Garnier et al. Journal of Software Engineering Research and H H
Development. (201755 Journal of Software Engineering

DOI 10.1186/540411-017-0040-2 Research and Development

RESEARCH Open Access

On the influence of program constructs @
on bug localization effectiveness

A study of 20 C# projects

Marcelo Garnier” @, Isabella Ferreira and Alessandro Garcia

*Correspondence:
mgarnier@inf.puc-rio.br Abstract

OPUS Research Group, Informatics Software projects often reach hundreds or thousands of files. Therefore, manually
Department, PUC-Rio, Rua Marqués s
de S50 Vicente, 225, Rio de Janeiro, searching for code elements that should be changed to fix a failure is a difficult task.
Brazil Static bug localization techniques provide cost-effective means of finding files related
to the failure described in a bug report. Structured information retrieval (IR) has been
successfully applied by techniques such as BLUIR, BLUIR+, and Amalgam. However,
there are significant shortcomings on how these techniques were evaluated. First,
virtually all evaluations have been limited to very few projects written in only one
object-oriented programming language, particularly Java. Second, it might be that
particular constructs of different programming languages, such as C#, play a role on the
effectiveness of bug localization techniques. However, little is known about this
phenomenon. Third, the experimental setup for most of the bug localization studies
make simplistic assumptions that do not hold on real-world scenarios, thereby raising
doubts about the reported effectiveness of existing techniques. In this article, we
evaluate BLUIR, BLUiR+, and Amal.gam on 20 C# projects, addressing the aforementioned
shortcomings from previous studies. Then, we extend Amal.gam’s algorithm to
understand if structured information retrieval can benefit from the use of a wider range
of program constructs, including C# constructs inexistent in Java. We also perform an
analysis of the influence of program constructs to bug localization effectiveness using
Principal Component Analysis (PCA). Our analysis points to Methods and Classes as the
constructs that contribute the most to the effectiveness of bug localization. It also reveals
a significant contribution from Properties and String literals, constructs not considered in
previous studies. Finally, we evaluate the effects of changing the emphasis on particular
constructs by making another extension to Amal.gam'’s algorithm, enabling the specification
of different weights for each construct. Our results show that fine-tuning these weights
may increase the effectiveness of bug localization in projects structured with a specific
programming language, such as C#.

Keywords: Bug localization, Structured information retrieval, Bug reports

1 Introduction

Software defects (bugs) are a serious concern for developers and maintainers. It is widely
known that the later a failure is detected, higher the cost to fix it. To fix the bug that
caused a failure, one must first know where the bug is located. The activity of finding
the defective source code elements that led to a failure is called bug localization (Lukins
et al. 2010). Effective methods for automatically locating bugs from bug reports are

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-017-0040-2&domain=pdf
http://orcid.org/0000-0001-8269-439X
mailto: mgarnier@inf.puc-rio.br
http://creativecommons.org/licenses/by/4.0/

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 2 of 29

highly desirable (Saha et al. 2013), as they would shorten bug-fixing time, consequently
reducing software maintenance costs (Zhou et al. 2012). Given the ever-increasing size
and complexity of software projects, manual bug localization is a lengthy and challeng-
ing task, which motivates research for automated bug localization techniques (Rahman
et al. 2011; Saha et al. 2013; Sisman and Kak 2012; Wang and Lo 2014; Zhou et al.
2012).

To foster the process of effectively identifying source code that is relevant to a particular
bug report, a number of techniques have been developed using information retrieval (IR)
models such as Latent Dirichlet Allocation (LDA) (Lukins et al. 2010), Latent Semantic
Analysis (LSA) (Rao and Kak 2011), and Vector Space Model (VSM) (Zhou et al. 2012).
The IR approach to bug localization generally consists of treating source files as docu-
ments, against which a query, represented by the bug report, will be run. Source files
that share more terms with the bug report are ranked as having a higher probability
of containing the bug. Recently, structured information retrieval has also been used for
bug localization (Saha et al. 2013; Wang and Lo 2014). Structured IR-based techniques
take advantage of the known structure of source files to calculate textual similarity. This
allows the technique to place different emphasis on different program constructs, such
as class and variable names. Bug localization techniques based on structured informa-
tion retrieval, such as BLUIR (Saha et al. 2013) and AmaLgam (Wang and Lo 2014), have
shown considerable improvements over other traditional IR approaches (Section 2.2).
These (Saha et al. 2013; Wang and Lo 2014) are among the best-performing IR-based
bug localization techniques available, although their effectiveness have been evaluated in
only four projects!.

In structured IR, source files are not simple text documents. As the structure of source
files is considered, bug localization techniques based on structured IR have to be designed
for specific languages. Java is the language that is commonly used to assess the effec-
tiveness of new techniques, including BLUIR and AmaLgam. The repeated use of the
same language for evaluation of bug localization techniques has the advantage of allow-
ing a direct comparison of the results. Nonetheless, there is a need to evaluate successful
bug localization techniques using different languages. Since structured IR leverages syn-
tactic features of the source code, the usage of different types of program constructs may
be able to improve bug localization effectiveness.

To investigate how different combinations of program constructs affect bug localization
effectiveness, we have evaluated BLUIR, BLUiR+ (a variation of BLUIR), and AmalLgam
on 20 C# projects available on GitHub. C# is a general-purpose, object-oriented lan-
guage that shares many traits with the Java language, but also have some distinct features.
For example, some C# constructs, like properties and structures (“structs”) are inexis-
tent in Java. C# is a popular language (TIOBE Software BV 2016) and is present among
the top 10 languages in number of GitHub repositories (The GitHub Blog 2015). This
growing popularity justifies the need for experiments using the C# language, in addi-
tion to the available studies reported from Java projects. Evaluating these techniques on
C# projects has provided an assessment on how the techniques behave with a different
object-oriented programming language.

Additionally, we have addressed some shortcomings from previous studies on IR-based
bug localization. In many studies, as Rao and Kak (2013a) point out, researchers have
merely chosen a single version of the project and run the localization algorithm for all

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 3 of 29

available bug reports on that same version. However, a rigorous evaluation of bug local-
ization effectiveness should consider the appropriate project version for every bug report
under analysis (Rao and Kak 2013a), i.e., the version where the bug actually occurred.
Without this step, there is a high chance that the bug is not even present on the code being
analyzed.

Another shortcoming addressed in our study involves what Kochhar et al. (2014) call
localized bug reports, i.e., bug reports that already mention the file containing the defect
on its own description. These bug reports should not be considered in the evaluation of
bug localization techniques because (i) they artificially increase the effectiveness of the
techniques (Kochhar et al. 2014), and (ii) it is unlikely that developers would even need
assistance from an automated technique to localize these bugs.

The contribution of each program construct type is a question still not answered by
previous studies. The key success factor for an IR-based bug localization technique lies
on its ability to match terms from bug reports and source files effectively. Consequently, it
becomes important to understand in more depth how these constructs individually con-
tribute to bug localization. This knowledge would enable us to attribute higher weights
to the most contributing constructs, as well as discard low contributing ones, possibly
increasing effectiveness. Previous studies do not assess the contribution of particular con-
struct types to the overall effectiveness of bug localization techniques. They often assume
only key constructs in object-oriented programming languages, such as classes and meth-
ods, should be explicitly considered in their underlying localization models (Saha et al.
2013; Wang and Lo 2014; Zhou et al. 2012).

In this article, we extend our previous study (Garnier and Garcia 2016) by analyzing the
contribution of specific program constructs to bug localization effectiveness. For such, we
apply Principal Component Analysis (PCA), a statistical procedure which may be used to
reduce the dimensionality of a dataset, on results obtained from our Amal.gam extension
(Garnier and Garcia 2016). Results from this analysis point to Methods and Classes as the
constructs that contribute most to the effectiveness of bug localization, whereas Interfaces
were less correlated to effectively located bug reports. The analysis also revealed that
Properties and String literals, constructs not considered in previous studies, contribute
significantly to bug localization effectiveness. Hence, these constructs should not be left
out from future bug localization models. Identifying the most relevant constructs have
allowed us to experiment even further by enabling the specification of different weights
for each construct. Our results show that changing the emphasis on particular constructs
by fine-tuning these weights may increase the effectiveness of bug localization.

Next section introduces concepts and related work on bug localization. Section 3
presents our study (Garnier and Garcia 2016) on the effectiveness of BLUIR (Saha et al.
2013), BLUiR+ (Saha et al. 2013), and AmaLgam (Wang and Lo 2014) on C# projects. In
Section 4, we evaluate the contribution of C# constructs to bug localization effectiveness.
Section 5 concludes our paper.

2 Background

2.1 Information retrieval

Many state-of-the-art bug localization techniques are based on information retrieval.
Information retrieval (IR) consists of finding documents within a collection that match
a search query (Manning et al. 2008). When applying IR to bug localization, source code

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 4 of 29

files become the collection of documents, and the bug report represents the query. Then,
the task of finding buggy files is reduced to the IR problem of determining the relevance
of a document to a query. The relevance is determined by preprocessing the query and
the set of documents and then calculating the similarity between each document and
the query.

The preprocessing consists of three steps: text normalization, stopword removal, and
stemming. Text normalization extracts a list of terms that represents the documents and
the query, by removing punctuation marks, performing case folding, and splitting identi-
fiers. After normalization, common English stopwords are removed from the list of terms.
Finally, stemming converts each term to a common root form, to improve term matching
by representing similar words with the same term.

After preprocessing, the similarity between documents and the query must be calcu-
lated. A common approach is based on vector space model (VSM), where each document
is expressed as a vector of term weights. These weights are typically the product of term
frequency and inverse document frequency (TF-IDF) of each term. Given two docu-
ments, their similarity can be measured by computing the cosine similarity (Baeza-Yates
and Ribeiro-Neto 1999) of their vector representations.

Information retrieval results are usually presented as a list of documents sorted by rele-
vance (similarity) to the query. It is often enough to present a small set of documents that
a user can browse to locate the needed information. For this reason, IR models are com-
monly evaluated by their ability to retrieve relevant documents at the first N positions of
a list using Top-N or Hit@N metrics. Another widely used metric for the effectiveness
of IR models is the mean average precision (MAP). MAP provides a single-figure mea-
sure of the quality of information retrieval when a query may have multiple relevant
documents (Manning et al. 2008).

2.2 Bug localization

A tendency observed in some recent works on bug localization is the combina-
tion of distinct sources of information to improve effectiveness. BugLocator (Zhou
et al. 2012) is such an example. Given a bug report, it uses information retrieval
to find relevant source files by comparing the bug report with source files and
with previous bug reports. In the latter case, the authors assume that to fix sim-
ilar bugs, developers tend to modify similar sets of files. BugLocator can combine
both sources of information (i.e., similarity data from source files and previous bug
reports) according to a given weight. The authors evaluated various combinations,
and found that BugLocator works best when bug similarity data is weighted between
20% and 30%.

Saha et al. (2013) developed BLUIR (Bug Localization Using information Retrieval), a
bug localization technique based on the concept of structured information retrieval. In
structured IR, fields from a bug report and code constructs, such as class or method
names, are separately modeled as distinct documents. Consequently, bug reports and
source files are not counted as single documents. Instead, BLUIR breaks bug reports into
summary and description, while source files are split into class names, method names,
variable names, and comments. Each part of a bug report is compared to each part from
the source file. The similarity of a bug report and a source file is given by the sum of the
calculated similarities.

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 5 of 29

Saha et al. also created a variant of BLUIR, called BLUiR+ (Saha et al. 2013), which
combines the approaches from BugLocator and BLUIR. In addition to the features
of BLUIR, BLUiR+ also leverages information from previous similar bug reports, if
available, similarly to BugLocator. The authors compared both variations, BLUIR and
BLUiR+, to BugLocator without and with bug similarity data, respectively. The com-
parison showed a performance improvement regarding mean average precision (MAP)
of up to 41% (24% on average) when neither BugLocator nor BLUIR used bug sim-
ilarity data. When bug similarity data was used, BLUIR+ outperformed BugLocator
by up to 29% (11% on average). Another interesting result is that BLUIR achieved
results similar or superior to those of BugLocator even when the latter did use bug
similarity data, and the former did not. This finding indicates that the structured
IR approach used by BLUIR could compensate for the lack of previous bug report
information.

Another example of bug localization technique that combines structured IR with other
sources of information is AmaLgam (Wang and Lo 2014). AmaLgam is a technique for
locating buggy files that combines the analysis of: (i) version history, (ii) bug report simi-
larity, and (iii) structure of documents, i.e., bug reports and source code files. AmalLgam
relies on the bug localization formula used in Google’s bug predictor (Lewis and Ou 2011),
which considers version history. AmaLgam then combines this formula with BugLocator
and BLUIR. Each of the three approaches has a corresponding component in AmalLgam
that calculates a single score for each file. The final score of a source file is a weighted aver-
age of the three individual scores. Experiments showed that AmalLgam achieved optimal
results with weights of 30% for version history, 14% for bug report similarity, and 56% for
structured IR from source files.

2.3 Structured information retrieval

The studies mentioned in Section 2.2 show that structured information retrieval, by lever-
aging the known structure of the documents involved in the retrieval process, has been
more effective than “plain” information retrieval. The potential of structured IR moti-
vates researchers to investigate this approach to bug localization in the context of other
programming languages, such as C#. Therefore, we selected some of the best perform-
ing techniques based on structured IR by the time of our research, BLUIR, BLUiR+,
and AmaLgam, for our study. We present additional details about the mechanics of these
techniques as follows.

2.3.1 TheBLUIR approach

The key insight of BLUIR is the use of source file structure to improve effectiveness. In
a traditional IR-based approach, the entire content of both source files and bug reports
is used to calculate textual similarity. BLUIR, instead, breaks source files into four parts:
class names, method names, variable names, and comments. Bug reports are split into
two parts: summary and description. BLUIR then calculates the similarity between each
file part and bug part separately, summing the eight individual similarities in the end. The
formula below represents the core of the BLUIR approach.

sim(file, bug) = Z Z sim(fp, bp) (1)

fpefile bpebug

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 6 of 29

In the previous equation, file and bug are a source file and a bug report, and fp and bp
are its respective parts. The similarity between a bug report and a source file is given by
the sum of the similarities of their parts.

2.3.2 The Amalgam approach

AmaLgam takes as input a new bug report, representing the bug to be localized in the
source code, a set of source files, commit history data, and a set of older bug reports.
Amal.gam has three components that produce suspiciousness scores for each source file,
based on different sources of information. Individual scores are then combined by a fourth
component (composer) into a single score for each source file. AmaLgam components are

described below.

Version history component. This component consists of Google’s adaptation (Lewis
and Ou 2011) to the algorithm from Rahman et al. (2011). The adaptation also includes a
further modification: a parameter (k) that restricts the version history period (in days) to
be considered. It was observed by Wang and Lo that considering only more recent com-
mits provided a good trade-off between precision and performance. The optimal value
found by the authors was k = 15 (Wang and Lo 2014).

Report similarity component. Amal.gam’s report similarity component is based on
the SimiScore formula from BugLocator (Zhou et al. 2012), also used by BLUiR+ (Saha
et al. 2013). The component considers the textual similarity between bug reports and
the number of files modified to fix each bug report. The assumption is that to fix similar
bugs, developers tend to modify similar sets of files.

Structure and Composer components. Amal.gam’s structure component uses the
approach of the BLUIR technique (Saha et al. 2013). Then, the composer component takes
the scores produced by the three other components and combines them into a final sus-
piciousness score. It first combines the results from the report similarity (scoreR) and
structure (scoreS) components. This result is then combined with the score from version
history component (scoreH), according to the following equations:

scoreSR(f) = (1 — a) x scoreS(f) + a x scoreR(f) 2)

(1 — b) x scoreSR(f) + b x scoreH(f), scoreSR > 0

scoreSRH (f) =
¢ 0, otherwise

3)

Parameters a and b in the equations above determine the weight of the contribution of
each component to the final suspiciousness score. Based in their own experiments and
in results from Zhou et al. (2012) and Saha et al. (2013), the authors adopted the default
values of 0.2 for parameter 4 and 0.3 for parameter » (Wang and Lo 2014).

3 Evaluation of bug localization techniques

In this section, we investigate how the usage of different sets of program constructs influ-
ences the effectiveness of bug localization. For such, we evaluate BLUIR (Saha et al. 2013),
BLUiR+ (Saha et al. 2013), and AmaLgam (Wang and Lo 2014) on 20 C# projects. C# is
a popular language (TIOBE Software BV 2016; The GitHub Blog 2015), similar to Java,

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 7 of 29

although with significant differences, especially regarding the available constructs. The
similarity will allow us to draw a parallel with Java results. At the same time, the dif-
ferences will allow us to explore constructs inexistent in Java, such as properties and
structures.

We also discuss dataset preparation steps conducted to mitigate shortcomings from
previous studies (Section 3.4). These preparation steps include selection of appropriate
project versions, removal of bug reports that could influence the evaluation, and removal
of test files from the search scope. Results show that, with the appropriate data prepa-
ration steps, effectiveness of bug localization is at least 34% lower, compared to the
effectiveness without the data preparation steps (Section 3.5).

After evaluating the techniques as they were conceived, we adapt them in order to
assess their sensitivity to the consideration of more constructs (Section 3.6). We define
three construct mapping modes, which represent different forms of splitting source
files, namely, Default, Complete, and Mixed modes. The Default mode corresponds
to the same mapping used by BLUIR (Saha et al. 2013), BLUiR+ (Saha et al. 2013),
and AmalLgam (Wang and Lo 2014), where source files are splitted into four documents,
consisting of class names, method names, variable names, and comments. In the Com-
plete mode, all the available constructs are considered separately and every source file
is splitted in 12 parts, each one corresponding to each available C# construct. Finally,
the Mixed mode maps all C# constructs into four groups, similarly to the original map-
ping used by BLUIR and AmalLgam. The Mixed and the Complete construct mapping
modes were able to increase bug localization effectiveness by 8% and 18%, on average
(Section 3.7).

3.1 Research questions

In order to perform a realistic evaluation of bug localization techniques based on struc-
tured IR, we need to evaluate them on different scenarios. An initial step in that direction
is to understand the behavior of prominent bug localization techniques applied to an
object-oriented programming language that is slightly different from Java. Java has been
the focus of previous studies of structured IR-based techniques for bug localization
(Section 2.3). Nonetheless, software engineers remain unaware to what extent they can
rely on these techniques to perform bug localization activities in projects structured with
other programming languages. We have selected C# as it is a general-purpose, object-
oriented language that shares many traits with the Java language, but also have some
distinct programming features. For example, some widely used C# constructs, like prop-
erties and structures (“structs”), are inexistent in Java. To the best of our knowledge,
neither of these techniques have been previously evaluated on other object-oriented
programming languages, such as C#.

We unfold our general goal in the following research questions:

RQI: Are BLUIR, BLUIR+, and AmalLgam effective to locate bugs in C# projects?

The effectiveness of current structured IR techniques, i.e., BLUIR, BLUiR+, and AmalL-
gam, have been assessed and confirmed only for Java projects. However, developers using
many other languages could also benefit from such techniques. To address this gap, we
ran the selected techniques in their best performing configurations (Section 2.3) on a set
of C# projects. The results enabled us to address RQ1 by assessing the effectiveness of
these techniques on a previously untested programming language.

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 8 of 29

RQ2: Does the addition of more program constructs increase the effectiveness of bug
localization on C# projects?

To fully understand the potential of structured IR techniques, we need to analyze their
sensibility to particular constructs of a programming language. Therefore, we addressed
RQ2 by focusing this analysis on program constructs that were also not considered in pre-
vious studies (Saha et al. 2013; Wang and Lo 2014), such as string literals, interfaces, and
enumerations. In addition, there are language features from C# that do not exist in Java,
such as structures and properties. The effects of their explicit consideration on state-of-
the-art bug localization are not well understood. Thus, we investigated to what extent the
effectiveness of a structured IR technique would benefit from the explicit consideration
of these source code constructs.

3.2 Evaluation metrics

This section describes the metrics used to assess the effectiveness of the techniques on
selected projects. We focused on the use of two sets of metrics typically used in recent
studies (Saha et al. 2013; Wang and Lo 2014; Zhou et al. 2012):

Top-N and Hit@N: Indicates the percentage of bug reports that have at least one buggy
file ranked by the technique in the top N positions. Typical values for N are 1, 5, and 10
(Saha et al. 2013; Wang and Lo 2014; Zhou et al. 2012).

Mean average precision (MAP): This metric considers the ranks of all the buggy files,
not only the first one. It is computed by taking the mean of the average precision scores
across all queries.

To measure the effectiveness of the technique for a given project, the arithmetic mean
of the results for each bug is taken. Finally, the effectiveness of a technique, or one of its
variations, corresponds to the average of the results for each project. We use commit and
bug report data obtained from the selected projects (Section 3.3) as the oracle against
which we compare the results of our implementation. When a bug report explicitly con-
tains a link to a commit, we consider the files modified in the commit as the ones that
solved the bug. This is a common assumption in many bug localization studies (Saha et al.
2013; Wang and Lo 2014; Zhou et al. 2012). When there is no explicit link between a bug
report and a commit, we use conventional heuristics (Bachmann and Bernstein 2009) to
infer this relationship. These heuristics consist of looking for commits that contain mes-
sages such as “Fixes issue 97” or “Closes #125”, which usually denotes the ID number of
the associated bug report.

3.3 Project selection

For our experiment, we needed a number of C# projects with available information
on their source code, commits, and bug reports. We could not find a bug dataset
for C# projects, like iBUGS (Dallmeier and Zimmermann 2016) or moreBugs (Rao
and Kak 2013b). Then, we used GitHub search functionality’ to obtain a list of large
C# projects, by searching for projects with 1000 or more stars and 100 or more forks.
These parameters indirectly allowed us to satisfy the requirement for large projects. The
query returned almost 80 projects from various domains, including development tools,
compilers, frameworks, and games.

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 9 of 29

We used GitHub API to download commit and issue data from the projects. We
downloaded the 1000 most recent issues for each project?, and then all the com-
mits that happened within the period covered by the issues. Next, we processed the
data to identify (i) issues that could be characterized as bugs and (ii) files modified
to fix the bug. For characterizing a GitHub issue as a bug, we relied on the labels
applied by the users. Issues with at least one label containing terms such as “bug”
or “defect” were considered a bug report. As for the files modified to fix a bug, they
are determined by the associated commit, as explained in Section 3.2. Since we are
focusing on C# code, we excluded from evaluation bugs that did not touch at least
one C# file.

After processing downloaded data, only those projects where we could find at least 10
bugs whose resolution modified at least one C# file were kept for the experiment. We
processed the projects in the order returned by the query until we reached 20 projects
that met our selection criteria. Table 1 presents a comparison between the dataset of
C# projects used in our study and the dataset of Java projects used in recent studies (Saha
et al. 2013; Wang and Lo 2014; Zhou et al. 2012) of the same techniques.

In our dataset, about 61% of the files contained in the repositories were C# files, the
ones we actually used to search for bugs. This happens because many files represent:
(i) configuration or HTML files, or (ii) source files structured with other programming
languages in case of multi-language projects. Actually, the existence of multi-language
projects also highlights the importance of evaluating bug localization techniques in
different programming languages. For the Java dataset, it was not clear whether the
total referred only to Java source files or to all repository files. Therefore, we assumed
the latter.

As for the bugs, all of them are treated as issues in GitHub issue tracker, although not
all issues are bugs. After downloading all the available issues, we associated them with a
commit whenever possible, using the criteria explained in Section 3.2. This step reduced
the number of available bugs to 17% of the original issue count. Then we discarded issues
that were not labeled as “bug’, which reduced the number of available bug reports even
further, down to 878 (5% of the initial number of issues).

3.4 Dataset preparation

As mentioned in the Introduction, previous studies suffer from a series of shortcom-
ings regarding their experimental setup. Next, we describe how we handled these
shortcomings in our evaluation.

3.4.1 Version selection
Previous studies on bug localization commonly selected only a single release and ran the
bug localization for all bugs on the same release. Results reported in this manner cannot

Table 1 Dataset comparison

Dataset details Java Cit
Projects 4 20
Files N/A 46,752
Source files 20,223 28,596
Issues N/A 16,630
Traceable to commits N/A 2839

Classified as bug 3479 878

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 10 of 29

be fully trusted (Rao and Kak 2013a), because there is a high chance that the bug is not
even present in the code being analyzed. To overcome this problem, we identified the
version of the source code that was active by the time the bug was reported by searching
for the oldest commit that happened before the bug report creation. The source code for
every identified version was downloaded, and each bug was localized on its corresponding

version.

3.4.2 Bugreport selection

Some bug reports already inform the location of the defect in the source code, by men-
tioning the file where the bug was observed. Kochhar et al. (2014) demonstrated that
including these bug reports on the evaluation of a bug localization technique significantly
influences the results by artificially increasing the reported effectiveness. The authors
classified bug reports in three categories: fully localized, partially localized, and not local-
ized, which mean that a bug report mentions all, some or none of the files modified to fix
a bug; respectively. We removed fully and partially localized bug reports from our evalu-
ation, meaning that we included only those bug reports that contained no mention of the
faulty files. Although this step contributes to more realistic results, it reduced the number
of available bug reports in 51%, from the 878 reported in Table 1 to 450 (3% of the initial
issue count).

3.4.3 Sourcefile selection

Software projects often include test code. Test code may contain bugs, which, in the-
ory, may be reported just like production code. However, bug localization algorithms
should not include test code within their scope. Consider, for instance, three bug reports,
whose resolution involved the modification of (i) only production code (no test code);
(ii) production and test code; and (iii) only test code. In the first case, it is obvious that
localization does not benefit from considering test code. When the resolution of a bug
requires changing production and test code (second case), it is usually because a test was
added or modified to catch the referred bug in the future. Test code was not the source
of the failure, though. Therefore, modified test files are not what developers expect as an
answer from the localization algorithm in this case. Finally, when a bug in the test code
itself is caught (third case), developers already have detailed information provided by the
test framework, which includes the location of the bug. Thus, even if a developer chooses
to report a test bug instead of fixing it immediately, it is likely that this report will include
the detailed information already provided by the test framework. Therefore, bug reports
on test code are rarer (because the developer may choose to fix the bug instead of report-
ing it) and likely to be localized (because test frameworks already indicate the buggy files).
This rationale led us to restrict the localization to production code.

We excluded test files from the scope of the analysis by ignoring all files that contain the
word “test” on its path. We confirmed with manual inspection on two sample projects that
this simple heuristic was able to accurately remove the undesired files, since it reflects (in
our sample) the common developer practices of naming test files with a “Test” prefix of
suffix, or placing test code in a separate directory named “test”.

3.5 Effectiveness of structured IR-based bug localization in C# projects
3.5.1 Effectiveness without dataset preparation.
Initially, we questioned whether current state-of-the-art bug localization techniques

based on structured information retrieval, i.e., BLUIR, BLUiR+, and Amal.gam, would

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 11 of 29

effectively locate bugs in C# projects. Considering results for Java, one would expect
similar levels of effectiveness for C# as well, given the apparent similarities between the
languages. To answer our first research question, we ran the bug localization techniques
on downloaded projects using the reported optimal configuration for each technique
(Section 2.3).

For the sake of comparison, we initially run the algorithms without the preparation
steps discussed in Section 3.4. Then, we repeated the evaluation of the three techniques
including these steps. For each technique, we took the average MAP, which consists of
the arithmetic mean of the MAPs from each project. Table 2 presents the average MAP
values observed for the set of evaluated projects alongside the same measure from Java
projects. Considering all the techniques, the average MAP achieved by each technique
with C# projects was around 0.307.

Opposed to the previous findings in Java projects, the selected bug localization
techniques showed lower effectiveness in terms of average MAP. This result should be
interpreted carefully, as the projects are different and cannot be compared. Neverthe-
less, the observed variation is explainable in part due to the higher number of projects
analyzed: 4 in the Java studies (Saha et al. 2013; Wang and Lo 2014) against 20 in our C#
study. Within projects in the same language, the techniques presented similar behavior:
AmalLgam performed better than BLUiR+, which outperformed BLUIR. Recall from
Section 2.2 that each technique uses a superset of the information used by the previously
proposed technique: BLUIR is based on the similarity of bug reports and source code,
BLUIR+ adds the similarity of previous bug reports to the equation, while Amalgam also
considers version history. This could be considered an indication that, in fact, hybrid
techniques which combine additional sources of information tend to perform better than
their predecessors do.

Table 2 also presents highest and lowest MAP scores for each technique and language.
The minimum MAPs from the C# group were lower than minimum values from the Java
group for all three techniques. The maximum MAPs, on the other hand, were similar. In
fact, there was one project where the techniques reached even higher MAP values, but it
was considered an outlier. Average MAPs for the outlier were 0.770, 0.767, and 0.747 for
BLUIR, BLUiR+, and AmalLgam, respectively (Fig. 1).

In spite of the lower averages relative to the Java evaluation, six C# projects still have
attained MAP scores superior to the average of their Java counterparts in at least one
technique. This implies that, in principle, there is no impediment to the usage of bug
localization on C# projects due to features of the language itself, leaving room for the
investigation of alternatives to increase the effectiveness of the techniques. In Section 3.7
we propose such alternatives by evaluating the effects of different mappings of language
constructs on the bug localization algorithm. However, we must first generate an accurate
baseline against which these alternatives can be compared.

Table 2 C# and Java results—MAP

. Minimum MAP Average MAP Maximum MAP
Technique
Java C# Java C# Java C#
BLUIR 0.24 0.103 0.38 0.302 0.56 0.596
BLUIR+ 0.25 0.125 0.39 0.307 0.58 0.596

Amalgam 033 0.120 043 0.312 0.62 0.604

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6

Non-prepared vs. Prepared data
p
o o
o
w
S H T o
] - 1 1
1 1 1 1
1 1 1 1
i i ! -) °
o | | \ ! |
Z i i ! i 1
Z = i i : ') -
m 9 ! 1 ! 1
s : i :
2 ! i '
z i i
i
1
o
= T
1 1 1
1 1 1
ki —t 1
L
! i
i -+ i
o | A -+
o
T T T T T T
ANMNoPr APr B+ NoPr B+ Pr B MoPr BPr
Techniques
Fig. 1 Effectiveness of techniques with C# projects—Non-prepared vs. prepared data

3.5.2 Effectiveness with dataset preparation.

To generate more realistic results, we have also evaluated the three techniques including
the dataset preparation steps presented in Section 3.4. Table 3 presents minimum, maxi-
mum, and average values for each technique when the dataset was properly prepared, and
the decrease relative to results with no preparation steps.

Wilcoxon Signed-Rank tests* with 95% confidence level confirmed that additional
preparation steps on the dataset significantly decreased the MAP scores for the three
techniques. Complete details about the tests, including p-values, are available at the study
website (Garnier 2016). The maximum values indicate that some projects were still able
to achieve reasonable scores. However, compared to the execution with no preparation
steps, the effectiveness of all projects decreased, on average, more than 30% for all the
evaluated techniques. Figure 1 presents a graphical comparison of the effectiveness with
and without the preparation steps. It becomes clear from the data that bug localization
studies must not ignore these steps, under the penalty of reporting results incorrectly
higher than what would be found in actual settings.

Removinglocalized bug reports from this kind of evaluation has indeed practical impor-
tance, as non-localized bug reports are exactly the kind of report where developers would
need the assistance of a localization technique. Therefore, the effectiveness of IR-based
bug localization in terms of mean average precision can still be considered too low for
these techniques to be applied in practice.

Table 3 Effect of dataset preparation steps on bug localization - MAP

Technique Minimum Average Maximum
BLUIR 0.020 0.183 (-40%) 0.499
BLUIR+ 0.048 0.198 (-36%) 0493
Amal.gam 0.044 0.206 (-34%) 0.565

Page 12 of 29

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 13 of 29

On the other hand, the expectations for this kind of technique must also be put into
context. No matter how effective they are, bug localization techniques do not elimi-
nate the need for the developer to examine and fix the buggy file. Therefore, instead
of pinpointing the exact files where the bug is located, it may be acceptable for the
technique to provide a list featuring a few candidates. Table 4 shows that the best
performing technique—Amalgam—was able to return a buggy file at the top of the
list 20% of the times, and in 57% of the times there was a buggy file among the 10
first files returned by the technique. Analyzing hundreds of files and correctly plac-
ing at least one buggy file in a list of 10 candidates for almost 60% of the time is a
reasonable result.

Nevertheless, these results reinforce that there is still room for improvement. As dis-
cussed in Section 2.3, structured information retrieval is the component that contributes
the most to the effectiveness of state-of-the-art bug localization techniques (Saha et al.
2013; Wang and Lo 2014). Thus, we extended the underlying algorithm of AmaLgam’s
structure component (Section 2.3) to assess its effectiveness when using a different set of
programming language constructs. We present the results in the next section.

3.6 Model adaptation

Structured IR demands the extraction of identifiers from source code. For this task, we
used the NET Compiler Platform (Microsoft 2014). As C# is an object-oriented language,
similar to Java, it has the same four constructs considered on BLUiR’s original evaluation:
classes, methods, variables, and comments. However, C# also has constructs that either
were not considered by BLUIR (and, consequently, neither by BLUiR+ nor AmaLgam) or
do not exist in Java. Table 5 summarizes these differences.

We do not consider language keywords (e.g., “if”; “for”, “while”) as they would carry little
meaning for bug localization purposes. Therefore, we limit the considered constructs to
identifiers (Table 5). Because identifier constructs can be named, they are more likely to
reflect domain-specific concepts, which increases the possibility of matching bug report
terms, justifying their choice.

BLUIR breaks a source file into parts. Each part contains identifiers from one kind
of construct. To deal with the different kinds of constructs, while keeping the underly-
ing philosophy of BLUIR, we devised three alternative configuration modes to run the

experiment:

e Default: Strictly uses only the same constructs used by BLUIR, ignoring any other
construct.

e Complete: Uses all the constructs, with each one mapped to an exclusive file part.

e Mixed: All constructs are used, but they are mapped to one of the four file parts
corresponding to the constructs originally used by BLUIR.

Default mode is used as a baseline for the sake of comparing our results with the original
evaluation in Java projects (Saha et al. 2013). Complete mode represents the simplest way
of including new constructs in BLUiR’s algorithm. Mixed mode represents an alternate

Table 4 Amal.gam effectiveness with dataset preparation steps
Technique Hit@1 Hit@5 Hit@10
Amalgam 20% 46% 57%

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 14 of 29

Table 5 List of C# constructs

Cit construct Equivalentin Java? Considered by BLUIR?
Classes Yes Yes
Comments Yes Yes
Enumerations Yes No
Fields Yes No
Interfaces Yes No
Methods Yes Yes
Namespaces Yes (packages) No
Parameters Yes No
Properties No No
String literals Yes No
Structures No No
Variables Yes Yes

way of computing new constructs, by mapping them to one of the preexisting categories.
For example, interfaces, structures, and enumerations are semantically close to classes.
Therefore, for the purpose of bug localization, it could be enough to consider code ele-
ments of any of these types as “classes” In a similar vein, string literals usually represent
plain text inserted into source files, such as comments do. Therefore, string literals and
comments could be mapped together in the same file part.

The difference between some constructs is negligible in practice. For instance, variables
and parameters are distinct constructs, strictly speaking. However, from the developers’
point of view, they are both handled as variables. Although it was not clear, this simplifica-
tion might have been used in the BLUIR evaluation. Thus, the Mixed mode addresses this
possible ambiguity, by defining a broader interpretation to the four constructs mentioned
by Saha et al. (2013). The mapping strategy for each mode is shown in Table 6.

3.7 Usage of more constructs to improve bug localization effectiveness

The set of constructs used by BLUIR, BLUiR+, and AmaLgam includes basic constructs
from object-oriented languages (classes and methods) and constructs from programming
languages in general (variables and comments). However, some subtleties about construct
selection were omitted or unaddressed in previous studies. There are additional types
of constructs that could be explicitly considered by bug localization techniques. When
considering a different programming language, with a different set of constructs, this issue
becomes more relevant.

To answer whether the consideration of more construct types could improve the effec-
tiveness of bug localization, we designed the three construct-mapping modes described
in Table 6. Next, we needed to select a technique to adapt according to the new mapping
modes. As the focus of the adaptations are in the usage of the program constructs by the

Table 6 Construct-mapping strategies

Mode Construct mapping

Default Classes, methods, variables and comments (one file part for each)
Complete All constructs (one file part for each)

Mixed Part 1: Classes, enumerations, interfaces, namespaces, and structures
Part 2: Methods
Part 3: Fields, parameters, properties, and variables
Part 4: Comments and string literals

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 15 of 29

structure component, all three techniques—BLUIR, BLUiR+, and AmalLgam—were can-
didates. Moreover, the difference of BLUIR and BLUiR+ to AmaL.gam is that the latter also
analyzes additional components (Version History and Report Similarity components),
which do not use program constructs at all. Therefore, regarding the contribution of pro-
gram constructs (focus of our study), one can assume the same results regardless of our
choice between BLUIR, BLUiR+, or AmaLgam. Thus, we selected AmalLgam, the best per-
forming technique according to the evaluation from Section 3.5.2, adapted it to use the
three mentioned modes, and applied it to the set of C# projects. We present the aver-
age MAPs (Table 7) and a box plot (Fig. 2) summarizing the performance observed for
each mode.

The usage of all the 12 constructs associated with the Complete mode increased the
average MAP of Amalgam to 0.244, an increase of 18%. Mixed mode, which also uses
the 12 constructs but maps them into four categories (Table 6), showed a smaller increase
on average, to 0.222 (near 8%). From these results, only the improvement associated with
Complete mode was statistically significant, according to Wilcoxon Signed-Rank tests
with 95% confidence level (Garnier 2016). The effect of the three construct-mapping
modes on individual projects was generally the same observed on average values: the
higher increase was associated with the Complete mode, while Mixed mode caused a
more modest increase, as shown in Fig. 2.

The reason why Complete mode was able to produce better results can be explained by
BLUIR formula (also used by AmaLgam) for determining the similarity of a bug report
and a source file (Section 2.3), which involves the summation of the similarities of all
pairs of bug-file parts. In Default mode, the total number of similarities to be summed
is 8—two parts from the bug report multiplied by four parts from the source code files.
In Complete mode, the number of “similarities” increases to 24 (12 file parts x 2 bug
parts). Similarity results are normalized before the rank of files is generated, such that
file scores are always between 0 and 1. Therefore, the higher value that would result
from the summation of more terms in Complete mode is unlikely to be the reason this
mode produced better results. In addition, the Mixed mode restricts the number of terms
to be added up to 8, similarly to the Default mode. Since the Mixed mode has also
produced results higher than those of the Default mode, we conclude that the consider-
ation of more source constructs by itself contributed to increasing the bug localization
effectiveness.

Execution time. As we logged all the bug localization runs, including the time elapsed
for each run, we can assert that the modes that process more constructs (i.e., Mixed and
Complete modes) do take longer to complete than the Default mode. However, in the
first runs of the adapted modes, we perceived no significant increase in the elapsed time.
Thus, we did not design a research question to evaluate the variation of the elapsed time
for each bug localization run. Therefore, we did not implement measures to control the
execution environment, such as avoiding parallel execution of other programs that could
compromise any measurement of the elapsed time. Consequently, the data we collected

Table 7 Effectiveness of Amal.gam using different construct-mapping modes

Mode Default Complete Mixed
Average 0.206 0.244 0222

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 16 of 29

Construct mapping modes comparison
1
l :
@ _| i ! —
o 1 | |
| | I
i) i
: : '
= 1 : :
=] 1 | I
| | I
| | Il
o ! 1
4 1 1
= 1 |
5 @
o o
i
-
S
o~
o
i
- 1 1
(=]] 1
]] 1
1 1
1 1
1 1
o _| — -
o
T T T
Default Complete Mixed
Mapping modes
Fig. 2 Effectiveness of construct mapping modes

regarding elapsed time cannot be used to compare the cost-benefit of each mapping mode
formally.

3.8 Threats to validity

3.8.1 Construct validity

As we could not find an available bug benchmark for C# projects, we downloaded issues
from GitHub and used the existence of a user-applied “bug” label as a criterion to identify
bugs among those issues. Even following this procedure, we are still subject to misclas-
sified issues, since not all bug reports could be manually verified. We also assume all
files touched by a bug-fixing commit are related to the bug. Although this is a common
assumption in bug localization studies (Saha et al. 2013; Wang and Lo 2014; Zhou et al.
2012), it is possible that some files included in a commit are not actually related to the
bug it fixes.

However, Kochhar et al. suggest that even though these biases (i.e., misclassified issues
and files unrelated to the bug in a commit) may influence bug localization results, the
influence from these particular biases is neither significant nor substantial (Kochhar et al.
2014). Thus, we concentrated on the issue of localized bug reports—the type of bias that,
according to Kochhar et al. (2014), do influence bug localization results. We handled this
issue by excluding localized bug reports from the analysis. By performing this exclusion,
we remove an important bias that may have led previous studies to unrealistic results.

Studies involving retrospective evaluation of bugs should consider the version of the
software at the time the bug was found. We addressed this issue by performing the local-
ization on latest version available before the creation of each bug report. Strictly speaking,
this does not guarantee that the selected version actually contains the bug reported.
However, the selection of a previous version of the code for each bug report is a close
approximation. Moreover, this step mitigates a threat ignored in many recent studies on
bug localization, including those from Saha et al. (2013) and from Wang and Lo (2014).

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 17 of 29

Finally, the presence of test files also influences bug localization results, since bug
reports related to these files are very likely to be localized (Section 3.4.3). We eliminated
this bias by excluding test files from the evaluation. The full rationale for performing
these exclusions was discussed in Sections 3.4 and 3.5.2. The adoption of these dataset
preparation steps argues for a strong construct validity in our study.

3.8.2 External validity

In an attempt to increase generalizability, we selected a higher number of projects com-
pared to previous studies. Given the criteria defined in Section 3.3, we were able to select
20 projects, a considerably higher number of projects compared to other studies on bug
localization (5 times more than the BLUIR (Saha et al. 2013), BugLocator (Zhou et al.
2012), and AmaLgam (Wang and Lo 2014) studies). The absence of a standardized bug
database, however, greatly reduced the amount of bug reports available for the experi-
ment (Table 1). The relatively low quantity of bug reports and the variation in quantity
and quality of bug reports observed on each project are threats to the external validity of
our study. However, we consider that bug localization techniques must be assessed under
realistic project settings, i.e., the quantity of bug projects naturally varies widely from one
project to another. The complete list of evaluated projects and the number of bug reports
evaluated for each one is available at the study website (Garnier 2016).

Another threat is the fact that all selected projects were open-source. This kind of
project has a characteristic workflow that differs from that found on proprietary projects.
Different policies on bug reporting, for example, may significantly influence the results
of bug localization techniques. Therefore, the results presented in this study are only
representative of the workflow typically practiced in open-source projects.

4 Analysis of the contribution of program constructs to bug localization
Structured information retrieval (IR) has been able to increase the effectiveness of static
bug localization techniques (Saha et al. 2013; Wang and Lo 2014). The key feature of struc-
tured IR-based techniques refers to how they break up source files, based on constructs
available in the adopted programming language. Bug localization techniques based on
traditional IR calculate the similarity between a source file and a bug report considering
the whole file (Section 2.2). Conversely, structured IR-based techniques break source files
into multiple parts, one for each construct recognized by the technique (Section 2.3). Each
of these parts contains only terms that are instances of the corresponding construct in the
original source file. Then, instead of calculating similarity using the whole file, the final
similarity between a bug report and a source file is the sum of the similarities between
each part of the source file and the bug report (Equation 1). BLUIR (Saha et al. 2013)
recognizes four Java constructs: class names, method names, variable names, and com-
ments (Section 2.3.1). Thus, it breaks source files into four parts. The same approach is
followed by BLUiR+ (Saha et al. 2013) (Section 2.3.1) and AmaLgam (Wang and Lo 2014)
(Section 2.3.2).

However, structured IR has not been thoroughly explored yet. In addition to the lim-
itation of being evaluated only on four projects, the original models of BLUIR (Saha
et al. 2013), BLUiR+ (Saha et al. 2013), and AmaLgam (Wang and Lo 2014) used only
four constructs from the Java language (Section 3.6). Thus, it is unknown whether other
constructs, such as interfaces or enumerations, could have influenced bug localization

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 18 of 29

results. This question becomes even more relevant when source files are written in
other programming languages, such as C#, which supports constructs inexistent in Java
(Table 5).

In this section, we investigate the influence of different program constructs on the
effectiveness of structured IR-based bug localization. In this investigation, we use results
obtained with the Complete mode (Section 3.6), as this construct mapping mode
increased bug localization effectiveness by including all available C# constructs into the
localization process (Section 3.7). Then, we use a statistical procedure called Principal
Component Analysis (PCA) to quantify the contribution of each construct to the similar-
ity score attributed to source files (Section 4.1). This analysis will reveal the extent of the
correlation between those constructs and bug localization results.

Finally, we explore the different contributions from each construct by further modifying
the bug localization algorithm. First, we evaluate whether suppressing low-contributing
constructs influences the result either positively or negatively (Section 4.2.2). Next, we
evaluate whether bug localization effectiveness can be increased by attributing higher
weights the most influential constructs in the file score equation (Equation 1), thus
emphasizing their contribution (Section 4.2.3).

4.1 Assessment of construct contribution

As the usage of more constructs has been shown to increase bug localization effective-
ness (Section 3.7), we need to understand the contributions of each construct to the
effectiveness increase. For this purpose, we have devised the following question:

RQ3: Which program constructs contribute most to the effectiveness of bug localization
in C# projects?

To answer RQ3, we must analyze in more depth data related to files that were effec-
tively located. Therefore, we selected those files that were both buggy according to the
oracle (Section 3.2) and highly-ranked by the technique, i.e., ranked among the top 10
positions. The number of positions, 10, is consistent with the Hit@10 metric (Section 3.2).
Next subsection presents a brief description of the procedure used to assess construct

contribution.

4.1.1 Principal component analysis

To answer RQ3, we use Principal Component Analysis (PCA). PCA is a statistical proce-
dure that transforms a number of possibly correlated variables into a smaller number of
variables called principal components (Jolliffe 2002). The central idea of principal com-
ponent analysis (PCA) is to reduce the dimensionality of a dataset consisting of a large
number of variables while retaining as much as possible of the variation present in the
dataset. This is achieved by transforming to a new set of variables, the principal compo-
nents (PCs), which are ordered so that the first few retain most of the variation present
in all of the original variables (Jolliffe 2002). Translating bug localization domain to PCA,
the constructs are the variables, and the similarity scores are the variable values.

The reasoning for using PCA to assess the contributions of constructs is that such
analysis may shed light on how to further improve bug localization effectiveness. For
instance, its use may indicate that the studied techniques may be more sensitive to a spe-
cific construct subset. If this is true, most influential constructs will emerge as highly
correlated with the first few principal components (PCs). Furthermore, it is expected that

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 19 of 29

the influence exerted by these constructs could be exploited to increase bug localization
effectiveness.

4.1.2 Analysis setup

To perform the analysis, we organize relevant data in the form of a table: variables are
laid out in columns, while rows correspond to data points. The 12 C# constructs (Table 5)
are the variables. The data points correspond to every buggy file effectively located. The
values for each variable are the summands that compose scoreS, the similarity score
attributed by Amalgam’s structure component (Section 2.3). scoreS is the summation
of the similarities of each pair of file and bug parts (Equation 1). Thus, for each con-
struct, there is a term from scoreS that reflects its specific contribution to the structural
similarity score. These are the variable values used as input for the PCA. These val-
ues were taken from the best performing mode of construct mapping (i.e., the Complete
mode, Section 3.6). After applying the selection criteria for effective instances (i.e., buggy
files ranked among the top 10 positions), 363 data points were selected to compose the
PCA input.

4.1.3 Variances of principal components

PCA transforms the input data into a coordinate system such that the highest variance
lies on the axis corresponding to the first principal component. Remaining components
represent dimensions that account for a decreasing amount of variance. In other words,
the first components explain most of the variance of the data. In our context, we explore
PCA to understand which constructs better explain the data variance on bug localization
results.

Figure 3 presents the degree of variance explained by each of the 12 PCs. While X-axis
represents the PCs, Y-axis indicates the percentage of explained variance. Figure 3 shows
that the first principal component (PC1) accounts for 20% of the variance in the data,
twice as much as PC2. From PC2 through PC12, the percentage of variance smoothly
decreases from 10 to 4.1%.

One of the main applications of PCA is to reduce dimensionality from a dataset. This
is possible when the first few components account for a high percentage of the variance.
What may be considered a high percentage of variation is subjective, although the liter-
ature suggests a sensible cutoff is often in the range of 70 to 90% (Jolliffe 2002). Thus,
considering the distribution presented in Fig. 3, it would be necessary to retain the seven
first PCs to account for 70% of the variance. The analysis of Fig. 3 reveals that, except
for PC1, all remaining components present comparable contributions to the structural
similarity scores. Hence, no component can be confidently discarded due to a negligible
contribution.

Although all construct types contribute to the final scores, analysis of the variances
(Fig. 3) suggests that some constructs contribute more than others do. These are probably
associated with PC1, which by itself accounts for 20% of the variance in the results. It
remains to be investigated which constructs are associated with the first few principal
components.

4.1.4 Constructs associated with principal components

The degree of relationship between original variables and principal components created
by the analysis can be measured by their correlation coefficients. A positive correlation
indicates that both values (original variable and PC) increase simultaneously. Therefore,

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6

Scree plot

20.5%
20-

10- 9.7% 95%

6.7% 66%

Percentage of explained variances

10%
5.6%
8%
5% 57%
5- 4 6%
I4.1%

0- I
i1 2 3 4 5 & 7 & & 1w 11 12

Dimensions

Fig. 3 Variance corresponding to each principal component

positive correlations reveal constructs that positively contribute to the result. Conversely,
negative correlations indicate that while one of the values increases, the other one
decreases. This situation could be interpreted as a “wrong clue” to the technique, as the
negatively correlated construct would be assigning higher scores to files that, according
to the rest of the constructs, should have lower scores. Therefore, constructs with a neg-
ative correlation to the PCs are likely to be negatively contributing, i.e., “disturbing” the
results. Figure 4 depicts the correlation between constructs and principal components in
the form of a correlogram (Friendly 2002).

In Fig. 4, blue values represent positive correlations, while red values indicate negative
correlations. Higher absolute values indicate stronger correlations. Thus, the closer to +1
the correlation is, the greater the contribution of the construct. Similarly, constructs with
correlations close to —1 are more likely disturbing the effectiveness of the technique. The
strength of the correlation is also given by the intensity of the color: dark blue and dark
red circles indicate strong positive and negative correlations, respectively. Statistically
insignificant correlations are signaled with a dark “x”.

Positive correlations. Figure 4 shows that many constructs are positively correlated with
the first principal component (Dim.1). Not surprisingly, method and class names are the
ones with the strongest positive correlation. This means that method and class names are
the most influential constructs regarding the first dimension extracted by the PCA. This
result was expected as classes and methods often represent the most important domain
abstractions realized in program files. They embrace some other inner constructs in a file,

Page 20 of 29

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 21 of 29

S
O\@

’\’\ ,\fl,
&

0'\@"\6\6&6@@0@?‘0'@@6\6&0@* & ‘Pé\@‘?’
ClassNames 0.63 X X X
Comments >< >< 08
EnumNames X 054 XXX | X | [os
FieldNames 0.49 X 0.47) X XIX|® o4
InterfaceNames 0. X >< >< >< >< 0.51 X .
MethodNames 0.69 X XXX < X[X |05

NamespaceNames 0.51 X >< X

1

ParameterNames 0.54 >< >< [22
PropertyNames 056 X X X X X X |4
StringLiterals) 0.69 X X Btas
StructNames 0.62 X X 08
VariableNames 0.54 >< X

Fig.4 Correlation between variables and principal components

were the bugs are often “located” Given their importance in the system domain, the names
of such (class or method) abstractions are often the target of reflection when someone is
either reporting or locating a bug.

The construct with the third highest correlation to the first PC is Properties. Proper-
ties, alongside with Structures, is one of the two C# constructs (Table 5) that have no
equivalent in Java. The contribution of Properties, though, was more relevant than that of
Structures. This can be explained by the fact that Structures usually represent simple data
structures, with little or no behavior, and therefore are less prone to be associated with
bugs. Moreover, Structures are independent constructs, while Properties, on the other
hand, are members of classes. Therefore, it is expected that Properties be more closely
related to domain abstractions, increasing their chances to be mentioned in bug reports.

After Properties, the next constructs more correlated with PC1 are Parameters and
Variables. Variables represent a ubiquitous concept of programming languages, and its
relevance to IR-based bug localization is no surprise. Parameters are used to pass values
or variable references to methods (Microsoft Corporation 2012). Although Parameters
are strictly different from Variables, their purposes are quite similar. We have discussed
the possibility of considering some constructs equivalent, including Parameters and Vari-
ables, with the Mixed construct-mapping mode (Section 3.6). However, we have observed
the Complete mode, i.e., considering the constructs separately, yielded better results
(Section 3.7). The high correlation of these two constructs with PC1 may explain the
advantage of the Complete mode. As both constructs proved to be relevant (Fig. 4),
considering them separately had the effect of raising the similarity score.

The construct with the strongest positive correlation with the second dimension is
String literals. This construct had a negligible effect on the first principal component.
However, the strong correlation with the second component indicates that, overall, it
still has a significant contribution to bug localization effectiveness. The importance of
String literals may be explained by the fact that many bug reports include error messages,

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 22 of 29

which are often included in the source code as string literals. This finding also reinforces
that String literals should be explicitly considered in structured IR-based bug localization
models.

Moreover, the fact that String literals were more correlated with the second PC,
rather than the first, is meaningful. As aforementioned, each PC represents a dif-
ferent dimension of the data. Thus, the contribution of String literals occurs in a
different dimension than that represented by PC1. This means that files with high
scores due to similarity with String literals did not have high scores due to method or
class name similarity, for example. This fact can be interpreted as an indication that
some files would only be located due to the similarity of bug reports with String lit-
erals. This is an interesting result, as String literals were not considered by BLUIR
(Saha et al. 2013) nor AmaLgam (Wang and Lo 2014), despite being a frequently used
construct.

Similar reasoning can be applied to the third PC, where Structures are the most relevant
construct, and so forth. However, as one advances into the subsequent PCs, one must
remember that the relevance of the PCs decreases (Fig. 3). Moreover, constructs with neg-
ative correlations become more common. Thus, an analysis of the influence of negative
correlations is also necessary.

Negative correlations. No construct showed negative correlation with the first principal
component. However, from the second PC onwards, negative correlations start to appear.
The highest negative correlations observed were for Methods, on PC12 (—0.5), followed
by Fields on PC7 (—0.47), and Interfaces on PC2 (—0.46). However, the percentage of the
variance explained by these components are 4.1%, 6.7%, and 10%, respectively (Fig. 3).
Thus, the strong negative correlation displayed by Interfaces represent a more relevant
concern.

Interfaces presented a strong negative correlation as early as the second dimension.
Although it was also responsible for a similar contribution on PCl, its relative influence
within that particular PC was lower than in PC2 and PC3: it has the sixth largest abso-
lute correlation value on PC1 and the third largest value on PC2 and PC3. Apart from
PC1, the positive contributions from Interfaces appear only on PC8 (fourth largest) and
PCI10 (first largest). These dimensions, however, account for 6.6% and 5.7% of the variance
observed in the scores. Therefore, the positive contribution from Interfaces are relatively
low, compared to other constructs. The negative correlation of Interfaces with PC2 sug-
gests this construct offers the most negative contribution, thus probably decreasing bug
localization effectiveness. This is somehow a surprising result since interface names usu-
ally capture important domain abstractions, which could frequently be mentioned in bug
reports. However, we observed that in our dataset: (i) bug reports tend to refer to con-
crete concepts rather than abstract concepts (interfaces), and (ii) bugs are unlikely to be
directly or indirectly related to the realization of an interface in the program.

4.2 Effects of constructs on bug localization results

This section explores the effects of program constructs on bug localization. Section 4.1.4
presented the constructs of interest for such exploration, i.e., constructs with low and
high correlations with bugs effectively located by AmaLgam. To investigate the effects of
these constructs, we have formulated the following questions:

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 23 of 29

RQ4: Does the effectiveness of bug localization increase with the suppression of constructs
with the lowest contributions?

RQ5: Does the effectiveness of bug localization increase with the emphasis on constructs
with the highest contributions?

RQ4 asks whether the suppression of low-contributing constructs could increase
bug localization effectiveness. Interfaces emerged as the construct with higher nega-
tive correlation—thus, less correlated—with effectively located bugs. Therefore, RQ4 will
be answered by adapting AmaLgam to ignore interface names and, then, applying this
adapted version on the projects that comprise the experimental dataset.

In contrast, RQ5 inquires about the effects of emphasizing constructs highly corre-
lated with bugs that were effectively located by AmalLgam, namely, Methods and Classes
(Section 4.1.4). Both RQs can be answered by running Amal.gam’s adaptation presented
in the next section.

4.2.1 Modifying the emphasis of program constructs

To answer RQ4 and RQ5, we modify AmaLgam by allowing it to use different weights
for each file part generated during source file splitting. The formula originally defined
in BLUIR (Saha et al. 2013), and also used by BLUiR+ (Saha et al. 2013) and AmaLgam
(Wang and Lo 2014) (Equation 1) is replaced by:

> [Wi preb sim(fpi, bp)]
Y wi

Equation 4 incorporates weights to the calculation performed by Amalgam’s structure

(4)

sim(f,b,w) =

component. Recall from Section 2.3.1 that structural similarity is computed by splitting
bug reports and source files into parts corresponding to relevant fields. Bug reports are
split into summary and description, while source files are split into as many parts as the
number of constructs being used.

Using this fomula will allow us to modify the influence of constructs by attributing them
weights. For instance, if Methods and Classes are the constructs that contribute the most
to the technique, it is possible that attributing higher weights to their scores could lead to
an effectiveness increase. Likewise, if Interfaces are negatively contributing to the result,
effectiveness may be increased by nulling the similarity scores related to interface names.

Next subsections presents the results of this evaluation.

4.2.2 Suppression of low-contributing constructs

The influence of each program construct on the similarity scores attributed by AmalL.gam
is not homogeneous (Section 4.1.4). The correlation of these scores with the dimensions
revealed by principal component analysis (Fig. 4) made it clear that some constructs exert
greater influence on bug localization effectiveness than other constructs do. It is unclear,
however, whether negative correlations can disturb results. That is the subject of RQ4:

RQ4: Does the effectiveness of bug localization increase with the suppression of constructs
with the lowest contributions?

Principal component analysis results showed that the constructs with the lowest con-
tribution are Interfaces. In fact, Interfaces are the constructs with the larger negative
correlation with the principal components. Thus, while similarity scores from positively
correlated constructs increase together, scores from interface names decrease. To assess

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 24 of 29

whether this effect has any influence in bug localization results, we used the dataset of
20 C# projects to run Amalgam considering all the 12 available C# constructs (Table 5)
except for Interfaces. Results are summarized in Table 8.

Removing Interfaces from the localization process increased Amalgam’s average MAP
from 0.244 to 0.245 (0.4%). Median and maximum MAPs were also slightly increased,
while minimum MAP was unchanged. This is a positive, although negligible, increase on
AmaLgam results, with no statistical significance. Therefore, it is not possible to answer
RQ4 positively based on our dataset, as it cannot be said that Interfaces hamper bug
localization. Thus, contrary to our initial assumption, it is not needed to remove low-
contributing constructs from bug localization models based on structured information

retrieval.

4.2.3 Emphasis on most contributing constructs

One possible way of increasing effectiveness of bug localization based on structured infor-
mation retrieval is to assign different weights to the parts in which source files are split
(Saha et al. 2013). PCA revealed that Methods and Classes are the constructs with greater
contribution to bug localization results (Section 4.1.4). Thus, RQ5 asks whether it is
possible to increase the effectiveness of a technique by emphasizing highly contributing
constructs:

RQS5: Does the effectiveness of bug localization increase with the emphasis on constructs
with the highest contributions?

To answer RQ5, we must choose one or more constructs with high contributions to
the results, assign them higher weights (Equation 4), and re-run Amal.gam with this con-
figuration. We selected the two constructs with the highest contribution, Methods and
Classes (Section 4.1.4), and assigned weights of 1.5, 2.0, and 3.0 to each one. These val-
ues were arbitrarily chosen to promote a significant variation in the weights, so we could
observe to which extent the technique benefits from using higher or lower weights. The
results obtained with this execution are displayed in Table 9. The first row repeats AmalL.-
gam best results, i.e., with the Complete mode (Table 7), while next rows (referenced by
keys) represent the weighted configurations being tested.

Table 9 shows that, in general, usage of higher weights was able to increase AmaLgam’s
effectiveness, measured in terms of mean average precision (MAP). Class constructs
(rows D—F) led to higher MAPs than Method constructs (rows A—C) with the same weight
for all statistics (minimum, median, maximum and average MAP). As for the weight val-
ues selected, best average MAPs were obtained when the emphasized construct had its
weight doubled (rows B and E, weight = 2.0).

We used Wilcoxon Signed-Rank tests to assess statistical significance. Unfortunately,
none of the results was statistically significant at 95% confidence level, although config-
urations with weights = 1.5 (rows A and D) came close (94.7% for Method and 90.8% for
Class). The confidence levels decreased drastically as the weights increased. For instance,
the result for the configuration with the highest MAP, i.e., Class weight = 2.0 (row E), had

Table 8 Effect of the suppression of interface names—MAP

Mode Min Median Max Avg.

All constructs 0.055 0.198 0573 0.244
Without interfaces 0.055 0.200 0.582 0.245

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 25 of 29

Table 9 Effect of applying higher weights to method and class names—MAP

Key Mode Min Median Max Avg.

— Baseline 0.055 0.198 0.573 0.244
A Method weight = 1.5 0.055 0.200 0574 0.246
B Method weight = 2.0 0.056 0.195 0.574 0.246
C Method weight = 3.0 0.050 0171 0574 0.238
D Class weight=1.5 0.055 0.207 0.582 0.248
E Class weight =2.0 0.055 0.207 0.582 0.265
F Class weight =3.0 0.055 0.194 0.582 0.256

a confidence level of 73% (p-value = 0.2707). As for Class weight = 3.0 (row F), not only
the MAP dropped, but also the confidence level (32%, p-value = 0.6783). The same was
observed for Method weight = 3.0 (row C), which means 3.0 is a weight value beyond the
threshold both for effectiveness and for significance.

The constructs Methods and Classes presented similar levels of influence to bug local-
ization results, as measured by their correlation to the main component revealed by PCA
analysis (Fig. 4). Thus, we also tested AmalLgam simultaneously changing the weights
of these two constructs. We fixed Class weight with a value of 2.0, as it was the best
result obtained when constructs had their weights changed individually (Table 9, row E).
Then, we applied weights of 1.5 and 2.0 to Method constructs. We did not set Method
weight = 3.0, as this weight value led to smaller MAPs for both constructs evaluated
individually (Table 9, rows C and F). Results are presented in Table 10.

In Table 10, previous results (in italics) are repeated for the sake of comparison. The
first row contains baseline results from the Complete mode, with equal weights for all
constructs (Table 7). The second row repeats the result obtained with a weight of 2.0
attributed to Class constructs (Table 9, row E). It is possible to see that average MAP
increased from 0.244 (baseline) to 0.266 when Method weight is set to 1.5 (row G), and
to 0.253 when Method weight is 2.0 (row H). Combining Method weight = 1.5 and Class
weight = 2.0 (row G) even increased average MAP compared to using only Class weight
= 2.0 (row E), although by a negligible amount (only 0.4% higher, from 0.265 to 0.266).

As with the first part of this evaluation, we used Wilcoxon Signed-Rank tests to deter-
mine statistical significance. Results for combined weights were closer to the selected 95%
confidence threshold: 93% for row G and 96% for row H (p-values of 0.0682 and 0.0412,
respectively). Thus, it is possible to state that setting Class and Method weights to 2.0
(row H) significantly increased bug localization effectiveness, compared with the baseline
with equal weights for all constructs.

Table 10 Effect of combining higher weights on method and class names—MAP

Key Mode Min Median Max Avg.
— Baseline 0.055 0.198 0573 0.244
3 Class weight = 2.0 0055 0207 0582 0.265
G Class weight = 2.0 0.055 0.198 0571 0266
Method weight = 1.5
cl ight = 2.0
H ass welg 0.056 0.195 0571 0.253

Method weight = 2.0

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 26 of 29

4.2.4 Discussion

In this section, we investigated the influence of different program constructs on the effec-
tiveness of structured IR-based bug localization. Initially, we applied principal component
analysis (PCA) on results from AmaLgam in the Complete mode. This analysis intended
to reveal which constructs from the C# language exerted more or less influence on bug
localization results.

PCA data suggested that all constructs exerted a significant level of influence on the
results (Section 4.1.3). Thus, it was not possible to identify irrelevant constructs just
by inspecting PCA data. The analysis also revealed that Methods and Classes were the
constructs with more influence on the results (Section 4.1.4).

In spite of PCA data not having revealed constructs that could be considered irrelevant,
some constructs emerged as negatively correlated with bug localization results. The most
striking example was Interfaces (Fig. 4). This negative correlation caused us to investigate
what would be the effect of suppressing Interfaces from bug localization (Section 4.2.2).
Compared to the baseline, results were practically unchanged (Table 8). Thus, we con-
clude that suppression of low-contributing constructs does not increase bug localization
effectiveness.

Another possible way of increasing effectiveness of bug localization is by empha-
sizing constructs that are more influential, i.e., Methods and Classes (Section 4.1.4).
Although this possibility has been suggested in the literature (Saha et al. 2013), we
were unable to find any bug localization technique that emphasize particular pro-
gram constructs. We investigated that possibility by running Amal.gam with alternative
configurations, where different weights were assigned to these two constructs, one
at a time (Section 4.2.3). Practically all of these configurations caused the average
MAP to increase (Table 9), although none of these improvements reached our sta-
tistical significance threshold. Nonetheless, we also tested Amalgam assigning higher
weights to both Methods and Classes, simultaneously. In this case, a statistically
significant improvement was attained when Methods and Classes were assigned a
weight of 2.0 (Table 10). Compared to the baseline, MAP increased from 0.244 to
0.253 (3.7%).

It was previously demonstrated that bug localization based on structured information
retrieval benefits from the usage of more program constructs (RQ2, Section 3.7). This
finding is reinforced by the thorough analysis of the contribution of program constructs
performed in this section. The answer to RQ3 suggested that all constructs significantly
influence bug localization results. RQ4 confirmed this suspicion, by showing there was
no significant effectiveness increase when the technique ignored the construct with the
smallest contribution.

The usage of weights in the calculation of structural similarity increased bug local-
ization effectiveness. The weight values used in this experiment (1.5, 2.0, and 3.0) were
selected empirically. Thus, a possible improvement to this evaluation involves determin-
ing optimal weights for each construct. Likewise, we only evaluated the assignment of
higher weights to the two most influential constructs, i.e., Methods and Classes. How-
ever, the effect of weighing more than two constructs is still unknown, and could be
the subject of future studies. Nonetheless, weighing constructs proved to be a promis-
ing way of increasing the effectiveness of bug localization techniques based on structured

information retrieval.

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 27 of 29

5 Conclusion
Structured information retrieval has been successfully applied to the bug localization
problem. Techniques based on structured IR have shown to be considerably more effec-
tive than other IR-based approaches. However, these techniques are language-specific, as
they depend upon the structure of source files. Considering the multi-language nature
of most modern software (Karus and Gall 2011), it is important to have effective bug
localization models for the different kinds of languages and technologies used in software
projects. This study is a step in that direction, where a thorough evaluation is performed
on C# projects, offering an alternative to the usual choice for Java projects.

Next sections summarize our findings and present ideas for future work.

5.1 Findings

The average effectiveness of the evaluated techniques on C# projects was lower than the
same metric reported in the original studies on Java. However, some projects have indi-
vidually yielded results above the average informed by the Java studies. Therefore, we
conclude that, in principle, there is no impediment to the usage of bug localization on C#
projects due to features of the language itself. The lower average effectiveness compared
to previous studies can be attributed to (i) the 5x higher number of projects evaluated,
and (ii) the discard of localized bug reports, which artificially increased the effectiveness
of bug localization techniques in previous studies. We also demonstrated that using more
program constructs, which is a strategy that differs from previous studies (Saha et al. 2013;
Wang and Lo 2014), increased bug localization effectiveness by 18% on average.

As the usage of more constructs was shown to increase bug localization effectiveness,
it became important to study the individual contribution of each construct type. Using
Principal Component Analysis, we have shown that all constructs exerted a significant
level of influence on the results, with Methods and Classes being the most influential
construct types (Section 4.1.4). Properties, Parameters, Variables, and String literals also
had a significant impact on the results. The fact that String literals are among the most
contributing constructs is of particular interest, since this construct was not considered
by previous techniques (Saha et al. 2013; Wang and Lo 2014), in spite of its ubiquitous
presence among programming languages. This finding suggests that existing techniques
could have achieved better results if String literals had been explicitly considered.

The fact that Interfaces offered the most negative contribution (Section 4.1.4) is also
surprising. Since Interfaces often capture key domain abstractions, it would be expected
that these constructs had a positive impact on bug localization effectiveness. However, in
spite of PCA data suggesting that Interfaces actually disturbs the results (Section 4.1.4),
we could not confirm that in practice. When Amal.gam was adapted to consider all the 12
C# constructs (Table 5) except Interfaces, MAP has, in fact, increased (Table 8). However,
the improvement was negligible, and not statistically significant. Therefore, we conclude
there is little gain in removing constructs from bug localization techniques based in
structured IR.

The effect of the most contributing constructs was answered by running AmaLgam with
different weights assigned to each program construct. We assigned various weight val-
ues to Method and Class constructs, both in isolation (Table 9) and combined (Table 10).
Most of the values tested increased bug localization effectiveness. However, a statisti-
cally significant improvement was achieved with weight values of 2.0 for both Classes and

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 28 of 29

Methods. The weight values were empirically determined, suggesting there might be opti-
mal values that lead to even better results. Nonetheless, this result shows that structured
IR-based techniques can be fine-tuned to increase effectiveness even further.

5.2 Future work

Future work includes the creation of a standard bug dataset containing bugs from C#
projects. This would allow studies with better potential for generalizability involving the
C# language. It is also important to validate bug localization techniques with user exper-
iments, as pointed by Wang et al. (2015). Meanwhile, analytical studies to improve bug
localization knowledge on different languages and different types of files could be carried
out. For instance, defects are not always located in source files. Sometimes they can be
found in different kinds of files, like configuration files. Developers could benefit from
having specific localization techniques for these kinds of bugs.

Weighted similarity calculation was shown to increase bug localization effectiveness
(Section 4.2.3). However, our evaluation selected weight values empirically. The effec-
tiveness could be further increased if an optimal set of weights could be found. The
calculation of the weights could be automated and performed on a per project basis,
which might lead to even better results.

Finally, our study implements the experimental steps needed to solve the issue of differ-
ent versions raised by Rao and Kak (2013a) and the localized bug report bias presented by
Kochhar et al. (2014). Besides, we also observed that test files should not be included in
the scope of the localization process. These steps are important because they demonstrate
that the reported effectiveness of current state-of-the-art bug localization techniques
cannot be achieved in realistic situations. Future studies in bug localization should not
skip such steps, as they produce an experimental setup closer to reality and to develop-
ers’ expectations, increasing the chances of bug localization to become more useful in

practice.

Endnotes

! Aspect], Eclipse, SWT and ZXing.

Zhttps://github.com/search/advanced

3 GitHub API limits issue searching to 1000 results per query.

* All the distributions obtained in the study deviate from normality according to the
Shapiro-Wilk test.

Funding

The authors acknowledge financial support in this research from Petréleo Brasileiro S. A - Petrobras. This work is also
funded by CAPES/Procad (grant #175956), CNPq (grants #483425/2013-3 and 309884/2012-8), and FAPERJ
(E26-102.166/2013).

Availability of data and materials
An online appendix for this study is available (Garnier 2016). The appendix includes the performed statistical analysis and
a study replication package.

Authors’ contributions

MG helped to conceive and design the study, conducted the data collection and analysis, and drafted the manuscript. IF
participated in the data analysis and helped to draft the manuscript. AG helped to conceive and design the study,
coordinated the research activities and helped to draft and review the manuscript. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

https://github.com/search/advanced

Garnier et al. Journal of Software Engineering Research and Development (2017) 5:6 Page 29 of 29

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 December 2016 Accepted: 30 August 2017
Published online: 08 September 2017

References

Bachmann A, Bernstein A (2009) Data retrieval, processing and linking for software process data analysis. Technical
Report IFI-2009.0003b, Department of Informatics (IFI), University of Zurich. http://www.merlin.uzh.ch/publication/
show/2525

Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval. ACM Press, New York

Dallmeier V, Zimmermann T (2016) iBUGS. https://www.st.cs.uni-saarland.de/ibugs/. Accessed Nov 2016

Friendly M (2002) Corrgrams: Exploratory displays for correlation matrices. Am Stat 56(4):316-324

Garnier M (2016) Bug localization in Ci#. https://mgarnier.github.io/bug_localization. Accessed Nov 2016

Garnier M, Garcia A (2016) On the evaluation of structured information retrieval-based bug localization on 20 C# projects.
In: Proceedings of the 30th Brazilian Symposium on Software Engineering. SBES '16. ACM, New York. pp 123-132.
doi:10.1145/2973839.2973853. http://doi.acm.org/10.1145/2973839.2973853

Jolliffe IT (2002) Principal Component Analysis. Springer, Secaucus

Karus S, Gall H (2011) A study of language usage evolution in open source software. In: 8th Working Conference on
Mining Software Repositories (MSR). MSR "11. ACM, New York. pp 13-22. doi:10.1145/1985441.1985447. http://doi.
acm.org/10.1145/1985441.1985447

Kochhar PS, Tian Y, Lo D (2014) Potential biases in bug localization: Do they matter? In: 29th International Conference on
Automated Software Engineering (ASE). pp 803-814. doi:10.1145/2642937.2642997. http://doi.acm.org/10.1145/
2642937.2642997

Lewis C, Ou R (2011) Bug Prediction at Google. http://google-engtools.blogspot.sg/2011/12/bug-prediction-at-google.
html. Accessed Nov 2016

Lukins SK, Kraft NA, Etzkorn LH (2010) Bug localization using latent dirichlet allocation. Inf Softw Technol 52(9):972-990

Manning CD, Raghavan P, Schiitze H (2008) Introduction to Information Retrieval. Cambridge University Press, Cambridge

Microsoft (2014) NET Compiler Platform (“Roslyn”). https://github.com/dotnet/roslyn

Microsoft Corporation (2012) C# Language Specification 5.0. https://www.microsoft.com/download/details.aspx?id=
7029. Accessed July 2016

Rahman F, Posnett D, Hindle A, Barr E, Devanbu P (2011) Bugcache for inspections: Hit or miss? In: 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering. pp 322-331.
doi:10.1145/2025113.2025157. http://doi.acm.org/10.1145/2025113.2025157

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: A comparative study of generic and composite
text models. In: 8th Working Conference on Mining Software Repositories (MSR). pp 43-52.
doi:10.1145/1985441.1985451. http://doi.acm.org/10.1145/1985441.1985451

Rao S, Kak A (2013a) moreBugs. https://engineering.purdue.edu/RVL/Database/moreBugs/#C5. Accessed Nov 2016

Rao S, Kak A (2013b) moreBugs: A new dataset for benchmarking algorithms for information retrieval from software
repositories. Technical Report TR-ECE-13-07. http://docs.lib.purdue.edu/ecetr/447

Saha RK, Leasey M, Khurshid S, Perry DE (2013) Improving bug localization using structured information retrieval. In: 28th
International Conference on Automated Software Engineering (ASE). pp 345-355. doi:10.1109/ASE.2013.6693093

Sisman B, Kak AC (2012) Incorporating version histories in information retrieval based bug localization. In: 9th Working
Conference on Mining Software Repositories (MSR). pp 50-59

The GitHub Blog (2015) Language Trends on GitHub. https://github.com/blog/2047-language-trends-on-github.
Accessed Nov 2016

TIOBE Software BV (2016) TIOBE Index for April 2016. http://www.tiobe.com/tiobe_index. Accessed April 2016

Wang Q, Parnin C, Orso A (2015) Evaluating the usefulness of ir-based fault localization techniques. In: 2015 International
Symposium on Software Testing and Analysis (ISSTA). ISSTA 2015. ACM, New York. pp 1-11.
doi:10.1145/2771783.2771797. http://doi.acm.org/10.1145/2771783.2771797

Wang S, Lo D (2014) Version history, similar report, and structure: Putting them together for improved bug localization. In:
ACM (ed). 22nd International Conference on Program Comprehension (ICPC). pp 53-63.
doi:10.1145/2597008.2597148. http://doi.acm.org/10.1145/2597008.2597148

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? - more accurate information retrieval-based bug
localization based on bug reports. In: 34th International Conference on Software Engineering (ICSE). pp 14-24

http://www.merlin.uzh.ch/publication/show/2525
http://www.merlin.uzh.ch/publication/show/2525
https://www.st.cs.uni-saarland.de/ibugs/
https://mgarnier.github.io/bug_localization
http://dx.doi.org/10.1145/2973839.2973853
http://doi.acm.org/10.1145/2973839.2973853
http://dx.doi.org/10.1145/1985441.1985447
http://doi.acm.org/10.1145/1985441.1985447
http://doi.acm.org/10.1145/1985441.1985447
http://dx.doi.org/10.1145/2642937.2642997
http://doi.acm.org/10.1145/2642937.2642997
http://doi.acm.org/10.1145/2642937.2642997
http://google-engtools.blogspot.sg/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.sg/2011/12/bug-prediction-at-google.html
https://github.com/dotnet/roslyn
https://www.microsoft.com/download/details.aspx?id=7029
https://www.microsoft.com/download/details.aspx?id=7029
http://dx.doi.org/10.1145/2025113.2025157
http://doi.acm.org/10.1145/2025113.2025157
http://dx.doi.org/10.1145/1985441.1985451
http://doi.acm.org/10.1145/1985441.1985451
https://engineering.purdue.edu/RVL/Database/moreBugs/#C5
http://docs.lib.purdue.edu/ecetr/447
http://dx.doi.org/10.1109/ASE.2013.6693093
https://github.com/blog/2047-language-trends-on-github
http://www.tiobe.com/tiobe_index
http://dx.doi.org/10.1145/2771783.2771797
http://doi.acm.org/10.1145/2771783.2771797
http://dx.doi.org/10.1145/2597008.2597148
http://doi.acm.org/10.1145/2597008.2597148

	Abstract
	Keywords

	Introduction
	Background
	Information retrieval
	Bug localization
	Structured information retrieval
	The BLUiR approach
	The AmaLgam approach
	Version history component.
	Report similarity component.
	Structure and Composer components.

	Evaluation of bug localization techniques
	Research questions
	Evaluation metrics
	Top-N and Hit@N:
	Mean average precision (MAP):

	Project selection
	Dataset preparation
	Version selection
	Bug report selection
	Source file selection

	Effectiveness of structured IR-based bug localization in C# projects
	Effectiveness without dataset preparation.
	Effectiveness with dataset preparation.

	Model adaptation
	Usage of more constructs to improve bug localization effectiveness
	Execution time.

	Threats to validity
	Construct validity
	External validity

	Analysis of the contribution of program constructs to bug localization
	Assessment of construct contribution
	Principal component analysis
	Analysis setup
	Variances of principal components
	Constructs associated with principal components
	Positive correlations.
	Negative correlations.

	Effects of constructs on bug localization results
	Modifying the emphasis of program constructs
	Suppression of low-contributing constructs
	Emphasis on most contributing constructs
	Discussion

	Conclusion
	Findings
	Future work

	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

