values are given in Table 5
and t = 3. It is a method to update information into a database of a company. TTR
1.2 constructs only parameter interactions according to the strength and stores the
number of corresponding t-tuples (�) in a matrix ϕ. These parameter interactions
are I1 = {status, education, regime, λ, 8}, I2 = {status, education, λ,working_hours, 8}, I3
= {status, λ, regime,working_hours, 8}, and I4 = {λ, education, regime,working_hours, 8},
where the last element of Il is the number of t-tuples � (in all these case Il = 8). Here,
each interaction Il is indeed a sequence because the algorithm needs to know the exact
number of t-tuples and hence position matters. Note that λ is the empty element. No
t-tuple corresponding to any parameters/values interactions is constructed as shown in
Table 6. The calculation of � is simply done by multiplying the number of values of each
parameter in the corresponding interaction.

3.2.1 Initial solution

In this case, the initial solution is no more than the construction of the t-tuples due to
the parameters interactions with greater �, and their transformation into test cases. In
Table 7, the t-tuples of the parameters interaction I1 = {status, education, regime, 8} were
all transformed into test cases and therefore, for this parameters interaction, � becomes
0 and it is no longer considered in the goal (ζ) calculation (Table 8). In fact, we have
4 parameters and t = 3, thus 4 interactions of possible parameters are generated: one

Table 5 Example of parameters and values: Fig. 3

Parameter Values

status active, retired

education undergraduate, graduate

regime partial, full

working_hours afternoon,morning

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 15 of 41

Table 6Matrix ϕ for the example of Fig. 3

Interation of parameters Status Education Regime Working_hours �

I1 x x x λ 8

I2 x x λ x 8

I3 x λ x x 8

I4 λ x x x 8

is already covered remaining 3 parameter interactions (I2, I3, I4) to be addressed. This
justifies ζ = 3 (Table 7).

3.2.2 Themain procedure

The new Main procedure is presented in Algorithm 5. After calculating the parameters
interactions, �, the initial solution, and the goals of all test cases of M, Main selects
the parameter interaction that has the highest amount of uncovered t-tuples (line 2) and
constructs t-tuples so that they can be reallocated. However, they will be reallocated grad-
ually, one by one, as goals are reached (line 4 to 13). The procedure combines the t-tuples
with the test cases ofM in order to match them.

Algorithm 5 TheMain procedure: TTR 1.2
input: ϕ|I|×(|P|+1) = {Il | l = 1...m},MN×(|P|+1) = {τr | r = 1..N}
output:M|n|×(|P|+1) = {τr | r = 1..n}
1: while ϕ �= ∅ do
2: let Il ∈ ϕ (Select the parameter interaction that has the largest amount of

uncovered t-tuples)
3: S ← buildTuples(Il)
4: let θi ⊂ S
5: while �Il �= ∅ do
6: for all τr ⊂ M do
7: τr ← τr ⊕ θi (matrixM update)
8: if goal(τr) then (Verify the test case τr which has ζ uncovered t-tuples)
9: S ← S ◦ θi

10: for all Il ⊂ ϕ ∧ Il ⊂ τr do
11: let � ∈ Il,�
12: � ← � - 1
13: end for
14: else
15: τr ← τr � θi (matrixM update)
16: end if
17: end for
18: mark(θi) (flag is changed to true)
19: end while
20: ϕ ← ϕ ◦ Il
21: end while

Let us take the second running example (Fig. 3). The parameters interaction with the
highest amount of non-addressed t-tuples is I2 = {status, education, λ,working_hours, 8}
(� = 8; Table 8 after the initial solution): all t-tuples of this interaction are generated and

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 16 of 41

Table 7 InitialM for the example of Fig. 3

Status Education Regime Working_hours ζ

active undergraduate partial λ 3

active graduate partial λ 3

retired undergraduate partial λ 3

retired graduate partial λ 3

active undergraduate full λ 3

active graduate full λ 3

retired undergraduate full λ 3

retired graduate full λ 3

stored in a sequence S (line 3). The first t-tuple, θ1 = {active,undergraduate, λ, afternoon},
is combined with each test case, τr in M (line 7). The t-tuple in question fits test case 1,
τ1. At that moment, it is verified whether the t-tuple θi makes the τr test reach its goal.
This control is done through the goal() function that receives the τr test case and then
is broken in t-tuples (line 8) according to the parameters interactions that have � other
than 0. For example, the test case τ1 = {active,undergraduate, partial, afternoon} is bro-
ken in t-tuples: {{active,undergraduate, partial, λ}, {active,undergraduate, λ, afternoon},
{active, λ, partial, afternoon}, {λ,undergraduate, partial, afternoon}}. It is then verified
how many of these t-tuples do not exist in M and, if this amount equals the respective ζ ,
θi is permanently stored in M and a unit is taken from the value of � of each of the fac-
tor interactions that have t-tuples covered by this test case (line 12) because this keeps if
the control of the quantity of t-tuples that still have to be covered. Since the matrix M is
being traversed in the loop (line 6), it will be updated every time a t-tuple is combined
with some of its test cases (line 7).
This step is repeated for all t-tuples. Each time a t-tuple is reallocated from S into M,

the goals are recalculated. For example, when the matrixM permanently receives the 4th
t-tuple, the test cases that become complete (with a value for each parameter) have ζ = 0
while the others still have ζ = 3 (Table 9).
All I2 t-tuples are reallocated from S in order to achieve the goal of all M test cases

resulting the final test suite presented in Table 10. In fact, the Main procedure does not
construct new t-tuples from another parameters interaction if the current one is not zero:
if the parameters interaction I2 (selected due to the greatest �) still has t-tuples, Main
will not select another parameters interaction. To do this, the goal of the test cases will be
decreased by one, until all t-tuples of the interaction of parameters I2 make the test cases
to match ζ .

4 Controlled experiment 1: TTR 1.1× TTR 1.2
This section presents a controlled experiment where we compare versions 1.1 and 1.2 of
TTR in order to realize whether there is significant difference between both versions of

Table 8Matrix ϕ for the example of Fig. 3: after the initial solution

Interation of parameters Status Education Regime Working_hours �

I1 x x x λ 0

I2 x x λ x 8

I3 x λ x x 8

I4 λ x x x 8

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 17 of 41

Table 9 Intermediate matrixM for the example of Fig. 3

Status Education Regime Working_hours ζ

active undergraduate partial afternoon 0

active graduate partial λ 3

retired undergraduate partial λ 3

retired graduate partial afternoon 0

active undergraduate full λ 3

active graduate full afternoon 0

retired undergraduate full afternoon 0

retired graduate full λ 3

our algorithm. We accomplished such an experiment where we jointly considered cost
and efficiency in a multi-objective perspective.

4.1 Definition and context

The primary aim of this study is to evaluate cost and efficiency related to CIT test case
generation via versions 1.1 and 1.2 of the TTR algorithm (both implemented in Java). The
rationale is to perceive whether we have significant differences between the two versions
of our algorithm.
Regarding the metrics, cost refers to the size of the test suites while efficiency refers

to the time to generate the test suites. Although the size of the test suite is used as
an indicator of cost, it does not necessarily mean that test execution cost is always less
for smaller test suites. However, we assume that this relationship (higher size of test
suite means higher execution cost) is generally valid. We should also emphasize that
the time we addressed is not the time to run the test suites derived from each algo-
rithm but rather the time to generate them. We jointly analyzed cost and efficiency in a
multi-objective way.
The set of samples, i.e. the subjects, are formed by instances that were submitted to both

versions of TTR to generate the test suites. We randomly chose 80 test instances/samples
(composed of parameters and values) with the strength, t, ranging from 2 to 6. Table 11
shows part of the 80 instances/samples used in this study. Full data obtained in this
experiment are presented in (Balera and Santiago Júnior 2017).
It is important tomention how each instance/sample can be interpreted. Let us consider

instance i = 1 in Table 11:

2141513161, t = 2.

Table 10 Final matrixM for the example of Fig. 3

Status Education Regime Working_hours ζ

active undergraduate partial afternoon 0

active graduate partial morning 0

retired undergraduate partial morning 0

retired graduate partial afternoon 0

active undergraduate full morning 0

active graduate full afternoon 0

retired undergraduate full afternoon 0

retired graduate full morning 0

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 18 of 41

Table 11 Samples for the controlled experiment: Instances. Caption: val = value; par = parameter

i Strength valpar

1 2 2141513161

2 2 3141216121

3 2 5141413121

4 2 2151516131

5 2 6161514121

6 2 7181615121

7 3 3121214151

8 3 413161212121

9 3 715151612121

10 3 8131215141

...

21 5 212131514161

22 5 312121615151

23 5 613141412121

24 5 313131415161

25 6 51513131212171

26 6 31715121414121

27 6 61212141314121

28 6 31413131212141

29 6 61513121214131

30 6 21213141313121

...

41 4 314151616171

42 4 212131415131

43 5 214191913141

44 5 313121415161

45 5 314121213131

46 5 413121214151

47 5 715131312141

48 2 6171214131714191

49 2 2121213141212131

50 2 9181214151617121

...

61 4 2121213141212131

62 4 212131314141

63 5 2121213141212131

64 5 6121614151

65 6 212131314141

66 5 213151617181

67 5 715141313191

68 5 212141313121

69 5 415161718191

70 5 21517131314131

...

80 3 71312121

In the context of unit test case generation for programs developed according to the
Object-Oriented Programming (OOP) paradigm, this instance can be used to generate
test cases for a class that has one attribute (parameter) which can take 2 values (21), 1
attribute that can take 4 values (41), another attribute that can take 5 values (51), · · · , 1

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 19 of 41

attribute that can take 6 values (61). In the system and acceptance testing context, this
same sample can be used to identify test scenarios (test objectives) in a model-based test
case generation approach (Santiago Júnior 2011; Santiago Júnior and Vijaykumar 2012).
In both cases, the test suites must meet the criteria of pairwise testing (t = 2) where each
combination of 2 values of all parameters must be covered. Note that these samples were
randomly selected and they cover a wide range of combinations of parameters, values, and
strengths to be selected for very simple but also more complex case studies with different
testing levels (unit, system, acceptance, etc.).

4.2 Hypotheses and variables

We defined two hypotheses as shown below:

• Null Hypothesis, H0.1 - There is no difference regarding cost-efficiency between
TTR 1.1 and TTR 1.2;

• Alternative Hypothesis, H1.1 - There is difference regarding cost-efficiency
between TTR 1.1 and TTR 1.2.

Regarding the variables involved in this experiment, we can highlight the independent
and dependent variables (Wohlin et al. 2012). The first type are those that can be manipu-
lated or controlled during the process of trial and define the causes of the hypotheses. For
this experiment, we identified the algorithm/tool for CIT test case generation. The depen-
dent variables allow us to observe the result of manipulation of the independent ones. For
this study, we identified the number of generated test cases and the time to generate each
set of test cases and we jointly considered them.

4.3 Description of the experiment

The experiment was conducted by the researchers who defined it. We relied on the
experimentation process proposed in (Wohlin et al. 2012), using the R programming
language version 3.2.2 (Kohl 2015). Both algorithms/tools (TTR 1.1, TTR 1.2) were
subjected to each one of the 80 test instances (see Table 11), one at a time. The output
of each algorithm/tool, with the number of test cases and the time to generate them,
was recorded.
To measure cost, we simply verified the number of generated test cases, i.e. the number

of rows of the final matrix M, for each instance/sample. The efficiency measurement
required us to instrument each one of the implemented versions of TTR and measure
the computer current time before and after the execution of each algorithm. In all cases,
we used a computer with an Intel Core(TM) i7-4790 CPU @ 3.60 GHz processor, 8 GB
of RAM, running Ubuntu 14.04 LTS (Trusty Tahr) 64-bit operating system. The goal
of this second analysis is to provide an empirical evaluation of the time performance of
the algorithms.
To perform the multi-objective cost-efficiency evaluation, we followed two steps.

First, we transformed the cost-efficiency (two-dimensional) representation into a one-
dimensional one. Thus, in a second step, we used statistical tests, such as the t-test or the
nonparametric Wilcoxon test (Signed Rank) (Kohl 2015), to compare the two test suites
(TTR 1.1 and TTR 1.2). To address the nondeterminism of the algorithms/tools, related
to the the ordering input of parameters and values, we generated test cases with 5 varia-
tions in the order of parameters and values, and took into account the average of these 5

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 20 of 41

assessments for the statistical tests. We then got points (cAi, tAi) that represent the aver-
age cost (cAi) and average time (tAi) of the algorithms A (TTR 1.1, TTR 1.2) for each
instance i (1 ≤ i ≤ 80).
We then determined an optimal point in a two-dimensional space, the point (0,0). This

point implies a cost closer to 0 and requires a time closer to 0. The closest condition is
because an algorithm is not expected to generate a test suite with, exactly, 0 test case or
it does require 0 unit of time to generate the set of test cases. We then used a measure of
distance, such as the Euclidean one, to measure the distance from the optimal point (0,0)
to (cAi, tAi). Thus, each algorithm is then represented by a one-dimensional set,D, where
each di ∈ D is the Euclidean distance between (0,0) and (cAi, tAi) for every instance i.
We selected the Euclidean distance because it is one of the most used similarity distance
measure. In software testing, Euclidean distance has been used as a quality indicator
in multi-objective test case/data generation (Filho and Vergilio 2015; Santiago Júnior
and Silva 2017), to support the automation of test oracles for complex output domains
(web applications (Delamaro et al. 2013), text-to-speech systems (Oliveira 2017)), and
many others.
Based on this cost-efficiency one-dimensional representation, we relied on appropri-

ate statistical evaluation to check data normality. Verification of normality was done in
three steps: (i) by using the Shapiro-Wilk test (Shapiro and Wilk 1965) with a signifi-
cance level α = 0.05; (ii) by checking the skewness of the frequency distribution (in this
case, − 0.1 ≤ skewness ≤ 0.1 so that the data can be considered as normally distributed);
and (iii) by using a graphical verification bymeans of Q-Q plot (Kohl 2015) and histogram.
Thus, we believe we have greater confidence in this conclusion on data normality com-
pared to an approach that is based only on the Shapiro-Wilk test considering the effects
of polarization due to the length of the samples.
If we concluded that data came from a normally distributed population, then the

paired, two-sided t-test was applied with α = 0.05. Otherwise, we applied the nonpara-
metric paired, two-sided Wilcoxon test (Signed Rank) (Kohl 2015) with α = 0.05, too.
However, if the samples presented ties, we applied a variation of the Wilcoxon test, the
Asymptotic paired, two-sided Wilcoxon (Signed Rank) (Kohl 2015), suitable to treat ties,
with significance level α = 0.05.
In order to reject the Null Hypothesis, H0.1, we checked whether p − value <

0.05 (t-test) or whether both p − value < 0.05 and |z| > 1.96 (Wilcoxon) where
z is the z-score. If H0.1 was rejected, we observed the average of all Euclidean dis-
tances (80) due to each algorithm. The algorithm that presented the lowest average
of Euclidean distances was the one chosen as the most adequate. If H0.1 could not
be rejected, then the conclusion was that no statistical difference existed between
both algorithms.

5 Results and discussion
In this section, we present the results of this first controlled experiment. Based on
the cost-efficiency one-dimensional representation (Section 4.3), we considered four
evaluation classes as follows:

• All strenghts. In this case, all 80 instances/samples (Table 11) with all strengths (2, 3,
4, 5, and 6) were taken into account. Our idea here is trying to perceive the

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 21 of 41

cost-efficiency performance of both algorithms in a context where several different
strengths are selected to generate a test suite;

• Low strengths. In this case, we selected only the samples with strength equals to 2.
Our aim is to note how the algorithms perform for low strengths;

• Medium strengths. By selecting samples with strength equals to 3 or 4, we want to
evaluate an intermediate strength context;

• High strengths. We aim to assess the performance for higher strengths, i.e. t = 5 or 6.

Table 12 presents the Euclidean distances of part of the 80 samples (all strenghts class
only; complete data are in (Balera and Santiago Júnior 2017)) as well as the average values,
x, of such distances. We checked data normality where Table 13 presents the p− value, p,
due to the Shapiro-Wilk test and the skewness. Note that this table shows p and skewness
of all four classes above (all, low, medium, and high strenghts). Moreover Sol 1 is TTR
1.1 and Sol 2 is TTR 1.2. Figures 4 and 5 present the Q-Q plots and histograms for all
strengths, Figs. 6 and 7 present the Q-Q plots and histograms for lower strengths, Figs. 8
and 9 present the Q-Q plots and histograms for medium strengths, and Figs. 10 and 11
present the Q-Q plots and histograms for higher strengths, respectively.
We can clearly see that all these data did not come from a normally distribution pop-

ulation because p < 0.05 and the skewness is far from 0. Moreover, Q-Q plots and
histograms reassure this conclusion. Hence, we used the nonparametric paired, two-
sided Wilcoxon test (Signed Rank) or its variation (Asymptotic) when ties were detected.
Table 14 presents the p − value, p, |z|, and additional information for classes all and low
strengths while Table 15 shows the results for medium and high strengths.
Based on Tables 14 and 15, we could not reject H0.1 (no difference) for all strengths,

but we could do it for the other evaluation classes and hence accept the Alternative
Hypothesis, H1.1. As we have previously pointed out, when there is difference regarding
cost-efficiency, we examine the average values of the Euclidean distances: the smaller the
better. TTR 1.1 is better, in terms of cost-efficiency, than TTR 1.2 for lower strengths
(t = 2). However, formedium (t = 3, 4) and higher strenghts (t = 5, 6), TTR 1.2 surpassed
TTR 1.1. This makes sense because in TTR 1.2 we do not generate, at the beginning, the
matrix of t-tuples and hence we expect that the last version of our algorithm can handle
properly higher strengths.
Therefore, even if we did not find statistical difference with all the strengths and TTR

1.1 was the best for lower strenghts, we decided to select TTR 1.2, to compare with the
other solutions for unconstrained CIT test case generation, because TTR 1.2 performed
better than TTR 1.1 for medium and higher strengths.

5.1 Validity

The conclusion validity has to do with how sure we are that the treatment we used in an
experiment is really related to the actual observed outcome (Wohlin et al. 2012). One of
the threats to the conclusion validity is the reliability of the measures (Campanha et al.
2010).We automatically obtained themeasures via the implementations of the algorithms
and hence we believe that replication of this study by other researchers will produce sim-
ilar results. Even if other researchers may get different absolute results, especially related
to the time to generate the test suites simply because such results depend on the com-
puter configuration (processor, memory, operating system), we dot not expect a different

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 22 of 41

Table 12 Experiment 1 - Results of the analysis of Euclidean Distance (all strengths)

i Euclidean Distance – TTR 1.1 Euclidean Distance – TTR 1.2

1 3.488323e+01 1.019155e+02

2 2.615645e+01 3.216458e+01

3 2.044798e+01 3.473557e+01

4 3.063201e+01 4.143670e+01

5 3.722633e+01 1.218346e+02

6 5.678345e+01 1.264736e+02

7 6.604362e+01 1.031089e+02

8 1.129060e+07 7.720515e+02

9 1.299138e+03 7.355677e+03

10 1.799441e+02 4.758598e+02

.

20 1.882607e+05 2.061971e+04

21 6.017033e+03 4.194014e+03

22 1.347988e+04 7.574538e+03

23 2.958807e+03 1.008311e+03

24 1.623848e+04 3.928049e+03

25 9.726865e+05 1.317154e+05

26 6.118455e+05 1.196950e+05

27 4.312599e+04 2.337230e+04

28 9.039640e+03 3.555690e+03

29 2.570393e+05 4.135795e+04

30 1.970342e+03 1.056320e+03

.

40 2.473112e+03 9.169621e+03

41 1.286935e+05 3.101953e+05

42 1.097300e+03 3.468359e+03

43 7.759235e+05 7.904737e+04

44 2.509135e+04 4.500654e+03

45 2.997279e+02 2.459155e+02

46 1.487948e+03 7.328219e+02

47 1.984648e+04 3.579825e+03

48 8.455744e+01 1.248893e+03

49 1.644384e+01 2.957483e+02

50 1.428690e+02 1.321925e+03

.

60 1.215468e+05 5.199665e+05

61 2.720418e+04 8.558826e+04

62 7.826624e+02 2.312496e+03

63 9.568609e+04 2.675675e+05

64 1.440006e+03 1.440000e+03

65 5.760009e+02 5.760009e+02

66 1.688547e+06 1.320639e+05

67 1.147371e+06 1.475662e+05

68 1.683444e+02 1.554663e+02

69 2.271243e+02 4.574975e+06

70 1.087280e+04 4.101938e+05

.

80 4.202333e+01 4.402227e+01

x̄ 323991 111732.4

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 23 of 41

Table 13 Experiment 1 - Results of the analysis of data normality

Comparison Strength p - Sol 1 skewness - Sol 1 p - Sol 2 skewness - Sol 2

TTR 1.1 x TTR 1.2 All 2.2e-16 6.523523 2.2e-16 8.186584

TTR 1.1 x TTR 1.2 Low (2) 5.65E-06 3.952605 5.03E-06 4.000011

TTR 1.1 x TTR 1.2 Medium (3, 4) 8.47E-08 4.050349 1.03E-04 2.247599

TTR 1.1 x TTR 1.2 High (5,6) 1.50E-04 1.920776 2.99E-08 5.084482

conclusion validity. Moreover, we relied on adequate statistical methods in order to rea-
son about data normality and whether we did really find statistical difference between
TTR 1.1 and TTR 1.2. Hence, our study has a high conclusion validity.
The internal validity aims to analyze whether the treatment actually caused the out-

come (result). Hence, we need to be sure whether other parameters have not caused the
outcome, parameters that have not been controlled or measured. There are many threats
to internal validity such as testing effects (measuring the participants repeatedly), history
(experiment external events or between repeatedmeasures of the dependent variable may
influence the responses of the subjects, e.g. interruption of the treatment), instrument
change, maturation (participants might mature during the study or between measure-
ments), selection bias (differences between groups), etc. Note that the participants of our
experiment are randomly samples composed of parameters, values, and strengths. Hence,
we neither had any human/nature/social parameter nor unanticipated events to interrup-
tion the collection of the measures once started to pose an internal validity. Hence, we
claim that our experiment has a high internal validity.
In the construct validity, the goal is to ensure that the treatment reflects the construc-

tion of the cause, and the result the construction of the effect. This is also high because
we used the implementations of TTR 1.1 and TTR 1.2 to assess the cause, and the results,
supported by the decision-making procedure via statistical tests, clearly provided the
basis for the decision to be made between both algorithms.
Threats to external validity compromise the confidence in asserting that the results of

the study can be generalized to and between individuals, settings, and under the temporal
perspective. Basically, we can divide threats to external validity in two categories: threats
to population and ecological threats.

Fig. 4 Experiment 1: Q-Q plots. a TTR1.1; b TTR 1.2 - All Strengths

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 24 of 41

Fig. 5 Experiment 1: Histograms. a TTR1.1; b TTR 1.2 - All Strengths

Fig. 6 Experiment 1: Q-Q plots. a TTR1.1; b TTR 1.2 - 2 Strength

Fig. 7 Experiment 1: Histograms. a TTR1.1; b TTR 1.2 - 2 Strength

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 25 of 41

Fig. 8 Experiment 1: Q-Q plots. a TTR1.1; b TTR 1.2 - 3 and 4 Strengths

Fig. 9 Experiment 1: Histograms. a TTR1.1; b TTR 1.2 - 3 and 4 Strengths

Fig. 10 Experiment 1: Q-Q plots. a TTR1.1; b TTR 1.2 - 5 and 6 Strengths

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 26 of 41

Fig. 11 Experiment 1: Histograms. a TTR1.1; b TTR 1.2 - 5 and 6 Strengths

Threats to population refer to how significant is the selected samples of the population.
For our study, the ranges of strengths, parameters, and values are the determining points
for this threat. Note that for such a study, the possibility of combination of strengths
and parameters/values is literally infinite. However, we believe that our choice of the set
of samples is significant (80) with strengths spanning from 2 to 6. Also, recall that the
samples were determined completely randomly (by combining parameters, values, and
strengths), as well as the input order of parameters and values was also random (for
the 5 executions addressing nondeterminism). With this, we guarantee one of the basic
principles of the sampling process which is the randomness to avoid selection bias.
Ecological threats refer to the degree to which the results may be generalized between

different configurations. Pre-test effects, Post-test effects, and the Hawthorne effects (due
to the participants simply feel stimulated by knowing that they are participating in an
innovative experiment) are some of these threats. The participants in our experiment are
the instances/samples composed of parameters, values and strengths and, therefore, this
type of threat does not apply to our case.

6 Controlled experiment 2: TTR 1.2× other solutions
In this section, we present a second controlled experiment where we compare TTR 1.2
with five other significant greedy approaches for unconstrained CIT test case genera-
tion. Many characteristics of this second controlled experiment ressemble the first one
(Section 4). We emphasize here the main differences and point to this previous section
whenever necessary.

6.1 Definition and context

The aim of this experiment is to compare TTR 1.2 with five other greedy algorithms/tools
for unconstrained CIT: IPOG-F (Forbes et al. 2008), jenny (Jenkins 2016), IPO-TConfig
(Williams 2000), PICT (Czerwonka 2006), and ACTS (Yu et al. 2013). These algo-
rithms/tools have been selected due to their relevance for unconstrained CIT via greedy
strategies.
The IPO algorithm (Lei and Tai 1998) is the basis for several other solutions such

as IPOG, IPOG-D (Lei et al. 2007), IPOG-F, IPOG-F2 (Forbes et al. 2008), IPOG-C

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 27 of 41

Table 14 Experiment 1 - Results of the Wilcoxon test

Comparison
Strength

All Low

p |z| Reject H0.x? Winner p |z| Reject H0.x? Winner

TTR 1.1 x TTR 1.2 0.3152 1.0067 No - 9.54E-04 4.0145 Yes TTR 1.1

(Yu et al. 2013), IPO-TConfig (Williams 2000), ACTS (where several versions of IPO are
implemented) (Yu et al. 2013), and CitLab (Cavalgna et al. 2013). Thus, we considered
three of its variations: own our implementation of IPOG-F (in Java), IPO-TConfig (in
Java), and IPOG-F2 implemented within ACTS (in Java). Note that ACTS is probably
one of the most popular CIT tools where not only academia but industry professionals
have been using it for various purposes (NIST National Institute of Standards and Tech-
nology 2015). A tool implemented in C, jenny (Jenkins 2016), has been used in informal
(Pairwise 2017) and more formal (Segall et al. 2011) CIT comparisons. PICT (in C++) can
be regarded as one baseline greedy tool where other tools have been created based on it
(PictMaster 2017).
Like in Section 4, the metrics are cost, measured as the size of the test suites, and effi-

ciency which again refers to the time to generate them. However, to proper measure the
time to generate the test suites, we should have access to the source code of the tools in
order to instrument them and get more precise and accurate measures. We had only the
code of the implementation of TTR 1.2, our own implementation of IPOG-F, and jenny.
Thus, we could notmeasure the time to generate the test cases due to IPO-TConfig, PICT,
and ACTS (IPOG-F2). Moreover, note that the time measurements may be influenced by
different programming languages within the cost-efficiency evaluation (TTR 1.2, IPOG-
F, and jenny). In this case, we implemented TTR 1.2 not only in Java but also in C too in
order to address a possible evaluation bias in the time measures when comparing TTR
1.2 against the other solutions. To sum up, we decided to perform two evaluations:

• Cost-Efficiency (multi-objective). Here, we focused on TTR 1.2, IPOG-F, and jenny
since these were the solutions we had the source code and could properly measure
the time to generate the test suites. Hence, we compared TTR 1.2 (in Java) with
IPOG-F (in Java), and TTR 1.2 (in C) with jenny (in C);

• Cost (single objective). In this case, we compared TTR 1.2 (only in Java since
efficiency is not considered here and thus time does not matter) with PICT,
IPO-TConfig, and ACTS.

With respect to the subjects, the same 80 participants of Section 4 were used (Table 11
and full data are in (Balera and Santiago Júnior 2017)).

6.2 Hypotheses and variables

Hypotheses of this second experiment are:

Table 15 Experiment 1 - Results of the Wilcoxon test

Comparison
Strength

Medium High

p |z| Reject H0.x? Winner p |z| Reject H0.x? Winner

TTR 1.1 x TTR 1.2 0.000242 3.4705 Yes TTR 1.2 0.000809 3.2110 Yes TTR 1.2

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 28 of 41

• Null Hypothesis, H0.2 - There is no difference regarding cost-efficiency between
TTR 1.2 (in Java) and IPOG-F (in Java);

• Alternative Hypothesis, H1.2 - There is difference regarding cost-efficiency
between TTR 1.2 (in Java) and IPOG-F (in Java);

• Null Hypothesis, H0.3 - There is no difference regarding cost-efficiency between
TTR 1.2 (in C) and jenny (in C);

• Alternative Hypothesis, H1.3 - There is difference regarding cost-efficiency
between TTR 1.2 (in C) and jenny (in C);

• Null Hypothesis, H0.4 - There is no difference regarding cost between TTR 1.2 (in
Java) and PICT;

• Alternative Hypothesis, H1.4 - There is difference regarding cost between TTR 1.2
(in Java) and PICT;

• Null Hypothesis, H0.5 - There is no difference regarding cost between TTR 1.2 (in
Java) and IPO-TConfig;

• Alternative Hypothesis, H1.5 - There is difference regarding cost between TTR 1.2
(in Java) and IPO-TConfig;

• Null Hypothesis, H0.6 - There is no difference regarding cost between TTR 1.2 (in
Java) and ACTS;

• Alternative Hypothesis, H1.6 - There is difference regarding cost between TTR 1.2
(in Java) and ACTS.

The independent variable is the algorithm/tool for CIT test case generation for both
assessments (cost-efficiency, cost). The dependent variables are the number of generated
test cases (cost evaluation), and this number of test cases in addition to the time to gen-
erate each set of test cases in a multi-objective perspective as in the previous section
(cost-efficiency evaluation).

6.3 Description of the experiment

The general description of both evaluations (cost-efficiency, cost) of this second study is
basically the same as shown in Section 4. Algorithms/tools were subjected to each one of
the 80 test instances, one at a time, and the outcome was recorded. Cost is the number of
generated test cases, and efficiency was obtained via instrumentation of the source code
with the same computer previously mentioned.
For the multi-objective cost-efficiency evaluation (IPOG-F, jenny), we followed the

same two steps previously mentioned: transformation of the cost-efficiency (two-
dimensional) representation into a one-dimensional one and usage of statistical tests,
such as the t-test or the nonparametric Wilcoxon test (Signed Rank) (Kohl 2015),
to compare each pair of test suites (TTR 1.2 and other). To address the nonde-
terminism of the algorithms/tools, we again generated test cases with 5 variations
in the order of parameters and values, and took into account the average of these
5 assessments for the statistical tests. Hence, we obtained the points (cAi, tAi) and
calculated the Euclidean distances from the optimal point (0,0) to (cAi, tAi). Then,
we checked data normality and, based on the result of normality, we used the the
paired, two-sided t-test with α = 0.05 (normal data) or the nonparametric paired,
two-sided Wilcoxon test (Signed Rank) or its Asymptotic version with α = 0.05
(non-normal data).

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 29 of 41

For the evaluation of cost (PICT, IPO-TConfig, ACTS), we did not need to transform
from two into one dimension because it is a single dimension problem. The optimal point
here is the value 0 and the Euclidean distance from 0 to cAi (average cost of the algorithms
A for each instance i, 1 ≤ i ≤ 80) is |0 − cAi| = |cAi|. We then performed the statistical
evaluation just as in the multi-objective case.

6.4 Results, discussion and validity

In this section, we present the outcomes of both assessments of our second controlled
experiment. Like in the first controlled experiment, to compare TTR 1.2 with IPOG-F,
jenny, PICT, IPO-TConfig, and ACTS, we considered four evaluation classes: all, low,
medium, and high strengths. Table 16 presents the Euclidean distances of part of the
80 samples (all strenghts class only; complete data are in (Balera and Santiago Júnior
2017)) and the average values, x. Table 17 presents results of the analysis of data normal-
ity (p − value (p) and skewness) where we can see all evaluation classes. In this table, Sol
1 is the other solution and Sol 2 is TTR 1.2. Figures 12 and 13 present the Q-Q plots
and histograms for all strengths, Figs. 14 and 15 present the Q-Q plots and histograms
for lower strengths, Figs. 16 and 17 present the Q-Q plots and histograms for medium
strengths, and Figs. 18 and 19 present the Q-Q plots and histograms for higher strengths,
respectively.
Again we note that all these data did not come from a normally distribution popula-

tion. The nonparametric paired, two-sided Wilcoxon test (Signed Rank) or its variation
(Asymptotic) where then applied. Table 18 presents the p − value, p, |z|, and additional
information for classes all and low strengths while Table 19 shows the results for medium
and high strengths. We should mention that in 23 instances (3 with strength = 4, 12 with
strength = 5, and 8 with strength = 6) jenny was not able to generate test cases, in some
input order of the parameters, due to out of memory issue. Specifically, jenny failed to
finish when the test suite size was more than 1,000 test cases. Similar outcomes happened
in IPO-TConfig: even if we waited for about 6 hours, it did not generate anything out
and hence the tool did not create test cases in 20 instances (3 with strength = 4, 9 with
strength = 5, and 8 with strength = 6). In these cases, we adopted a policy penalty: in
order to consider these unsuccessful participants, we doubled the respective measure we
obtained (average value of the Euclidean distance) due to TTR 1.2 to be the one of jenny
and IPO-TConfig. We believe that this is a fair decision because TTR 1.2 could finish
generating test cases for all 80 instances.
As shown in Table 18, for class all strengths, two Null Hypotheses were rejected: H0.2

(TTR 1.2 × IPOG-F) and H0.5 (TTR 1.2 × IPO-TConfig). TTR 1.2 was better (lowest
average value of Euclidean distances) than IPO-TConfig but it was worse than IPOG-F.
There is no difference between TTR 1.2 and jenny, PICT, and ACTS.
As in controlled experiment 1, TTR 1.2 did not demonstrate good performance for

low strengths. There is no difference between TTR 1.2 and IPO-TConfig. In all the other
comparisons, the Null Hypothesis was rejected and TTR 1.2 was worse than the other
solutions. This can be attributed to the fact that the algorithm focuses on test cases that
have parameter interactions that generate a large amount of t-tuples, which is usually
seen in test cases with larger strenghts. This can be verified by the fact that the algorithm
gives priority to just covering the interaction of parameters with the greatest amount of
t-tuples.

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 30 of 41

Table 16 Experiment 2 - Results of the analysis of Euclidean Distance (all strengths)

i Euclidean Euclidean Euclidean Euclidean Euclidean
Distance – ACTS Distance – IPOGF Distance – jenny Distance – PICT Distance - IPO-TConfig

1 30.2 34.25376 3.126339e+01 30.0 29.4

2 24.0 24.45240 2.403032e+01 24.0 24.0

3 20.0 23.64149 2.302671e+01 22.0 21.2

4 30.0 36.82662 3.263703e+01 33.0 32.0

5 36.0 41.68117 3.824911e+01 36.0 37.2

6 56.0 64.99261 5.747287e+01 59.0 58.4

7 60.4 63.10277 6.262871e+01 60.0 65.0

8 73.8 88.55123 7.726934e+01 73.0 75.4

9 225.2 281.81128 2.491693e+02 244.0 238.0

10 160.2 151.87482 1.640817e+02 162.0 164.0

.

20 2523.0 117983.01608 4.123941e+04 2530.0 2590.8

21 768.8 1070.65296 8.145790e+02 758.0 764.8

22 961.0 1163.62637 1.009413e+03 934.0 957.0

23 614.2 799.74498 6.468449e+02 603.0 640.8

24 1274.8 3309.79266 7.856099e+03 1271.0 2268.0

25 3414.4 140138.76666 2.634307e+05 3374.0 6308.0

26 3645.4 133219.16188 2.393899e+05 3583.0 4237.6

27 1311.0 5700.77912 4.674461e+04 1318.0 2324.0

28 943.8 1249.43131 7.111379e+03 940.0 1620.0

29 2348.8 13992.60905 8.271590e+04 2303.0 4324.0

30 487.2 556.19741 5.392609e+02 504.0 451.2

.

40 308.2 344.40546 3.160750e+02 303.0 317.0

41 1310.6 5352.50891 6.203907e+05 1324.0 2698.8

42 188.4 213.49005 1.940438e+02 187.0 210.4

43 3893.6 301379.27998 1.580947e+05 3900.0 7780.0

44 1082.4 4493.69065 9.001308e+03 1094.0 2488.8

45 228.2 230.91280 2.512118e+02 230.0 227.0

46 513.6 554.51922 5.447095e+02 506.0 536.6

47 1262.2 1672.73134 7.159649e+03 1275.0 2524.0

48 64.4 86.16728 7.211915e+01 68.0 71.6

49 12.8 17.02939 1.540589e+01 13.0 15.0

50 72.2 97.43100 7.694289e+01 74.0 76.6

.

60 235.0 1038.16209 2.537152e+02 236.0 255.6

61 112.4 298.63081 1.081020e+02 106.0 108.2

62 151.0 169.40106 1.593580e+02 149.0 168.0

63 239.0 1093.02578 2.375884e+02 234.0 234.0

64 1440.0 1440.79978 2.880001e+03 1440.0 1440.0

65 576.0 576.07347 5.765385e+02 523.4 576.0

66 5045.8 398648.10830 2.641278e+05 5056.0 10084.0

67 4235.0 22245.98615 2.951324e+05 4166.0 7696.0

68 160.6 146.47266 1.741181e+02 162.0 144.0

69 15632.6 177.68331 9.149951e+06 15743.0 322.0

70 1566.6 771.97049 8.203877e+05 1565.0 3049.6

.

80 42.4 44.41126 4.600265e+01 44.0 43.0

x̄ 962.485 21781.67 172885.3 958.88 1290.382

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 31 of 41

Table 17 Experiment 2 - Results of the analysis of data normality

Comparison Strength p - Sol 1 skewness - Sol 1 p - Sol 2 skewness - Sol 2

IPOG-F x TTR 1.2 All 2.2E-16 3.821529 2.2E-16 8.186584

jenny x TTR 1.2 All < 2.2E-16 6.215192 < 2.2E-16 5.392207

PICT x TTR 1.2 All 1.28E-15 5.195747 5.87E-9 2.116826

IPO-TConfig x TTR 1.2 All 6.95E-13 2.238054 5.87E-9 2.115547

ACTS x TTR 1.2 All 1.46E-15 5.134732 5.87E-9 2.116826

IPOG-F x TTR 1.2 Low (2) 1.53E-02 2.528968 5.03E-06 4.000011

jenny x TTR 1.2 Low (2) 0.03384 0.9001327 9.09E-06 3.742379

PICT x TTR 1.2 Low (2) 0.03585 0.9637761 0.009991 0.9031568

IPO-TConfig x TTR 1.2 Low (2) 0.03183 0.8693103 0.005334 1.138218

ACTS x TTR 1.2 Low (2) 0.02786 1.002096 0.009991 0.9031568

IPOG-F x TTR 1.2 Medium (3 and 4) 3.17E-07 4.418432 1.03E-04 2.247599

jenny x TTR 1.2 Medium (3 and 4) 4.30E-07 2.746003 9.73E-05 2.818052

PICT x TTR 1.2 Medium (3 and 4) 1.06E-02 1.729118 1.3E-05 1.696949

IPO-TConfig x TTR 1.2 Medium (3 and 4) 6.35E-05 2.006703 1.3E-05 1.696949

ACTS x TTR 1.2 Medium (3 and 4) 1.33E-02 1.688993 1.3E-05 1.696949

IPOG-F x TTR 1.2 High (5 and 6) 5.29E-8 1.965489 2.99E-008 5.084482

jenny x TTR 1.2 High (5 and 6) 1.26E-06 3.877021 2.30E-11 3.821616

PICT x TTR 1.2 High (5 and 6) 6.66E-8 3.48041 0.001581 0.9643054

IPO-TConfig x TTR 1.2 High (5 and 6) 0.0003957 1.049076 0.001581 0.9643054

ACTS x TTR 1.2 High (5 and 6) 7.75E-005 3.439773 0.001581 0.9643054

For medium strengths, TTR 1.2 had alternate results. While the Null Hypothesis H0.6
(TTR 1.2×ACTS) could not be rejected and our algorithmwas better than IPO-TConfig,
IPOG-F, jenny, and PICT surpassed TTR 1.2.
The greatest advantage of TTR 1.2 turned out to be again for higher strengths. Recall

that TTR 1.2 does not create the matrix of t-tuples at the beginning, and this can poten-
tially benefit our solution compared with the other five for higher strengths. Note that

a d

eb

c

Fig. 12 Experiment 2: Q-Q plots. a IPOG-F; b jenny; c PICT; d IPO-TConfig; e ACTS - All Strengths

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 32 of 41

a

b

c

d

e
Fig. 13 Experiment 2: Histograms. a IPOG-F; b jenny; c PICT; d IPO-TConfig; e ACTS - All Strengths

TTR 1.2 was better than jenny, PICT, IPO-TConfig, and ACTS. The only exception is the
comparison against IPOG-F where the Null Hypothesis, H0.2, could not be rejected and
thus there is no statistical difference between both approaches.
In general, we can say that IPOG-F presented the best performance compared with

TTR 1.2, because IPOG-F was better for all strengths, as well as lower and medium
strengths. For higher strengths, there was a statistical draw between both approaches. An

Fig. 14 Experiment 2: Q-Q plots. a ACTS; b IPO-TConfig; c IPOG-F; d jenny; e PICT - Lower Strengths

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 33 of 41

Fig. 15 Experiment 2: Histograms. a ACTS; b IPO-TConfig; c IPOG-F; d jenny; e PICT - Lower Strengths

explanation for the fact that IPOG-F is better than TTR 1.2 is that TTR 1.2 ends up mak-
ing more interactions than IPOG-F. In general, we might say that efficiency of IPOG-F
is better than TTR 1.2 which influenced the cost-efficiency result. However, if we look at
cost in isolation for all strengths, the average value of the test suite size generated via TTR
1.2 (734.50) is better than IPOG-F (770.88).
As we have just stated, for higher strengths, TTR 1.2 is better than two IPO-based

approaches (IPO-TConfig and ACTS/IPOG-F2) but there is no difference if we consider

Fig. 16 Experiment 2: Q-Q plots. a ACTS; b IPO-TConfig; c IPOG-F; d jenny; e PICT - Medium Strengths

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 34 of 41

a

b

c

d

e
Fig. 17 Experiment 2: Histograms. a ACTS; b IPO-TConfig; c IPOG-F; d jenny; e PICT - Medium Strengths

our own implementation of IPOG-F and TTR 1.2. This can be explained as follows. The
way the array that stores all t-tuples is constructed influences the order in which the t-
tuples are evaluated by the algorithm. However, it is not described how this should be
done in IPOG-F, leaving it to the developer to define the best way. As the order in which
the parameters are presented to the algorithms alters the number of test cases generated,

a

b

c

d

e
Fig. 18 Experiment 2: Q-Q plots. a ACTS; b IPO-TConfig; c IPOG-F; d jenny; e PICT - Higher Strengths

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 35 of 41

a

b

d

c

e
Fig. 19 Experiment 2: Histograms. a ACTS; b IPO-TConfig; c IPOG-F; d jenny; e PICT - Higher Strengths

as previously stated, the order in which the t-tuples are evaluated can also generate a
certain difference in the final result.
The conclusion of the two evaluations of this second experiment is that our solution

is better and quite attractive for the generation of test cases considering higher strengths
(5 and 6), where it was superior to basically all other algorithms/tools. Certainly, the main
fact that contributes to this result is the non-creation of the matrix of t-tuples at the
beginning which allows our solution to be more scalable (higher strengths) in terms of
cost-efficiency or cost compared with the other strategies. However, for low strengths,
other greedy approaches, like IPOG-F, may be better alternatives.
As before and by making a comparison between pairs of solutions (TTR 1.2 × other),

in both assessments (cost-efficiency and cost), we can say that we have a high conclu-
sion, internal, and construct validity. Regarding the external validity, we believe that we
selected a significant population for our study. Detailed explanations have been given in
Section 5.1 and are valid here.

Table 18 Results of the Wilcoxon test

Comparison
Strength

All Low

p |z| Reject H0.x? Winner p |z| Reject H0.x? Winner

IPOG-F x TTR 1.2 9.26E-05 5.3431 Yes IPOG-F 1.34E-02 3.8060 Yes IPOG-F

jenny x TTR 1.2 0.4913 0.6907 No - 2.86E-03 3945 Yes jenny

PICT x TTR 1.2 0.3769 0.8862 No - 0.0002899 3.2881 Yes PICT

IPO-TConfig x TTR 1.2 3.13E-02 4.1664 Yes TTR 1.2 0.05584 1.9117 No -

ACTS x TTR 1.2 0.3392 0.9584 No - 0.0001068 3.4623 Yes ACTS

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 36 of 41

Table 19 Results of the Wilcoxon test (medium and high strengths)

Comparison
Strength

Medium High

p |z| Reject H0.x? Winner p |z| Reject H0.x? Winner

IPOG-F x TTR 1.2 7.45E-06 4.6814 Yes IPOG-F 0.2801 1.1004 No -

jenny x TTR 1.2 0.003511 2.8435 Yes jenny 0.0002316 3.4863 Yes TTR 1.2

PICT x TTR 1.2 0.03676 2.0782 Yes PICT 0.002109 2.9732 Yes TTR 1.2

IPO-TConfig x TTR 1.2 0.008742 2.5732 Yes TTR 1.2 2.76E-03 4.1672 Yes TTR 1.2

ACTS x TTR 1.2 0.2276 1.2217 No - 0.0007162 3.2335 Yes TTR 1.2

7 Related work
In this section we present some relevant studies related to greedy algorithms for CIT. The
IPO algorithm (Lei and Tai 1998) is one very traditional solution designed for pairwise
testing. Several approaches are based on IPO such as IPOG, IPOG-D (Lei et al. 2007),
IPOG-F, IPOG-F2 (Forbes et al. 2008), IPOG-C (Yu et al. 2013), IPO-TConfig (Williams
2000), ACTS (where IPOG, IPOG-D, IPOG-F, IPOG-F2 are implemented)(Yu et al. 2013),
and CitLab (Cavalgna et al. 2013). All IPO-based proposals have in common the fact that
they perform horizontal and vertical growths to construct the final test suite. Moreover,
some need two auxiliary matrices which may decrease its performance by demanding
more computer memory. Such algorithms accomplish exhaustive comparisons within
each horizontal extension which may penalize efficiency.
IPOG-F (Forbes et al. 2008) is an adaptation of the IPOG algorithm (Lei et al. 2007).

Through two main steps, horizontal and vertical growths, an MCA is built. Both growths
work based on an initial solution. The algorithm is supported by two auxiliary matri-
ces which may decrease its performance by demanding more computer memory to use.
Moreover, the algorithm performs exhaustive comparisons within each horizontal exten-
sion which may cause longer execution. On the other hand, TTR 1.2 only needs one
auxiliary matrix to work and it does not generate, at the beginning, the matrix of t-tuples.
These features make our solution better for higher strengths (5, 6) even though we did
not find statistical difference when we compared TTR 1.2 with our own implementation
of IPOG-F (Section 6.4).
IPO-TConfig is an implementation of IPO in the TConfig tool (Williams 2000). The

TConfig tool can generate test cases based on strengths varying from 2 to 6. However,
it is not entirely clear whether the IPOG algorithm (Lei et al. 2007) was implemented in
the tool or if another approach was chosen for t-way testing. In our empirical evaluation,
TTR 1.2 was superior to IPO-TConfig not only for higher strengths (5, 6) but also for all
strengths (from 2 to 6). Moreover, IPO-TConfig was unable to generate test cases in 25%
of the instances (strengths 4, 5, 6) we selected.
The ACTS tool (Yu et al. 2013) is one of the most used CIT tools to date. Several vari-

ations of IPO are implemented in ACTS: IPOG, IPOG-D (Lei et al. 2007), IPOG-F, and
IPOG-F2 (Forbes et al. 2008). The implementation of our algorithm performed better
in terms of cost, compared with IPOG-F2/ACTS, for higher strengths. However, both
solutions performed similarly when we considered all strengths.
IPOG-C (Yu et al. 2013) generates MCAs considering constraints. It is an adaptation of

IPOG where constraint handling is provided via a SAT solver. The greatest contribution
are three optimizations that seek to reduce the number of calls of the SAT solver. As

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 37 of 41

IPOG-C is based on IPOG, it accomplishes exhaustive comparisons in the horizontal
growth which may lead to a longer execution. Besides, each t-tuple is evaluated to see if it
is valid or not.
The algorithm implemented in the PICT tool (Czerwonka 2006) has two main phases:

preparation and generation. In the first phase, the algorithm generates all t-tuples to be
covered. In the second phase, it generates the MCA. The generation of all t-tuples which
can often be a bad thing, since many tuples require large disk space for storage. With
respect to the application of the tool, this tool is best applied in strenghts of low value as
an example, there is no study (Yamada et al. 2016). Other tools have been created based
on PICT (PictMaster 2017).
The jenny tool is implemented in C (Jenkins 2016). It is a light greedy tool but one

of its limitation is the number of parameters it handles: from 2 to 52. In the controlled
experiment we performed, TTR 1.2 was superior to jenny for higher strengths (5, 6) but
they presented similar performances for all strengths (from 2 to 6). In 27.5% of the samples
(strengths 4, 5, 6), jenny could not create test cases as we have mentioned before.
Automatic Efficient Test Generator (AETG) (Cohen et al. 1997) is based on algorithms

that use ideas of statistical experimental design theory to minimize the number of tests
needed for a specific level of test coverage of the input test space. AETG generates
test cases by means of Experimental Designs (ED) (Cochran and Cox 1950) which are
statistical techniques used for planning experiments so that one can extract the maxi-
mum possible information based on as few experiments as possible. It makes use of its
greedy algorithms and the test cases are constructed one at a time, i.e. it does not use an
initial solution.
In (Cavalgna et al. 2013), a new tool is presented for generating MCAs with constraint

handling support: CitLab. Like ACTS, CitLab has several algorithms for test suite gener-
ation: AETG, IPO, and others. The bottom of line is that test case generation is only one
of the characteristics of the tool. Like ACTS, CitLab does not present a new algorithm as
it just implements algorithms proposed in the literature. Hence, the same limitations of
the existing proposals are also here.
The Feedback Driven Adptative Combinatorial Testing Process (FDA-CIT) algorithm

is shown in (Yilmaz et al. 2014). At each iteration of the algorithm, verification of the
masking of potential defects is accomplished, isolating their probable causes and then
generating a new configuration which omits such causes. The idea is that masked deffects

Table 20 Greedy algorithms/tools for CIT

Algorithm/Tool 1 2 3 4 5 6 7 8 9

IPOG-F ((Forbes et al. 2008)) * - - - * *

AETG (Cohen et al. 1997) - - - * *

PICT ((Czerwonka 2006)) * - - * *

ACTS ((Yu et al. 2013)) - - - - - * *

CitLab ((Cavalgna et al. 2013)) - - - *

IPOG-C ((Yu et al. 2013)) * - - * * *

FDA-CIT ((Yilmaz et al. 2014)) * - - *

jenny ((Jenkins 2016)) * - - * *

TTR - 1.2 * * * * - * * * -

Caption: 1 = new algorithm, 2 = no more than 1 auxiliary matrix, 3 = evaluated via controlled experiments/quasiexperiments,
4 = no generation of full matrix of t-tuples, 5 = time optimization, 6 = works based on an initial solution, 7 = do not impose
parameter/value input restriction, 8 = support for t-way testing, 9 = support for constraints

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 38 of 41

exist and that the proposed algorithm provides an efficient way of dealing with this situa-
tion before test execution. However, there is no assessment about the cost of the algorithm
to generate MCAs.
In order to better compare the previous studies with our algorithm, TTR 1.2, in Table 20

we show some main characteristics of all the algorithms/tools. In this table, *means that
the characteristic is present, -means that it is not present, and empty (blank space) means
that either it is not totally evident that the algorithm/tool has such a feature or it is not
applicable.

8 Conclusions
This paper presented a novel CIT algorithm, called TTR, to generate test cases specifi-
cally via the MCA technique. TTR produces an MCA M, i.e. a test suite, by creating and
reallocating t-tuples into this matrix M, considering a variable called goal (ζ). TTR is a
greedy algorithm for unconstrained CIT.
TTR was implemented in Java and C (TTR 1.2) and we developed three versions of

our algorithm. In this paper, we focused on the description of versions 1.1 and 1.2 since
version 1.0 was detailed elsewhere (Balera and Santiago Júnior 2015).
We carried out two rigorous evaluations to assess the performance of our proposal. In

total, we performed 3,200 executions related to 8 solutions (80 instances × 5 variations
× 8). In the first controlled experiment, we compared versions 1.1 and 1.2 of TTR in order
to know whether there is significant difference between both versions of our algorithm.
In such experiment, we jointly considered cost (size of test suites) and efficiency (time
to generate the test suites) in a multi-objective perspective. We conclude that TTR 1.2 is
more adequate than TTR 1.1 especially for higher strengths (5, 6). This is explained by
the fact that, in TTR 1.2, we no longer generate the matrix of t-tuples (�) but rather the
algorithm works on a t-tuple by t-tuple creation and reallocation into M. This benefits
version 1.2 so that it can properly handle higher strengths.
Having chosen version 1.2, we conducted another controlled experiment where we

confronted TTR 1.2 with five other greedy algorithms/tools for unconstrained CIT:
IPOG-F (Forbes et al. 2008), jenny (Jenkins 2016), IPO-TConfig (Williams 2000), PICT
(Czerwonka 2006), and ACTS (Yu et al. 2013). In this case, we carried out two evaluations
where in the first one we compared TTR 1.2 with IPOG-F and jenny since these were the
solutions we had the source code (to precisely measure the time). Moreover, to address
a possible evaluation bias in the time measures when comparing TTR 1.2 against jenny
(developed in C), we also implemented it in C in addition to the standard implementation
in Java. Hence, a cost-efficiency (multi-objective) evaluation was performed. In the sec-
ond assessment, we did a cost (single objective) evaluation where TTR 1.2 was compared
with PICT, IPO-TConfig, and ACTS. The conclusion is as previously stated: TTR 1.2 is
better for higher strengths (5, 6) where only in one case our solution is not superior (in
the comparison with IPOG-F where we have a draw). The fact of not creating the matrix
of t-tuples at the beginning explains this result.
Therefore, considering the metrics we defined in this work and based on both con-

trolled experiments, TTR 1.2 is a better option if we need to consider higher strengths
(5, 6). For lower strengths, other solutions, like IPOG-F, may be better alternatives.
Thinking about the testing process as a whole, one important metric is the time to exe-

cute the test suite which eventually may be evenmore relevant than other metrics. Hence,

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 39 of 41

we need to runmulti-objective controlled experiments where we execute all the test suites
(TTR 1.1 × TTR 1.2; TTR 1.2 × other solutions) probably assigning different weights
to the metrics. We also need to investigate the parallelization of our algorithm so that
it can perform even better when subjected to a more complex set of parameters, values,
strengths. One possibility is to use the Compute Unified Device Architecture/Graphics
Processing Unit (CUDA/GPU) platform (Ploskas and Samaras 2016). We must develop
other multi-objective controlled experiment addressing effectiveness (ability to detect
defects) of our solution compared with the other five greedy approaches.

Endnotes
1Despite this classification, some algorithms/tools are both SAT and greedy-based.
2 Some authors (Kuhn et al. 2013; Cohen et al. 2003) abbreviate aMixed-Level Covering

Array as CA too. However, as we have made a explicit distinction between Fixed-value
and Mixed-Level arrays, we prefer abbreviate it as MCA. Note that an MCA is naturally
a Covering Array. We have just used this abbreviation to stress that our work relates to
mixed and not fixed arrays.

3� is a matrix whose order varies. In other words, TTR knows the number of columns
beforehand (|f |), but the number of rows (|C|) depends on the interaction of t-way
parameter’s values. During the reallocation process, TTR removes the rows until � is
empty.

Abbreviations
ACTS: Advanced combinatorial test system; AETG: Automatic efficient test generator; CA: Coverage array; CIT:
Combinatorial interaction test; CUDA: Compute unified device architecture; ED: Experimental designs; GA: Genetic
algorithm; GPU: Graphics processing unit; IPOG: In parameter order general; IPO-TConfig: In parameter order TConfig;
MCA: Mixed-level covering array; MOA: Mixed-level orthogonal array; OA: Orthogonal array; OOP: Object-oriented
programming; PICT: Pairwise indepedent combinatorial testing; SA: Simulated annealing; SWPDC: Software for the
payload data handling computer; TSA: Tabu search approach; TTR: T-tuple reallocation

Acknowledgements
The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting
this research and Leoni Augusto Romain da Silva for his support in running part of the second controlled experiment.

Funding
This work was partially funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through a
scholarship granted to the first author (JMB).

Availability of data andmaterials
Full data obtained during the experiments are in (Balera and Santiago Júnior 2017).

Authors’ contributions
JMB worked in the definitions and implementations of all three versions of the TTR algorithm, and carried out the two
controlled experiments. VASJ worked in the definitions of the TTR algorithm, and in the planning, definitions, and
executions of the two controlled experiments. All authors contributed to all sections of the manuscript. All authors read
and approved the submitted manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 April 2017 Accepted: 5 November 2017

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 40 of 41

References
Ahmed BS (2016) “Test case minimization approach using fault detection and combinatorial optimization techniques for

configuration-aware structural testing”. Eng Sci Technol, Int J 19(2):737-753. http://www.sciencedirect.com/science/
article/pii/S2215098615001706

Balera JM, Santiago Júnior VA (2015) T-tuple Reallocation: An algorithm to create mixed-level covering arrays to support
software test case generation. In: 15th International Conference on Computational Science and Its Applications
(ICCSA). Springer International, Publishing, Berlin, Heidlberg. pp 503-517

Balera JM, Santiago Júnior VA (2016) “A controlled experiment for combinatorial testing”. In: Proceedings of the 1st
Brazilian Symposium on Systematic and Automated Software Testing. ACM, New York, NY, USA, SAST. pp 2:1-2:10.
http://doi.acm.org/10.1145/2X00000.993288.2993289

Balera JM, Santiago Júnior VA (2017) Data set. https://www.dropbox.com/sh/to3a47ncqpliq5l/AACj34JQ9S1I4fzQJf0xPZfva?dl=0.
Accessed 17 Oct 2016

Bryce RC, Colbourn CJ (2006) “Prioritized interaction testing for pair-wise coverage with seeding and constraints”. Inf
Softw Technol 48(10):960–970

Cochran WG, Cox GM (1950) “Experimental designs”. John, Wiley & Sons, New York; Chichester
Cohen MB, Dalal SR, Fredman ML, Patton GC (1997) “The AETG system: an approach to testing based on combinatorial

design”. IEEE Trans Softw Eng 23(7):437–444
Cohen MB, Dwyer MB, Shi J (2008) “Constructing interaction test suites for highly-configurable systems in the presence of

constraints: A greedy approach”. IEEE Trans Softw Eng 34(5):633–650
Cohen MB, Gibbons PB, Mugridge WB, Colbourn CJ, Collofello JS (2003) “A variable strength interaction testing of

components”. In: Proceedings of 27th Annual Int. Comp. Software and Applic. Conf. (COMPSAC). IEEE, USA.
pp 413–418

Campanha DN, Souza SRS, Maldonado JC (2010) “Mutation testing in procedural and object-oriented paradigms: An
evaluation of data structure programs”. In: Brazilian Symposium on Software Engineering. IEEE, USA. pp 90-99

Cavalgna A, Gargantini A, Vavassori P (2013) “Combinatorial interaction testing with citlab”. In: Proceedings on 2013 IEEE
Sixth International, Conference on Software Testing, Verification and Validation. IEEE, Nova York. pp 376–382

Czerwonka J (2006) “Pairwise testing in the real world: Practical extensions to test-case generators”. In: Proceedings 24th
Pacific Northwest Software Quality Conference. Academic Press, Portland. pp 285–294

Dalal SR, A Jain NK, Leaton JM, Lott CM, Patton GC, Horowitz B (1999) “Model-based testing in pratice”. In: Proceedings
21st International Conference on Software Engineering (ICSE’99). AMC, Nova York. pp 285–294

Delamaro ME, de Lourdes dos Santos Nunes F, de Oliveira RAP (2013) “Using concepts of content-based image retrieval
to implement graphical testing oracles”. Softw Test Verif Reliab 23:171–198. doi:10.1002/stvr.463

Filho RAM, Vergilio SR (2015) “A Mutation and Multi- objective Test Data Generation Approach for Feature Testing of
Software Prod- uct Lines”. 29th Brazilian, Symposium on Software Engineering, Belo Hori-zonte

Forbes M, Lawrence J, Lei Y, Kacker RN, Kuhn DR (2008) “Refining the in-parameter-order strategy for constructing
covering arrays”. J Res Natl Inst Stand Technol 113(5):287–297

Garvin BJ, Cohen MB, Dwyer MB (2011) “Evaluating improvements to a meta-heuristic search for constrained interaction
testing”. Empirical Soft Eng 16(1):61–102

Hernandez LG, Valdez NR, Jimenez JT (2010) “Construction of mixed covering arrays of variable strength using a tabu
search approach”. Springer, International Publisher, Berlin, Heidelberg

Huang CY, Chen CS, Lai CE (2016) “Evaluation and analysis of incorporating fuzzy expert system approach into test suite
reduction”. Inf Softw Technol 79:79–105. http://www.sciencedirect.com/science/article/pii/S0950584916301197

Jenkins B (2016) “Jenny: A pairwise tool”. http://burtleburtle.net/bob/math/jenny.html. Accessed 6 June 2016
Khan SUR, Lee SP, Ahmad RW, Akhunzada A, Chang V (2016) “A survey on test suite reduction frameworks and tool”s. Int J

Inf Manag 36(6, Part A):963–975. http://www.sciencedirect.com/science/article/pii/S0268401216303437
Kohl M (2015) “Introduction to statistical data analysis with R”. bookboon.com, London
Kuhn DR, Wallace DR, Gallo AM (2004) “Software fault interactions and implications for software testing”. IEEE Trans

Software Eng 30(6):418–421. http://doi.ieeecomputersociety.org/10.1109/TSE.2004.24
Kuhn RD, Kacker RN, Lei Y (2013) “Introduction to Combinatorial Testing”. Chapman and Hall/CRC, USA
Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2007) “IPOG: A general strategy for t-way software testing”
Lei Y, Tai K-C (1998) “In-Parameter-Order: A test generation strategy for pairwise testing”. In: Proceedings of the IEEE Int.

Symp. on High-Assurance Syst. Eng. (HASE). IEEE Computer Society Press, USA. pp 254–261
Mathur AP (2008) “Foundations of software testing”. Dorling, Kindersley (India), Pearson Education in South Asia, Delhi, India
NIST National Institute of Standards and Technology (2015) “Automated combinatorial testing for software (ACTS)”.

http://csrc.nist.gov/groups/SNS/acts/. Accessed 29 July 2017
Oliveira RAP (2017) “Test oracles for systems with complex outputs: the case of TTS systems”. PhD Thesis, Univesi-dade de

São Paulo, Brazil
Pairwise (2017) “Pairwise Testing: Combinatorial Test Case Generation”. http://www.pairwise.org/tools.asp. Accessed 29

July 2017
Petke J, Cohen MB, Harman M, Yoo S (2015) “Practical combinatorial interaction testing: Empirical findings on efficiency

and early fault detection”. IEEE Trans Softw Eng 41(9):901–924
PictMaster (2017) “Combinatorial testing tool PictMaster”. https://osdn.net/projects/pictmaster/. Accessed 29 July 2017
Ploskas N, Samaras N (2016) “GPU Programming in MATLAB”. Morgan Kaufmann, Boston. http://www.sciencedirect.com/

science/article/pii/B9780128051320099951
Qu X, Cohen MB, Woolf KM (2007) “Combinatorial interaction regression testing: A study of test case generation and

prioritization”. In: Proc. IEEE Int. Conf. Softw. Maintenance. IEEE Computer Society Press, USA. pp 255–264
Santiago Júnior VA (2011) “Solimva: A methodology for generating model-based test cases from natural language

requirements and detecting incompleteness in software specifications”. PhD thesis, Instituto Nacional de Pesquisas
Espaciais (INPE)

Santiago Júnior VA, Silva FEC (2017) “From Stat- echarts into Model Checking: A Hierarchy-based Translation and
Specification Patterns Properties to Generate Test Cases”. In: the 2nd Brazilian Symposium, 2017, Fortaleza.

http://www.sciencedirect.com/science/article/pii/S2215098615001706
http://www.sciencedirect.com/science/article/pii/S2215098615001706
http://doi.acm.org/10.1145/2X00000.993288.2993289
https://www.dropbox.com/sh/to3a47ncqpliq5l/AACj34JQ9S1I4fzQJf0xPZfva?dl=0
http://dx.doi.org/10.1002/stvr.463
http://www.sciencedirect.com/science/article/pii/S0950584916301197
http://burtleburtle.net/bob/math/jenny.html
http://www.sciencedirect.com/science/article/pii/S0268401216303437
http://doi.ieeecomputersociety.org/10.1109/TSE.2004.24
http://csrc.nist.gov/groups/SNS/acts/
http://www.pairwise.org/tools.asp
https://osdn.net/projects/pictmaster/
http://www.sciencedirect.com/science/article/pii/B9780128051320099951
http://www.sciencedirect.com/science/article/pii/B9780128051320099951

Balera and Santiago Júnior Journal of Software Engineering Research and Development (2017) 5:10 Page 41 of 41

Proceedings of the 2nd, Brazilian Symposium on Systematic and Automated Software Testing - SAST. ACM Press,
New York. pp 10–20

Santiago Júnior VA, Vijaykumar NL (2012) “Generating model-based test cases from natural language requirements for
space application software”. Softw Qual J 20(1):77–143. doi:10.1007/s11219-011-9155-6

Schroeder PJ, Korel B (2000) Black-box test reduction using input-output analysis. In: Harold M (ed). Proceedings of the
2000 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’00). ACM, New York.
pp 173–177

Segall I, Tzoref-Brill R, Farchi E (2011) Using binary decision diagrams for combinatorial test design. In: Proceedings of the
2011 International Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York. pp 254–264

Shapiro SS, Wilk MB (1965) “An analysis of variance test for normality (complete samples)”. Biometrika 52(3-4):591
Shiba T, Tsuchiya T, Kikuno T (2004) “Using artificial life techniques to generate test cases for combinatorial testing”. In:

Proceedings 28th Int. Comput. Softw. Appl. Conf., Des. Assessment Trustworthy Softw.-Based Syst. IEEE Computer
Society Press, USA. pp 72–77

Stinson DR (2004) “Combinatorial Designs: Constructions and Analysis”. Springer, New York
Tai KC, Lei Y (2002) “A test generation strategy for pairwise testing”. IEEE Trans Softw Eng 28(1):109–111
Tzoref-Brill R, Wojciak P, Maoz S (2016) “Visualization of combinatorial models and test plans”. In: Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, USA. pp 144–154
Williams AW (2000) “Determination of test configurations for pairwise interaction coverage”. In: Testing of

Communicating Systems: Tools and Techniques, IFIP TC6/WG6.1 13th International Conference on Testing
Communicating Systems (TestCom 2000), August 29 - September 1, 2000, Ottawa, Canada. pp 59–74

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2012) “Experimentation in Software Engineering.
Springer-Verlag Berlin Heidelberg, Germany

Yamada A, Kitamura T, Artho C, Choi E, Oiwa Y, Biere A (2015) “Optimization of combinatorial testing by incremental SAT
solving”. IEEE, USA

Yamada A, Biere A, Artho C, Kitamura T, Choi EH (2016) “Greedy combinatorial test case generation using unsatisfiable
cores”. In: Proceedings of 2016 31st IEEE/ACM International, Conference on Automated Software Engineering (ASE).
IEEE, USA. pp 614–624

Yilmaz C, Cohen MB, Porter A (2014) “Reducing masking effects in combinatorial interaction testing: A feedback driven
adaptative approach”. IEEE Trans Softw Eng:43–66

Yoo S, Harman M (2012) “Regression testing minimization, selection and prioritization: A survey”. Softw Test Verif Reliab
22(2):67–120. https://dl.acm.org/citation.cfm?id=2284813

Yu L, Lei Y, Nourozborazjany M, Kacker RN, Kuhn DR (2013) “An efficient algorithm for constraint handling in
combinatorial test generation”. In: 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation. IEEE, Nova York. pp 242–251

Yu L, Lei Y, Kacker RN, Kuhn DR (2013) “ACTS: A combinatorial test generation tool”. In: Proceedings on 2013 IEEE Sixth
International, Conference on Software Testing, Verification and Validation. IEEE, Nova York. pp 370–375

http://dx.doi.org/10.1007/s11219-011-9155-6
https://dl.acm.org/citation.cfm?id=2284813

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Introduction
	Background
	TTR: a new algorithm for combinatorial interaction testing
	TTR: Version 1.1
	The constructor procedure
	The initial solution and addition of test cases
	Goals
	The Main Procedure

	TTR: version 1.2
	Initial solution
	The main procedure

	Controlled experiment 1: TTR 1.1 TTR 1.2
	Definition and context
	Hypotheses and variables
	Description of the experiment

	Results and discussion
	Validity

	Controlled experiment 2: TTR 1.2 other solutions
	Definition and context
	Hypotheses and variables
	Description of the experiment
	Results, discussion and validity

	Related work
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

