
Araújo et al. Journal of Software Engineering Research and
Development (2016) 4:5
DOI 10.1186/s40411-016-0031-8

RESEARCH Open Access

Correlating automatic static analysis and
mutation testing: towards incremental
strategies
Cláudio A. Araújo1†, Marcio E. Delamaro2, José C. Maldonado2† and Auri M. R. Vincenzi3*†

*Correspondence: auri@dc.ufscar.br
†Equal contributors
3Departamento de Computação,
UFSCar, Rod. Washington Luís, Km
235, 13565-905 São Carlos, SP, Brazil
Full list of author information is
available at the end of the article

Abstract

Background: Traditionally, mutation testing is used as test set generation and/or test
evaluation criteria once it is considered a good fault model. This paper uses mutation
testing for evaluating an automated static analyzer. Since static analyzers, in general,
report a substantial number of false positive warnings, the intention of this study is to
define a prioritization approach of static warnings based on their correspondence with
mutations. On the other hand, knowing that Mutation Test has a high application cost,
another possibility is to try to identify mutations of some specific mutation operators,
which an automatic static analyzer is not adequate to detect. Therefore, this
information can be used to prioritize the order of incrementally applying mutation
operators considering, firstly, those with no correspondence with static warnings. In
both cases, contributing to the establishment of incremental strategies on using
automatic static analysis or mutation testing or even a combination of them.

Methods: We used mutation operators as a fault model to evaluate the direct
correspondence between mutations and static warnings. The main advantage of using
mutation operators is that they generate a large number of programs containing faults
of different types, which can be used to decide the ones most probable to be detected
by static analyzers.

Results: We provide evidences on the correspondence between mutations and some
types of static warnings. The results obtained for a set of 19 open-source programs
indicate that: 1) static warnings may be prioritized based on their correspondence level
with mutations; 2) specific set of mutation operators and their mutations may be
prioritized based on their correspondence level with warnings.

Conclusion: It is possible to provide an incremental testing strategy aiming at
reducing the cost of both static analysis and mutation testing using the
correspondence information between these activities/artifacts.

Keywords: Software testing, Warnings, Mutants, Static analysis, Mutation testing,
Static analyzer evaluation

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-016-0031-8-x&domain=pdf
http://orcid.org/0000-0001-5902-1672
mailto: auri@dc.ufscar.br
http://creativecommons.org/licenses/by/4.0/

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 2 of 32

1 Introduction
In software development environments, static analysis tools are used to support the ver-
ification of violations of code standards. Examples of violations detected by these tools
are the access to invalid objects (uninitialized), the usage of deprecated methods, the
encoding in disagreement with a determined established standard, among others.
In these environments, it is also common the existence of maintenance and develop-

ment activities to find (and correct) software faults. Software faults are introduced in the
source code due to mistakes made by developers. A wrong command or instruction in the
source code are examples of software faults (IEEE 1990).
Mutation Testing is a very effective testing criterion once the mutation operators or a

subset of them, responsible to perform the syntactic changes into the original program
for mutant generation, represent a plausible fault model. In general, such a fault model is
used as test set generation and/or test evaluation criteria which makes Mutation Testing
a good tool for experimentation (Andrews et al. 2005).
Besides effective, Mutation Testing has some drawbacks, mainly related to the high

number of generated mutants. A way to reduce its cost is decreasing the number of muta-
tion operators we need to use. This is called selective mutation and there are several
alternatives to identify this subset of mutation operators (Acree et al. 1979; Mathur 1991;
Mresa and Bottaci 1999; Offutt et al. 1993).
Automatic Static Analysis does not require software execution like Mutation Testing.

On the other hand, it uses a set of well defined bug patterns aiming at, by static analysing
the source code, issuing warnings related to some possible source code line problem. The
main disadvantage of automatic static analyzers is the high number of warnings which do
not correspond to a fault (false positive) but demands time to be analysed.
Besides the concern in usage of static analysis tools (Ayewah et al. 2007b; Hovemeyer

and Pugh 2004; Louridas 2006), there is no agreement of their real benefits since it is not
clear the relation between static warning and faults (Ayewah et al. 2007a).
Inspired by the work of Araújo Filho et al. (2010) and Couto et al. (2013), and trying to

overcome the problem they faced of evaluating the direct correspondence between warn-
ings and faults due to the small number of real faults, we revisited their work evaluating
the correspondence between static warnings and mutations. We decided to use mutation
testing due to the following reasons: 1) it is considered a good fault model for experimen-
tation and has been successfully used for test set evaluations (Andrews et al. 2005); 2)
mutants are generated by mutation operators which can be seen as fault categories so we
can try to correlate warnings and specific types of faults; 3) it allows to increase fault con-
centration per Kilo Lines of Code (KLOC) by summing up the number of mutants derived
from each source code line; and 4) it eases experimentation with a large number of soft-
ware products. These reasons help overcoming limitations of previous works on these
subjects. Moreover, from this study, we intend to define a strategy for static warnings
prioritization based on their correspondence with mutations. The results can be used to
evolve either static analyzers or mutation testing, or both. The former in the sense it will
be possible to compare different static analyzers against the same fault model to decide
which kind of mutations they are really adequate to detect. This information can be used
to prioritize the warnings resolution starting from the ones more correlated with some
mutation operator and also to guide the evolution of static analyzers by creating addi-
tional static verification rules to detect uncovered mutations. The later by avoiding the

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 3 of 32

generation of mutants for that mutation operators which static analyzers are adequate to
detect their faults statically.
In this paper, we report an approach that makes use of information obtained through

the application of FindBugs (Hovemeyer and Pugh 2004) on detecting mutations gen-
erated by μJava (Ma et al. 2005). The objective is to identify correspondence between
bug kinds with mutation operators. Based on this information we can establish incre-
mental strategy for using bug kinds and mutation operators on an incremental way,
aiming at mitigating the problem of both automated static analysis and mutation
testing.
Given this scenario, the research questions of interest are:

• Question Q1 (direct correspondence): is there any correspondence between static
location of warnings and program elements with mutations’ concentration?

• Question Q2 (direct correspondence at source code line level): the analysis is
performed at a lower level considering each source code line individually, i.e., is there
any correspondence between static location of warnings and program elements with
mutations’ concentration at the source code line level?

Observe that a positive answer to these questions suggests that FindBugs is adequate to
detect specific types of mutations. By analyzing which static warnings are better to detect
specific types of mutations one may prioritize warnings to avoid earlier analysis of false
positives. Moreover, we can also know which mutations are or are not detectable by static
analysis tools.
We can summarize the contributions of this work as:

• the identification of existence of direct correspondence between warnings and some
mutation operators;

• the identification of specific mutation operators which FindBugs is more prone to
detect;

• the identification of specific mutations operators which FindBugs is not adequate to
detect;

• the establishment of prioritization strategies for incremental use of bug kinds based
on their correspondence level with mutations at the line level; and

• the establishment of prioritization strategies for incremental use of mutation
operators based on their inverse correspondence with static warnings at the line level.

The remainder of this paper is organized as follows: Section 2 presents basic infor-
mation with respect to static analysis and mutation testing. Section 3 defines Direct
Correspondence per Line (DCL) and describes the experimental study and the data
collection process. Section 4.1 presents how DCL is used on the establishment of an
incremental strategy for applying FindBugs bug kinds. Section 4.2 performs the same
analysis but considering how DCL is used on the establishment of an incremental strat-
egy for applying μJava mutation operators. Section 5 illustrates how the incremental
testing strategies can be employed to reduce the cost of static analysis and mutation
testing. Section 6 describes the lessons learned and threats to validity of this study.
Section 7 describes related works and the main points and contributions of this work. In
Section 8, we draw the conclusions and present future work. Finally, Appendix A provides
complementary information about μJava mutation operators and FindBugs bug kinds.

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 4 of 32

2 Background
Mutation Testing (MT) enables the generation of a high number of versions of a given
determined system. This generation is performed by small syntactic changes which are
done in the original system by mutation operators that simulate the mistakes more com-
monly committed by developers (DeMillo et al. 1978). To each change done by a mutation
operator a new version of the system, called mutant, is generated. From a theoretical per-
spective, each mutant represents a possible fault that could be present in the original
system (Copeland 2004).
There are several mutation tools available for Java programs (Coles 2015; Ferrari et al.

2011; Just et al. 2011; Ma et al. 2005). We are using the set of mutation operators imple-
mented by μJava system which supportsMT for Java programs (Ma et al. 2005). It creates
object-orientedmutants for Java according to 47mutation operators specialized to object-
oriented faults: 19 Traditional Operators responsible to model faults at method level (Ma
and Offutt 2005), and 28 Class Operators, responsible to model faults at class level (Offutt
et al. 2006). Besides the advantage of having a well defined set of program faults, generated
by mutation operators, is that the faults introduced by the operators are not detectable by
Eclipse IDE as the injected faults used in the work of (Daimi et al. 2013).
Each μJava mutation operator has an acronym for identification. The first letter of this

acronym determine the language features the operator is related to. For instance, method
level operator AORB stands for “Arithmetic Operator Replacement (Binary)” and is one
of the operators of Arithmetic (A) group. The reduced number of method operators
implemented by μJava is due to the selective approach adopted to create such a set of
mutants (Offutt et al. 1996). Appendix A has additional information aboutμJavamutation
operators set.
An automated static analyzer is a tool that reads the source code of a given system and

issues a set of warnings based on rules which look for deviations with respect to a given
code standard. In general, warnings are issued with respect to a given source code line in
which the tool detects any possible fault with respect to its supported rules.
Automated static analysis vocabulary includes the following terms: false positives, true

positives and false negatives. A false positive occurs when a tool alerts to the presence of
a non-existent fault. A false negative occurs when a fault exists, but it is not detected due
to the fact that static analysis tools are not perfectly accurate and may not detect all faults.
Finally, a true positive occurs when a tool produces a warning to indicate the presence of
a real fault in the system under analysis.
There are several static analysis tools available for different programming languages

(Burn 2014; Copeland 2005; Daimi et al. 2013; Evans and Larochelle 2002; Hovemeyer and
Pugh 2004; Microsoft 2014; Pohl 2001). We use FindBugs (Hovemeyer and Pugh 2004)
in this study for two reasons. First, because the same tool was used by Araújo Filho et al.
(2010) and Couto et al. (2013) which inspired this work. They used FindBugs it to evaluate
the correspondence between warnings and real faults. In our work, the actual faults were
replaced bymutants. Tomake feasible future comparisons, we use the same static analysis
tool. Second, several experiments involving static analysis uses FindBugs, and Tomas et
al. (2013) pointed out that its false positive rate is less than 50 %.
FindBugs is one of the most popular static analysis tools and is widely used in Java

community. It implements a set of bug detectors for a variety of common bug patterns.
According to the structure of FindBugs, each bug category includes many bug kinds

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 5 of 32

and each bug kind consists of several bug patterns. Figure 1 shows a sample structure
of FindBugs categories, subcategories, patterns and bug patterns. Bug patterns in Find-
Bugs are divided into categories: Bad Practice, Correctness, Malicious code vulnerability,
Multithreaded correctness, Internationalization, Performance, Security, and Dodgy.
In Fig. 1, bug kinds, like BC1, NP2, DLS3, and DMI4, belong to correctness category.

And the bug kind BC (the abbreviation for bad casts of object references) contains four
bug patterns: Impossible cast, Impossible downcast, Impossible downcast of toArray()
result, and instanceof will always return false.

3 Experimental study
3.1 Definitions

Let S = {s1, s2,. . . , st} be a set of t systems and sx ∈ S a system under analysis. sx is
composed by a set of source code files F = {f1, f2, . . . , fn} where n is the number of source
files of sx. Consider fj ∈ F and Mf j a set of mutants generated from fj by applying a set
of mutation operators MO. Therefore, Msx = {Mf1 ∪ Mf 2 ∪ . . . ∪ Mf n} is the set of all
mutants generated from sx.
Consider miokfj ∈ Mf j the i-th mutant of operator ok ∈ MO on the file fj. fj and miokfj

differ from each other at least on some line of source code. LetWf j be the resultant set of
warnings of applying FindBugs on fj, and let Wmiokfj be the resultant set of warnings of
applying FindBugs onmiokfj.
We illustrated situations that occur when a warning wi is reported by FindBugs on the

original file fj (Wf j) and/or on the mutant miokfj (Wmiokfj) in Figs. 2, 3 and 4. Consider
w1,w2, and w3 as warnings, Wmiokfj the set of warnings generated in a specific mutated
file fj, and Wf j the set of warnings generated in the original file fj, according to Figs. 2,
3 and 4:

1. Case 1: w1 ∈ {Wmiokfj \ Wf j} is a warning that was reported in the mutantmiokfj
and that was not reported in the original file fj, considering the same line where
mutation occurs. In other words, w1 represents a true positive, since it indicates
FindBugs only generate the warning due to the mutation;

Fig. 1 Partial structure of FindBugs: correctness category (Shen et al. 2011)

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 6 of 32

Fig. 2 Warning w1 related in the mutantmiokfj at the mutation point

2. Case 2: w2 ∈ {Wmiokfj ∩ Wf j} is a warning that was reported in mutantmiokfj, in
the same line in which mutation happened, but w2 was also reported in original file
fj. In this way, w2 does not depend on the mutation;

3. Case 3: w3 ∈ {Wfj \Wmiokfj} is a warning which was reported in original file fj, and
that was not reported in mutantmiokfj, considering the line in which mutation
occurs. In other words, the mutation actually corrects the warning reported in fj.

Figures 2, 3 and 4 illustrate Cases 1, 2 and 3, respectively. As an example of Case 1, in the
mutant shown in Code 2 (Additional file 1: Figure S2),w1 was reported in themutated line
4, andw1 was not reported in correspondent line 4 of the original file (Code 1 - Additional
file 1: Figure S1). As an example of Case 2, in the mutant shown in Code 4 (Additional
file 1: Figure S4), w2 is associated with both original (Code 3 - Additional file 1: Figure
S3) and mutated files. Finally, as an example of Case 3, w3 is reported in the original file
(Code 5 - Additional file 1: Figure S5) but not on the mutant (Code 6 - Additional file 1:
Figure S6).

Fig. 3 Warning w2 related in the mutant and original file, in the same line of the mutation

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 7 of 32

Fig. 4 Warning w3 related in the original file but not in the mutant

In this study, we are specially interested in the situation represented by Case 1), where
w1 ∈ Wmiokfj and w1 �∈ Wf j. Thus, if we can find a set of warnings adequate to detect
specific kinds of mutations, we may prioritize the warning analysis starting from them
since, in general, they are sensible to specific types of mutations, i.e., they probably are
not false positives. Cases 2 and 3 are also interesting to be investigated but are out of the
scope of this work.
All the analysis is performed based on the concept of direct correspondence. As

defined by (Couto et al. 2013), the direct correspondence occurs when the warning and
the fault are relatively close. Relatively close means at the method level, i.e., if warnings
and faults exist in the same method they considered the existence of a correspondence
between warning and fault.
In our work, we evaluated the direct correspondence at the source code line level. In this

sense, relatively close means at the same source code line instead of at the same method.
Therefore, we adopt a fine grain to identify the correspondence between mutations and
warnings more precisely, considering the so called Direct Correlation per Line (DCL)
defined below.
Once each mutant is generated by a specific mutation operator we can identify classes

of mutations which static analyzers are or are not adequate to detect.

3.1.1 Direct Correspondence per Line (DCL)

To calculate the DCL of each mutation operator and of each warning category, the
following functions are defined:

• TW (w) = total number of warnings of the type w reported in all mutants.
• DCLA(w) = absolute number of warnings of the type w which are reported exactly in

a mutation point, but the warning w does not exist on the same line in the original file.

DCLR(w) =
{
DCLA(w)/TW (w) if TW (w) > 0
0 if TW (w) = 0

(1)

The aim of the functions DCLA(w) and DCLR(w) is to classify each bug kind according
to its warningsw capability in detecting faults represented bymutants. The bug kinds with
higher DCLR(w) rates should be prioritized in relation to the other bug kinds with lower

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 8 of 32

DCLR(w) rates, since warnings of bug kinds with higher DCLR(w) are more probable to
be true-positives and should be analyzed first.

• TM(ok) = total number of generated mutants by operator ok .
• DCLA(ok) = absolute number of mutants of operator ok with at least one warning of

any type reported in the mutation point but the same warning does not exist on the
same line in the original file.

DCLR(ok) =
{
DCLA(ok)/TM(ok) if TM(ok) > 0
0 if TM(ok) = 0

(2)

The aim of the functionsDCLA(ok) andDCLR(ok) is to classify the types of faults repre-
sented by mutants of mutation operators according to the capability that these faults are
detected by FindBugs. Operators with higher DCLR(ok) correspondence rates represent
types of faults that are easier detected by FindBugs. On the other hand, operators with
lower DCLR(ok) represent types of faults rarely detected by FindBugs, and may suggest
new bug patterns that can be added to the static analyzer tool to improve its capability.

3.2 Experimental process

The process used to collect the data in the study is described in the steps below:

1. Let S be a set of systems, i.e, S = {s1, s2, . . . , st}
2. For each system sx ∈ S, 1 ≤ x ≤ t
3. For each source file fj in sx, 1 ≤ j ≤ n, where n is the number of source files of sx

3.1 Execution of FindBugs in fj and generation of a XML with the set of
warningsWf j

3.2 Execution of ParserXMLFindBugs to read the XML and to include the
Wf j on database (DB)

3.3 Execution of μJava tool in fj and generation of a set of mutantsMf j
3.4 For each mutantmiokfj ∈ Mf j
(a) Execution of FindBugs inmiokfj and generation of a XML with the set of

warningsWmiokfj
(b) Execution of ParserXMLFindBugs to read the XML and to include

Wmiokfj on DB
(c) Execution of diff between fj andmiokfj to include lines number and

textual difference on DB

4. Execution of SQL scripts to extract DCL data of S from DB

Figure 5 depicts the way data is collected and processed to support the experimental
process. In case of the original system, observe that both FindBugs and μJava are exe-
cuted considering the entire system. On the other hand, in case of mutants, once μJava
generates mutants per file, we executed FindBugs only on each mutated file. In the later
it is not necessary to run FindBugs on the entire system since it differs from the original
only in the mutated file. In our cost analysis this point is clear.
FindBugs is executed on each file fj of a system sx. The result of FindBugs execution on fj

produces the set of warningsWf j, which is stores in a XML file. ParserXMLFindBugs is an
application we developed to read the XML file and stores the collected information into
a database. In the next step, the mutants of file fj are generated through the application of

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 9 of 32

Fig. 5 Data collection and processing for supporting experimental process

all μJava mutation operators. The mutation operator ok , applied to each file fj, generates
a set of mutants Mokfj, which can be identified as miokfj (the i-th mutant of ok operator
from file fj). FindBugs is then executed on eachmutantmiokfj generating a set of warnings
Wmiokfj for such a mutant in a XML file. The parser ParserXMLFindBugs is used again to
read the XML file and to store the warning information with respect to mutantmiokfj into
the database. ParserDiff is another application we developed to calculate the syntactical
difference between the original file fj and the mutant miokfj, indicates on each source
code line the mutation occurred, and stores such information into the database to identify
the mutation produced. At the end of the process, SQL scripts are executed to extract
matching information between mutations and static warning.
In this study, 19 systems were used (t = 19), as shown in Table 1. These systems, which

are available at Apache Foundation, are a subset of systems used by (Couto et al. 2013).
For instance, considering the entire system s11, Open JPA, version 1.0.0, it has 102,682

Table 1 Set of systems used in the experimetal study

sx System Version LOC Warnings (W) Mutants (M) W/KLOC M/KLOC

s1 Beehive 1.0 55,129 340 27,282 6.167 494.876

s2 Cayenne 2.0.2 68,523 517 76,140 7.545 1111.160

s3 Cfx 2.1 5344 51 3065 9.543 573.540

s4 Ddlutils 2.0.0 13,892 133 15,294 9.574 1100.921

s5 Hadoop Hbase 0.2.0 24,718 61 3827 2.468 154.826

s6 Ibatis 2.3.0 10,781 135 13,102 12.522 1215.286

s7 Ivy 2.1 26,893 135 21,570 5.020 802.067

s8 James Server 2.2.0 18,599 204 17,431 10.968 937.201

s9 Jdo 2.1 2748 27 1166 9.825 424.309

s10 Lucene 2.9.4 38,152 215 28,316 5.635 742.189

s11 Open JPA 1.0.0 102,682 359 65,529 3.496 638.174

· ·
s18 Xalan J 2,7,2 93,335 76 12,280 0.814 131.569

s19 Xmlbeans 2.0.0 46,927 103 12,572 2.195 267.905

Total 749,966 3709 493,522 − −
Average 39,472 195 25,975 6.353 702.180

Median 38,152 135 17,431 5.635 638.174

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 10 of 32

LOC5, to which FindBugs reported 359 warnings;μJava generated 65,529 mutants; which
give an average of 3.5 warnings/KLOC6; and an average of 638.2 mutants/KLOC.
Considering all the 19 systems, they sum up 749,966 LOCwith 3709 static warnings and

493,522 mutants. Averages of these proportions are 6.4 and 702.2 for warnings/KLOC
and mutants/KLOC, respectively, and medians 5.6 and 638.2, respectively.
For each one of the selected systems, mutants were generated using all the 47 muta-

tion operators supported by μJava tool (Ma et al. 2005). To collect the amount of
warnings reported by FindBugs, it was executed in each one of the selected systems
using its default configuration, i.e., employing all the warning categories available. To
collect the warnings present in each one of the mutants, FindBugs was executed in
each one of them with the same configuration. All data reported by FindBugs and
the data from mutants were stored in a database to verify the direct correspondence
by line.
Data of FindBugs execution on each mutant are presented in Table 2. Information

related to the warnings (grouped by bug kinds) reported by FindBugs and the mutation
operator used to generate each mutant is registered.
In Table 2, the following information is presented: the first column is a line identi-

fier; column W (Warning) represents the types of warnings reported by FindBugs in the
mutants; columns ISD, JTI, JTD, JSD, . . . , represent each one of the 47 μJava operators;
column TW (w) is the result of function TW (w) defined in Section 3.1.1.

Table 2 Bug kinds versus mutation operator

W
Mutation operators

TW(w)
ISD JTI JTD JSD · · ·

1 AT∗ 0 0 0 1 · · · 5

2 BC 0 45 35 117 · · · 22,549

3 BIT 0 0 0 0 · · · 482

4 BSHIFT 0 0 0 0 · · · 6

5 Bx 2 392 125 368 · · · 107,060

6 CI∗ 0 2 0 1 · · · 188

7 CN∗ 0 186 166 13 · · · 10,350

8 DB 0 2 2 1 · · · 1275

9 DC∗ 0 17 15 1 · · · 1634

10 DE 0 119 65 44 · · · 15,692

11 DLS 2 76 2656 178 · · · 46,286

12 DMI 0 45 15 9 · · · 1450

13 DP∗ 0 55 42 10 · · · 3037

14 Dm 12 380 229 526 · · · 95,171

15 EC 0 0 0 0 · · · 729

· · · · · · · · · · · · · · · · · · . . . · · ·
80 UW∗ 0 2 0 0 · · · 450

81 UrF 1 496 324 981 · · · 25,871

82 UuF∗ 0 125 81 33 · · · 4775

83 UwF 1 2364 1,913 65 · · · 36,170

84 VO∗ 0 10 4 0 · · · 1011

85 WMI∗ 0 0 0 5 · · · 3072

86 Wa∗ 0 5 3 9 · · · 1474

87 TW(ok) 88 14,303 11,789 7882 · · · 980,533

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 11 of 32

It was reported warnings with respect to 86 different bug kinds, however Table 2
presents only a subset of these bug kinds. As an example of warning reported in mutants,
there is warning of Bx bug kind (line 5) which was reported twice in mutants of ISD oper-
ator, 392 times in mutants of JTI operators, 125 times in mutants of JTD operator, 368
times in mutants of JSD operator, and so on. Considering the mutants of the 47 muta-
tion operators, the total warning of Bx bug kind is 107,060 (column TW (w) of line 5).
Column ISD shows that in mutants of ISD operator, 88 warnings of different types
were reported. Column JTI shows that in mutants of JTI operator 14,303 warnings were
reported. The total of warning obtained in all the mutants is 980,533 (last column of
last line).
From the data collected and presented in Table 2, we applied the functions

DCLA(w),DCLR(w),DCLA(ok), and DCLR(ok) defined in Section 3.1.1, which produced
Tables 3 and 5, employed in the definition of two incremental strategies, presented on
Sections 4.1 and 4.2, respectively.

Table 3 DCL by Warning: DCLR(w)

W
Mutation operators

DCLA(w) TW(w) DCLR(w)
ISD JTI JTD JSD · · ·

1 QF 0 0 0 0 · · · 81 81 100.00 %

2 RE 0 0 0 0 · · · 13 13 100.00 %

3 UM 0 0 0 0 · · · 4 4 100.00 %

4 QBA 0 0 0 0 · · · 2 2 100.00 %

5 INT 0 0 0 0 · · · 1897 1963 96.64 %

6 BIT 0 0 0 0 · · · 444 482 92.12 %

7 UR 0 1855 0 0 · · · 2292 2593 88.39 %

8 UCF 0 0 0 0 · · · 7619 10,046 75.84 %

9 SA 2 3326 2793 0 · · · 6739 11,086 60.79 %

10 IL 35 0 0 183 · · · 776 1515 51.22 %

11 DLS 2 0 2629 0 · · · 17,785 46,286 38.42 %

12 SS 0 0 0 1814 · · · 1814 5367 33.80 %

13 BSHIFT 0 0 0 0 · · · 1 6 16.67 %

14 DB 0 2 1 0 · · · 148 1275 11.61 %

15 RpC 0 0 0 0 · · · 27 237 11.39 %

· · · · · · · · · · · · · · · · · · . . . · · · · · · · · ·
31 EC 0 0 0 0 · · · 1 729 0.14 %

32 IP 0 0 3 0 · · · 3 2290 0.13 %

33 DE 0 0 0 0 · · · 14 15,692 0.09 %

34 IS 0 0 0 0 · · · 18 21,114 0.09 %

35 SBSC 0 0 0 0 · · · 2 2882 0.07 %

36 BC 0 0 0 0 · · · 15 22,549 0.07 %

37 OS 0 0 0 0 · · · 5 10,174 0.05 %

38 REC 0 0 0 0 · · · 15 54,741 0.03 %

39 Dm 0 2 0 0 · · · 11 95,171 0.01 %

40 ES 0 1 0 0 · · · 1 10,152 0.01 %

41 Bx 0 2 1 0 · · · 7 107,060 0.01 %

42 EI2 0 0 0 0 · · · 1 27,574 0.00 %

43 IIO 0 0 0 0 · · · 1 29,517 0.00 %

44 Total 39 6362 5431 2249 · · · 50,768 980,533 5.18 %

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 12 of 32

4 Results and Discussion
Based on DCL we defined two incremental strategies. One, described in Section 4.1,
intends to prioritize bug kinds. The other, described in Section 4.2, prioritizes mutation
operators.

4.1 Using DCL for bug kinds prioritization

In this strategy we used the correspondence of warnings and mutants to identify
bug kinds more probable to produce true positive warnings. Table 3 presents the
direct correspondence by line between bug kinds and mutation. It contains informa-
tion about DCLA(w) and DCLR(w) for all warnings (group by bug kinds) reported
in mutants.
Table 3 presents the following information: the first column is a line identifier; column

W (warnings) represents all bug kinds that have at least one warning related to some
mutation point (at line level); columns ISD, JTI, JTD, JSD, . . . , represent each one of the
47 operators of μJava; columns DCLA(w) and DCLR(w) contain the values of each one
of these functions defined in Section 3.1.1. Column TW (w) is the same information pre-
sented in Table 2, replicated here to ease the analysis. In the first lines of Table 3 are
the bug kinds that were more adequate to detect faults modeled by some μJava muta-
tion operators, and, in the last lines, are the bug kinds with lower correspondence with
mutations.
Note that in Table 3 it is presented only the 43 bug kinds which reported at least one

warning in the same line of mutation (column DCLA(w) ≥ 1). In Table 2 are presented
all the 86 bug kinds reported in the experiment. Therefore, there are 43 bug kinds that
had DCLA(w) = 0. For this bug kinds, no warning w is reported in any mutant, or, when
reported, w is also reported in the original file in the same line the mutation occurs. The
bug kinds with no warning in the mutation point are identified with symbol ’∗’ in Table 2.
In general, 50,768 warnings were reported exclusively on the mutated lines, which gives

a DCL of 5.18 % (50,768/980,533). As can be seen in Table 3, there are 4 bug kinds (lines
1 to 4) with DCLR(w) = 100.0 % and there are 5 bug kinds (last lines) with DCLR(w) ≤
0.01 %.
As it is shown in Table 3, there is a variation in DCLR(w). Bug kinds with DCLR(w) >

10.0 % are presented in the first 15 rows of Table 3, of which 12 have DCLR(w) > 33 %.
Bug kinds with DCLR(w) > 88 % are: QF, RE, UM and QBA with 100.0 %, INT with

96.64 %, BIT with 92.12 %, and UR with 88.39 %, providing evidences that there is a direct
correspondence between certain types of warnings and certain types of faults (mutation),
motivating further work in this direction, for instance, analyzing the subcategories and
priorities of the warnings.
Each bug kind of FindBugs has one or more bug patterns and each bug pattern

has a priority (the greater the priority the greater the criticality of such a warn-
ing for FindBugs) and belongs to a specific category indicating which kind of fault
such a warning subtype is related to (Hovemeyer and Pugh 2004). More informa-
tion about FindBugs warnings is available on Appendix A. Table 4 presents additional
information related to bug kinds with DCLR(w) > 88 % (QF, RE, UM, QBA, INT,
BIT, UR).
The top 6 bug kinds have 14 bug patterns classified on the following categories (see

Table 4): CORRECTNESS(8), STYLE(4), PERFORMANCE(1) and BAD_PRACTICE(1).

A
raújo

etal.JournalofSoftw
are

Engineering
Research

and
D
evelopm

ent
 (2016) 4:5

Page
13

of32

Table 4 Details of the bug kinds

W Subtype Priority Category Description

1 QF QF_QUESTIONABLE_FOR_LOOP 2 STYLE Complicated, subtle or wrong increment in for-loop

2 RE RE_BAD_SYNTAX_FOR_REGULAR_EXPRESSION 1 CORRECTNESS Invalid syntax for regular expression

3 UM UM_UNNECESSARY_MATH 3 PERFORMANCE Method calls static Math class method on a constant value

4 QBA QBA_QUESTIONABLE_BOOLEAN_ASSIGNMENT 1 CORRECTNESS Method assigns boolean literal in boolean expression

5 INT INT_VACUOUS_COMPARISON 2 STYLE Vacuous comparison of integer value

6 INT INT_VACUOUS_BIT_OPERATION 2 STYLE Vacuous bit mask operation on integer value

7 INT INT_BAD_REM_BY_1 1 STYLE Integer remainder modulo 1

8 INT INT_BAD_COMPARISON_WITH_SIGNED_BYTE 3 CORRECTNESS Bad comparison of signed byte

9 INT INT_BAD_COMPARISON_WITH_NONNEGATIVE_VALUE 1 CORRECTNESS Bad comparison of nonnegative value with negative constant

10 BIT BIT_ADD_OF_SIGNED_BYTE 2 CORRECTNESS Bitwise add of signed byte value

11 BIT BIT_SIGNED_CHECK 3 BAD_PRACTICE Check for sign of bitwise operation

12 BIT BIT_AND 1 CORRECTNESS Incompatible bit masks

13 BIT BIT_IOR 1 CORRECTNESS Incompatible bit masks

14 BIT BIT_AND_ZZ 1 CORRECTNESS Check to see if ((...) & 0) == 0

15 Dm DM_DEFAULT_ENCODING 1 I18N Reliance on default encoding

16 Dm DM_CONVERT_CASE 3 I18N Consider using Locale parameterized version of invoked method

17 Dm DM_STRING_VOID_CTOR 2 PERFORMANCE Method invokes inefficient new String() constructor

18 Dm DMI_BLOCKING_METHODS_ON_URL 1 PERFORMANCE The equals and hashCode methods of URL are blocking

19 Dm DMI_COLLECTION_OF_URLS 1 PERFORMANCE Maps and sets of URLs can be performance hogs

20 Dm DM_GC 1 PERFORMANCE Explicit garbage collection; extremely dubious except in benchmarking code

21 Dm DM_STRING_CTOR 2 PERFORMANCE Method invokes inefficient new String(String) constructor

22 Dm DM_BOOLEAN_CTOR 2 PERFORMANCE Method invokes inefficient Boolean constructor; use Boolean.valueOf(...) instead

23 Dm DM_STRING_TOSTRING 3 PERFORMANCE Method invokes toString() method on a String

24 Dm DM_NEXTINT_VIA_NEXTDOUBLE 2 PERFORMANCE Use the nextInt method of Random rather than nextDouble to generate a random integer

25 Dm DM_EXIT 3 BAD_PRACTICE Method invokes System.exit(...)

26 ES ES_COMPARING_PARAMETER_STRING_WITH_EQ 1 BAD_PRACTICE Comparison of String parameter using == or !=

27 ES ES_COMPARING_STRINGS_WITH_EQ 2 BAD_PRACTICE Comparison of String objects using == or !=

A
raújo

etal.JournalofSoftw
are

Engineering
Research

and
D
evelopm

ent
 (2016) 4:5

Page
14

of32

Table 4 Details of the bug kinds Continued

28 Bx DM_BOXED_PRIMITIVE_TOSTRING 2 PERFORMANCE Method allocates a boxed primitive just to call toString

29 Bx DM_FP_NUMBER_CTOR 3 PERFORMANCE Method invokes inefficient floating-point Number constructor; use static valueOf instead

30 Bx DM_NUMBER_CTOR 2 PERFORMANCE Method invokes inefficient Number constructor; use static valueOf instead

31 Bx DM_BOXED_PRIMITIVE_FOR_PARSING 1 PERFORMANCE Boxing/unboxing to parse a primitive

32 Bx BX_BOXING_IMMEDIATELY_UNBOXED 2 PERFORMANCE Primitive value is boxed and then immediately unboxed

33 Bx BX_BOXING_IMMEDIATELY_UNBOXED_TO_PERFORM_COERCION 2 PERFORMANCE Primitive value is boxed then unboxed to perform primitive coercion

34 Bx BX_UNBOXING_IMMEDIATELY_REBOXED 2 PERFORMANCE Boxed value is unboxed and then immediately reboxed

35 EI2 EI_EXPOSE_REP2 2 MALICIOUS_CODE May expose internal representation by incorporating reference to mutable object

36 IIO IIO_INEFFICIENT_INDEX_OF 3 PERFORMANCE Inefficient use of String.indexOf(String)

37 IIO IIO_INEFFICIENT_LAST_INDEX_OF 3 PERFORMANCE Inefficient use of String.lastIndexOf(String)

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 15 of 32

Moreover, we can analyze the priority of these 14 bug patterns according to FindBugs
classification. In this case we observe that 50 % are of priority 1 (most important for
FindBugs), 28.6 % are of priority 2, and 21.4 % are of priority 3. This suggests that even bug
patterns which FindBugs classifies as priority 2 or 3 may have a good detection capability
of specific types of faults.
On the other hand, several other bug kinds presented DCLR(w) ≈ 0.00 %. These bug

kinds (DCLR(w) ≈ 0.00 %) are not capable of detecting the difference between the orig-
inal and the mutated source code. Examples of these bug kinds are: Dm, ES and Bx with
DCLR(w) = 0.01 %, and EI2 and IIO with DCLR(w) = 0.00 % (lines 39 to 43 in Table 3).
By analyzing the 5 bug kinds withDCLR(w) ≈ 0.00 % we observe that they group 23 bug

patterns belonging to: PERFORMANCE(17), BAD_PRACTICE(3), II8N(2) and MALI-
CIOUS_CODE(1). In terms of priority, the distribution of these 23 bug patterns is: 26,1 %
of priority 1, 47,8 % of priority 2, and 26,1 % of priority 3. Observe that, although in this
case, bug patterns with medium/low priority correspond to more than 73 %, there are bug
patterns with priority 1 which have no correspondence with faults modeled by the μJava
mutation operator.
Observe that this does not mean these bug kinds are good/bad predictor of faults or

generate only true/false positive warnings. It only indicates that they are good/bad predic-
tors on detecting faults modeled by these set of mutation operators. Nevertheless, once
mutation testing has confirmed as an effective criterion for test set evaluation (Andrews
et al. 2005) we consider the set of faults modeled by its mutation operators a good starting
point for FindBugs bug kind prioritization.
This variation in the correspondence between bug kinds and mutation operators illus-

trates that warnings of some bug kinds are more sensitive in identifying certain types of
faults, represented by specific mutation operators.

4.2 Using DCL for mutation operators prioritization

In the same way, correspondence information can be used to prioritize mutation oper-
ators. In this case, the idea is to use first mutation operators for that there is a lower
correspondence with warnings, i.e., mutation operators which represent faults difficult to
be detected by FindBugs.
Table 5 presents information about DCLA(ok) and DCLR(ok) for each mutation opera-

tor of μJava. Operators are classified by decreasing order of DCLR(ok).
In columns of Table 5, the first column is a line identifier; the second and third columns

present the operator name; the column Type is a category of each operator ((C) class
and (T) traditional); column TM(oK) is the result of function of same name defined in
Section 3.1.1; column “TM(ok) with Warning” contains, for each operator, the number
of mutants that had warnings (column total1) and the relative amount of these mutants
with the total (column total1/TM(ok)); column “TM(ok) without Warning” contains, for
each operator, the amount of mutants that did not have warnings (column total2) and the
relative amount of these mutants with the total (column total2/TM(ok)); at last, columns
DCLA(ok) and DCLR(ok) are the absolute and relative correspondence of warning and
mutant, as defined in Section 3.1.1.
The Total line of Table 5 shows that 493,522 mutants were generated (considering all

μJava mutation operators). On 38 % of these mutants (187,892 mutants) no warning was

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 16 of 32

Table 5 DCL by Mutation Operator: DCLR(ok)

Operator ok Type TM(ok)
TM(ok) with warning TM(ok) without warning DCLA(ok) DCLR(ok)

Total1 Total1/TM(ok) Total2 Total2/TM(ok)

1 JTD C 3243 3094 95.41 % 149 4.59 % 2850 87.88 %

2 JTI C 4969 4372 87.99 % 597 12.01 % 3605 72.55 %

3 JSD C 3229 2806 86.90 % 423 13.10 % 2118 65.59 %

4 ISD C 75 51 68.00 % 24 32.00 % 37 49.33 %

5 OAN C 2632 2073 78.76 % 559 21.24 % 561 21.31 %

6 AOIS T 55,182 40,189 72.83 % 14,993 27.17 % 10,716 19.42 %

7 LOR T 484 341 70.45 % 143 29.55 % 93 19.21 %

8 COR T 8659 5629 65.01 % 3030 34.99 % 1241 14.33 %

9 SDL T 102,500 66,644 65.02 % 35,856 34.98 % 12,201 11.90 %

10 COI T 27,399 18,963 69.21 % 8436 30.79 % 2529 9.23 %

11 EOC C 67 45 67.16 % 22 32.84 % 6 8.96 %

12 AORB T 10,287 6844 66.53 % 3443 33.47 % 851 8.27 %

13 PRV C 8010 5344 66.72 % 2666 33.28 % 661 8.25 %

14 ROR T 47,917 32,617 68.07 % 15,300 31.93 % 3519 7.34 %

15 AODU T 451 308 68.29 % 143 31.71 % 22 4.88 %

· ·
31 OMR C 6361 5549 87.23 % 812 12.77 % 4 0.06 %

32 IHD C 19 4 21.05 % 15 78.95 % 0 0.00 %

33 LOD T 21 6 28.57 % 15 71.43 % 0 0.00 %

34 OMD C 73 27 36.99 % 46 63.01 % 0 0.00 %

35 JDC C 144 72 50.00 % 72 50.00 % 0 0.00 %

36 EOA C 166 91 54.82 % 75 45.18 % 0 0.00 %

37 ISI C 170 88 51.76 % 82 48.24 % 0 0.00 %

38 PPD C 209 174 83.25 % 35 16.75 % 0 0.00 %

39 PCC C 211 46 21.80 % 165 78.20 % 0 0.00 %

40 PMD C 221 87 39.37 % 134 60.63 % 0 0.00 %

41 IOR C 426 190 44.60 % 236 55.40 % 0 0.00 %

42 IOP C 489 177 36.20 % 312 63.80 % 0 0.00 %

43 IPC C 866 159 18.36 % 707 81.64 % 0 0.00 %

44 IHI C 2304 2045 88.76 % 259 11.24 % 0 0.00 %

45 JID C 2828 1882 66.55 % 946 33.45 % 0 0.00 %

46 IOD C 3631 1430 39.38 % 2201 60.62 % 0 0.00 %

47 PCI C 48,444 11,769 24.29 % 36,675 75.71 % 0 0.00 %

Total 493,522 305,630 61.93 % 187,892 38.07 % 42,138 8.54 %

Average 10,500 6,503 60.22 % 3,998 39.78 % 897 9.05 %

Median 2,446 1,613 59.51 % 540 40.49 % 11 0.76 %

reported. On 305,630 (61.93 %) mutants, FindBugs reported at least one warning different
of the ones reported in the original file.
DCLR(ok) of each operator ok is presented in the last column of Table 5. In the first

lines of this table are the mutation operators which generate faults easier to be detected
by FindBugs. In the last lines of this same table are the mutation operators that represent
fault categories FindBugs has difficult to identify. In general, considering all the mutation
operators, DCLR(ok) was of 8.54 % (42,138/493,522) (last column of Total line).
There is a variation in DCLR(ok) rate among the several kinds of mutation operators.

There are 4 class mutation operators (JTD, JTI, JSD and ISD), which haveDCLR(ok) above
49 %, with JTD reaching 87.88 %. Observe that one may suggest to prioritize the analyses

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 17 of 32

of warnings associated with these types of faults since, according to these data, they have
more chance to be true positives warnings. At least in 49 to 87.88 % of the cases they are
able to point specific source code lines containing mutants of these mutation operators.
The operator JTD, from Java Specific feature and responsible for simulating faults by

removing this keyword, has a direct correspondence by line of 87.88 %. Operators JTI
and JSD, also from Java Specific feature category, are responsible to model faults related to
this keyword insertion and static modifier deletion, and have correspondence rates
of 72.55 and 65.59 %, respectively. Finally, the forth mutation operator is ISD, from Inher-
itance category. It has a correspondence rate of 49.33 % andmodels faults relate to super
keyword deletion.
This does not mean that by correcting warnings of a warning category with higher cor-

respondence tomutations, faults will be removed. But, if we do not have enough resources
to deal with all the warning categories, this strategy, at least, provides information about
which bug kinds generate warnings with some correspondence to specific fault categories,
represented by the mutants.
On the other hand, there are mutation operators whose faults are not sensible by

FindBugs. Warning insensitive mutations are generated by only one method mutation
operator: LOD - responsible for removing logical operators (see second line of Table 6).
There are also 15 class mutation operators which generate mutants which are warning

insensitive. They model different fault categories: 1 related to common mistake (EOA)
on using reference assignment instead of cloning the object content; 7 related to Inheri-
tance feature on deleting and removing a attribute on a subclass with the same name of
a attribute in the parent class (IHD and IHI), or deleting or renaming methods on a sub-
class with the same name methods in the parent class (IOD and IOR), or removing the
call to super() on the subclass constructor (IPC), or inserting super keyword (ISI),
or moving the calling position of overriding methods (IOP); 2 of Java specific features
related to removing default constructor if it exists (JDC) or removing the initialization
of instance variables in declaration (JID); 1 related to overloading feature removing the
overload method of a subclass (OMD); and 4 related to polymorphism feature changing

Table 6Warning insensitive mutation operator

MO Category MO description

32 IHD Inheritance Hiding variable deletion

33 LOD Logical Logical Operator Deletion

34 OMD Overloading Overloading method deletion

35 JDC Java Specific Java-supported default constructor creation

36 EOA Common Mistake Reference assignment and content assignment replacement

37 ISI Inheritance super keyword insertion

38 PPD Polymorphism Parameter variable declaration with child class type

39 PCC Polymorphism Cast type change

40 PMD Polymorphism Instance variable declaration with parent class type

41 IOR Inheritance Overriding method rename

42 IOP Inheritance Overriding method calling position change

43 IPC Inheritance Explicit call of a parent’s constructor deletion

44 IHI Inheritance Hiding variable insertion

45 JID Java Specific Member variable initialization deletion

46 IOD Inheritance Overriding method deletion

47 PCI Polymorphism Type cast operator insertion

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 18 of 32

the type of a variable declaration for a parent type (PMD), changing the cast type of
a parent class to on of its subclass (PCC), changing the type of a parameter variable
by the type of a child class type (PPD), and inserting type cast before reference vari-
ables (PCI). In static analyzers terminology these faults are called false negative, which
means faults that exist in the source code but the static analyzers is not adequate to
detect.
As stated previously, such information are useful to improve FindBugs to detect addi-

tional kinds of faults for instance, by written a new rule to check the existence of
the default constructor (JDC) or checking for the need to overload parent class meth-
ods (OMD). Moreover, assuming an incremental testing strategy when combining static
and dynamic analysis, this set of mutation operators which generate warning insensi-
ble mutants should be used during testing once the chance the faults they modeled be
detected during automatic static analysis is reduced.
We consider the results obtained so far very promising and it is expected that, with

the increase of the number of evaluated systems, it is possible to identify other fault cat-
egories, represented by mutation operators, which can contribute to an optimization in
the establishment of incremental strategies which combine static and dynamic analysis in
a more efficient and effective way.
Considering these results, we may suggest from Tables 3 and 5 incremental strategies

for applying warning categories of FindBugs and mutation operators of μJava.
In the case of warning categories, the order is from the ones with higher direct cor-

respondence rates to the lower correspondence rates. This strategy is illustrated in
Section 5.1. In the case of mutation operators, we use the inverse order of correspondence
since the lower the correspondencemore difficult the specific fault types to be detected by
automatic static analyzer and the mutation operator should be considered during testing.
This strategy is illustrated in Section 5.2.
Observe that this knowledge database can be always improved. As soon as more infor-

mation about warnings and mutations are collected, the incremental strategy can be
updated aiming at improving its capability, contributing to reduce the cost of static anal-
ysis/mutation testing and guiding the reviewer to firstly analyze warnings more probably
to lead to fault detection and quality improvement before to conduct mutation testing.

5 Incremental strategies: example of application
In this section we illustrate how the incremental strategies defined on Sections 4.1 and 4.2
can be used incrementally to reduce the cost of application of either static analysis or
mutation testing.

5.1 Prioritization of bug kinds based on DCLR(w)

To illustrate how the direct correspondence can be employed to prioritize the analysis of
warnings reported by FindBugs, we applied the bug kinds as described above on three
additional systems: Cassandra, Hibernate and Apache POI. Table 7 presents the complex-
ity of these systems based on its size and the number of warnings generated by FindBugs
on its default configuration.
The suggested approach is to prioritize the analysis of bug kinds with higher DCLR(w)

rates in detriment to the ones with lower DCLR(w) rates, respecting the bug kinds order
defined on Table 3.

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 19 of 32

Table 7Metrics of example systems

ID System Version LOC Mutants Warnings

C Cassandra 2.1.0 43,792 3289 899

P Apache POI 3.9 61,460 19,717 790

H Hibernate 4.3.6 129,337 110,677 2204

Total 234,589 133,683 3893

Table 8 presents the data of applying the bug kinds incrementally. For instance, DLS
warning rules (line 11) reported 5 warnings in Cassandra system (WC column), 26 in
Apache POI (WP column), 392 in Hibernate (WH column), with the total of 423 (Wtotal
column) warnings reported in the three systems.
Columns CCC ,CCP and CCH of Table 8 store the cumulative cost of warnings by each

category of each system. The column CCtotal stores the total warnings of the three sys-
tems. The CC(i) (each system and total) on the line i is obtained by the Eq. 3. Columns
CRC ,CRP ,CRH andCRtotal show the cost reduction to consider the other bug kinds.CR(i)
(each system and total), on the line i is obtained by Eq. 4.

Cumulative Cost of Warning (CC(i)):

CC(i) = W1 + W2 + · · · + Wi−1 + Wi (3)

Cost Reduction of Warning CR(i)):

CR(i) = 1 − (CC(i)/Total) (4)

In Fig. 6, we illustrate the data for CCtotal and CRtotal, when the warnings are analyzed
according to the order suggested in Table 8. Note, in Fig. 6, that initially CRtotal = 100 %
because no warning was analyzed (CCtotal = 0). We suggest the warnings with higher
DCLR(w) should be analyzed first, since these warnings are more likely to correspond to
a fault according to our study.
From Table 8, by summing up the number of warnings reported from bug kinds of lines

1 to 11, the cumulative cost were 8, 42, and 413 for each system individually (columns
CCC ,CCP and CCH , respectively), which means that, if only these warning rules were
analyzed the cost reduction with respect to all 79 bug kinds were 99.15, 94.59, and 80.62 %
(columns CRC ,CRP and CRH , respectively), respectively. Therefore, overall, 463 warnings
were generated (CCtotal column), withmeans a cost reduction of 87.98 % (CRtotal column).
If the top 18 warning rules were used, the 694 warnings were generated at all, rep-

resenting a cost reduction around 81 % with respect to the total number of warnings.
Moreover, observe that Cassandra and Apache POI present both cost reduction above
90 % for these set of bug kinds which may indicate that Apache community handled the
problems reported by these bug kinds during its development processes.
In the last line of Table 8 we can see the total number of warnings the warning

rules composing the incremental strategy generate on each system: 946, 776, and 2,131,
respectively.

5.2 Prioritization mutation operators based on DCLR(ok)

Considering the prioritization of mutation operators, based on DCLR(ok), presented in
Table 5 (p. 16), we applied the mutation operators incrementally. The idea is to use the
historical data previously collected about the correspondence rate between warnings and

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 20 of 32

Table 8 Incremental strategy for applying bug kinds

W
Cassadra Apache POI Hibernate Total

WC CCC CRC WP CCP CRP WH CCH CRH Wtotal CCtotal CRtotal

1 QF 0 0 100.00 % 0 0 100.00 % 0 0 100.00 % 0 0 100.00 %

2 RE 0 0 100.00 % 0 0 100.00 % 3 3 99.86 % 3 3 99.92 %

3 UM 0 0 100.00 % 0 0 100.00 % 0 3 99.86 % 0 3 99.92 %

4 QBA 0 0 100.00 % 0 0 100.00 % 0 3 99.86 % 0 3 99.92 %

5 INT 2 2 99.79 % 3 3 99.61 % 0 3 99.86 % 5 8 99.79 %

6 BIT 0 2 99.79 % 4 7 99.10 % 0 3 99.86 % 4 12 99.69 %

7 UR 0 2 99.79 % 3 10 98.71 % 4 7 99.67 % 7 19 99.51 %

8 UCF 0 2 99.79 % 5 15 98.07 % 13 20 99.06 % 18 37 99.04 %

9 SA 1 3 99.68 % 0 15 98.07 % 0 20 99.06 % 1 38 99.01 %

10 IL 0 3 99.68 % 1 16 97.94 % 1 21 99.01 % 2 40 98.96 %

11 DLS 5 8 99.15 % 26 42 94.59 % 392 413 80.62 % 423 463 87.98 %

12 SS 0 8 99.15 % 0 42 94.59 % 1 414 80.57 % 1 464 87.96 %

13 BSHIFT 0 8 99.15 % 0 42 94.59 % 0 414 80.57 % 0 464 87.96 %

14 DB 4 12 98.73 % 2 44 94.33 % 3 417 80.43 % 9 473 87.72 %

15 RpC 0 12 98.73 % 1 45 94.20 % 1 418 80.38 % 2 475 87.67 %

16 NP 64 76 91.97 % 7 52 93.30 % 90 508 76.16 % 161 636 83.49 %

17 DMI 1 77 91.86 % 0 52 93.30 % 1 509 76.11 % 2 638 83.44 %

18 UwF 12 89 90.59 % 3 55 92.91 % 41 550 74.19 % 56 694 81.99 %

19 BC 49 138 85.41 % 92 147 81.06 % 86 636 70.15 % 227 921 76.10 %

20 MS 29 167 82.35 % 71 218 71.91 % 30 666 68.75 % 130 1,051 72.72 %

· ·
61 Nm 6 551 41.75 % 28 701 9.66 % 18 1260 40.87 % 52 2512 34.80 %

62 ODR 0 551 41.75 % 0 701 9.66 % 2 1262 40.78 % 2 2514 34.75 %

63 PZLA 5 556 41.23 % 8 709 8.63 % 54 1316 38.24 % 67 2581 33.01 %

64 RC 0 556 41.23 % 0 709 8.63 % 1 1317 38.20 % 1 2582 32.99 %

65 RI 3 559 40.91 % 0 709 8.63 % 28 1345 36.88 % 31 2613 32.18 %

66 RR 0 559 40.91 % 8 717 7.60 % 0 1345 36.88 % 8 2621 31.98 %

67 SC 4 563 40.49 % 0 717 7.60 % 0 1345 36.88 % 4 2625 31.87 %

68 SF 143 706 25.37 % 26 743 4.25 % 4 1349 36.70 % 173 2798 27.38 %

69 SIC 164 870 8.03 % 10 753 2.96 % 99 1448 32.05 % 273 3071 20.30 %

70 STCAL 2 872 7.82 % 0 753 2.96 % 0 1448 32.05 % 2 3073 20.24 %

71 Se 48 920 2.75 % 3 756 2.58 % 106 1554 27.08 % 157 3230 16.17 %

72 SnVI 9 929 1.80 % 9 765 1.42 % 551 2105 1.22 % 569 3799 1.40 %

73 UL 0 929 1.80 % 0 765 1.42 % 1 2106 1.17 % 1 3800 1.38 %

74 UPM 6 935 1.16 % 1 766 1.29 % 13 2119 0.56 % 20 3820 0.86 %

75 USELESS_
STRING

0 935 1.16 % 9 775 0.13 % 2 2,121 0.47 % 11 3831 0.57 %

76 UuF 1 936 1.06 % 0 775 0.13 % 2 2123 0.38 % 3 3834 0.49 %

77 VO 4 940 0.63 % 0 775 0.13 % 2 2125 0.28 % 6 3840 0.34 %

78 WMI 4 944 0.21 % 1 776 0.00 % 6 2131 0.00 % 11 3851 0.05 %

79 Wa 2 946 0.00 % 0 776 0.00 % 0 2131 0.00 % 2 3853 0.00 %

80 Sum 946 − − 776 − − 2131 − − 3853 − −

mutants. The incremental strategy would prioritize, initially, the use of the operators that
generate mutants that were not detected by FindBugs and have a lower cost in terms of
the number of generated mutants.
Table 9 shows the number of mutants generated for each type of μJava mutation oper-

ator in Cassandra (column MC), Apache POI (column MP) and Hibernate (column MH).

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 21 of 32

Fig. 6 Cumulative Cost versus Cost Reduction of warning category incremental strategy

TheMtotal column equalsMC +MP +MH . For example, in line 15 we find the number of
mutants generated regarding the IOD operator: 47 mutants in Cassandra (column MC),
70 mutants in the Apache POI (column MP), and 1,389 mutants in Hibernate (column
MH). On all the three systems, IOD generated 1,506 mutants (columnMtotal).
In order to reduce the cost of Mutation Testing, Table 9 shows the mutation oper-

ators from μJava applied incrementally. The goal is to prioritize the order of applying
the mutation operators based on increasing order by DCLR(ok). When DCLR(ok) of two
mutation operators are the same, we apply first the mutation operator which generates
less mutantes. The rationality is that this order privileges lower cost mutation operators
which represent fault categories difficult to be detectable by FindBugs. In other words,
considering the collected data, operators with smallerDCLR(ok) indicate the changes that
FindBugs was less effective or even unable to generate warnings that could detect them.
Table 9 presents mutation operators in increasing order by DCLR(ok) and cost in terms

of number of mutants. Equations below are defined, aiming at evaluating the cost of the
incremental strategy.

Cumulative Cost of Operator (CC(ok)):

CC(ok) = M1 + M2 + · · · + Mk−1 + Mk (5)

Cost Reduction of Operator (CR(ok)):

CR(ok) = 1 − (CC(ok)/Total) (6)

Equation 5 is the cumulative cost in terms of the number of mutants to be analyzed,
following the priority order established in Table 9. It represents the number of mutants
generated from the operator in the first line of Table 9, IHD, until the operator at the k-th
line.

A
raújo

etal.JournalofSoftw
are

Engineering
Research

and
D
evelopm

ent
 (2016) 4:5

Page
22

of32

Table 9 Incremental strategy for applying mutation operator

W
Cassandra Apache POI Hibernate Total

MC CCC CRC MP CCP CRP MH CCH CRH Mtotal CCtotal CRtotal

1 IHD 0 0 100.00 % 1 1 99.99 % 3 3 100.00 % 4 4 100.00 %

2 LOD 0 0 100.00 % 0 1 99.99 % 0 3 100.00 % 0 4 100.00 %

3 OMD 0 0 100.00 % 3 4 99.98 % 2 5 100.00 % 5 9 99.99 %

4 JDC 0 0 100.00 % 0 4 99.98 % 64 69 99.94 % 64 73 99.95 %

5 EOA 0 0 100.00 % 0 4 99.98 % 0 69 99.94 % 0 73 99.95 %

6 ISI 1 1 99.97 % 1 5 99.97 % 35 104 99.91 % 37 110 99.92 %

7 PPD 0 1 99.97 % 0 5 99.97 % 27 131 99.88 % 27 137 99.90 %

8 PCC 1 2 99.94 % 20 25 99.87 % 16 147 99.87 % 37 174 99.87 %

9 PMD 0 2 99.94 % 0 25 99.87 % 8 155 99.86 % 8 182 99.86 %

10 IOR 5 7 99.79 % 16 41 99.79 % 83 238 99.78 % 104 286 99.79 %

11 IOP 2 9 99.73 % 1 42 99.79 % 43 281 99.75 % 46 332 99.75 %

12 IPC 18 27 99.18 % 30 72 99.63 % 32 313 99.72 % 80 412 99.69 %

13 IHI 4 31 99.06 % 5 77 99.61 % 102 415 99.63 % 111 523 99.61 %

14 JID 6 37 98.88 % 16 93 99.53 % 254 669 99.40 % 276 799 99.40 %

15 IOD 47 84 97.45 % 70 163 99.17 % 1389 2058 98.14 % 1506 2305 98.28 %

16 PCI 90 174 94.71 % 880 1043 94.71 % 7975 10,033 90.93 % 8945 11,250 91.58 %

17 OMR 15 189 94.25 % 3 1046 94.69 % 2215 12,248 88.93 % 2233 13,483 89.91 %

18 AOIU 172 361 89.02 % 1647 2693 86.34 % 2907 15,155 86.31 % 4726 18,209 86.38 %

19 AORS 9 370 88.75 % 57 2750 86.05 % 408 15,563 85.94 % 474 18,683 86.02 %

20 EMM 0 370 88.75 % 9 2759 86.01 % 1437 17,000 84.64 % 1446 20,129 84.94 %

21 LOI 238 608 81.51 % 2274 5033 74.47 % 4830 21,830 80.28 % 7342 27,471 79.45 %

22 EAM 38 646 80.36 % 780 5813 70.52 % 11,851 33,681 69.57 % 12,669 40,140 69.97 %

23 COD 12 658 79.99 % 22 5835 70.41 % 727 34,408 68.91 % 761 40,901 69.40 %

24 VDL 66 724 77.99 % 612 6447 67.30 % 1719 36,127 67.36 % 2397 43,298 67.61 %

25 ASRS 52 776 76.41 % 674 7121 63.88 % 256 36,383 67.13 % 982 44,280 66.88 %

A
raújo

etal.JournalofSoftw
are

Engineering
Research

and
D
evelopm

ent
 (2016) 4:5

Page
23

of32

Table 9 Incremental strategy for applying mutation operator (Continued)

26 AODS 2 778 76.35 % 3 7124 63.87 % 87 36,470 67.05 % 92 44,372 66.81 %

27 PNC 6 784 76.16 % 0 7124 63.87 % 1751 38,221 65.47 % 1757 46,129 65.49 %

28 ODL 241 1025 68.84 % 2087 9211 53.28 % 8489 46,710 57.80 % 10,817 56,946 57.40 %

29 CDL 46 1071 67.44 % 523 9734 50.63 % 2092 48,802 55.91 % 2661 59,607 55.41 %

30 SOR 2 1073 67.38 % 2 9736 50.62 % 0 48,802 55.91 % 4 59,611 55.41 %

31 JSI 40 1113 66.16 % 141 9877 49.91 % 1509 50,311 54.54 % 1690 61,301 54.14 %

32 PCD 0 1113 66.16 % 1 9878 49.90 % 5 50,316 54.54 % 6 61,307 54.14 %

33 AODU 4 1117 66.04 % 7 9885 49.87 % 53 50,369 54.49 % 64 61,371 54.09 %

34 ROR 528 1645 49.98 % 1246 11,131 43.55 % 9999 60,368 45.46 % 11,773 73,144 45.29 %

35 PRV 21 1666 49.35 % 19 11,150 43.45 % 1183 61,551 44.39 % 1223 74,367 44.37 %

36 AORB 192 1858 43.51 % 1484 12,634 35.92 % 2284 63,835 42.32 % 3960 78,327 41.41 %

37 EOC 0 1858 43.51 % 0 12,634 35.92 % 26 63,861 42.30 % 26 78,353 41.39 %

38 COI 152 2010 38.89 % 290 12,924 34.45 % 6542 70,403 36.39 % 6984 85,337 36.16 %

39 SDL 467 2477 24.69 % 2502 15,426 21.76 % 24,284 94,687 14.45 % 27,253 112,590 15.78 %

40 COR 56 2533 22.99 % 46 15,472 21.53 % 2442 97,129 12.24 % 2544 115,134 13.88 %

41 LOR 12 2545 22.62 % 88 15,560 21.08 % 8 97,137 12.23 % 108 115,242 13.79 %

42 AOIS 602 3147 4.32 % 3858 19,418 1.52 % 7792 104,929 5.19 % 12,252 127,494 4.63 %

43 OAN 15 3162 3.86 % 16 19,434 1.44 % 2102 107,031 3.29 % 2133 129,627 3.03 %

44 ISD 0 3162 3.86 % 0 19,434 1.44 % 20 107,051 3.28 % 20 129,647 3.02 %

45 JSD 27 3189 3.04 % 191 19,625 0.47 % 736 107,787 2.61 % 954 130,601 2.31 %

46 JTI 89 3278 0.33 % 49 19,674 0.22 % 2133 109,920 0.68 % 2271 132,872 0.61 %

47 JTD 11 3289 0.00 % 43 19,717 0.00 % 757 110,677 0.00 % 811 133,683 0.00 %

48 Total 3289 − − 19,717 − − 110,677 − − 133,683 − −

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 24 of 32

The CCC ,CCP and CCH columns store, respectively, the result of Function 5 on the
generatedmutants in Cassandra, Apache POI andHibernate systems. The columnCCtotal
is the result of Function 5 applied to the three systems. The costs accumulated to analyze
mutants related to the first 10mutation operators (IHD, LOD, OMD, JDC, EOA, ISI, PPD,
PCC, PMD and IOR) are 7 mutants in the Cassandra, 41 mutants in the Apache POI, 238
mutants in Hibernate, and 286 mutants considering the three systems together.
Considering the 16 first mutation operators with DCLR(ok) = 0 % (IHD, LOD, OMD,

JDC, EOA, ISI, PPD, PCC, PMD, IOR, IOP, IPC, IHI, JID, IOD and PCI), the cumulative
cost is 174 mutants in Cassandra, 1,043 mutants in Apache POI, 10,033 mutants in Hiber-
nate, summing up 11,250 mutants considering all the three systems together. Observe
that this represents only 8.42 % (11, 250/133, 683) of all possible mutants μJava is able to
generate considering the entire mutation operator set. Moreover, faults modeled by such
mutation operators are not easily detected by FindBugs.
On the other hand, Eq. 6 represents the cost reduction (in %) relative to the total of

mutants if only the operators until the k-th line are used.
ColumnsCRC ,CRP,CRH andCRtotal store, respectively, the result of Eq. 6 in Cassandra,

Apache POI, Hibernate, and the three systems together. The cost reductions provided for
analyzing only the top 10 mutation operators (IHD, LOD, OMD, JDC, EOA, ISI, PPD,
PCC, PMD and IOR) are 99.79 % for Cassandra, 99.79 % for Apache POI, 99.78 % for
Hibernate, and 99.79 % considering all the three systems.
Note that the cost reduction still remains above 90.0 % considering the 16 operators

DCLR(ok) = 0.0 %. The cost reductions for analyzing the mutants of these 16 mutation
operators (IHD, LOD, OMD, JDC, EOA, ISI, PPD, PCC, PMD, IOR, IOP, IPC, IHI, JID,
IOD and PCI) are 94.71 % for Cassandra, 94.71 % for Apache POI, 90.93 % for Hibernate,
and 91.58 % considering all the three systems together.
Figure 7 shows the curves of cumulative cost (CC(ok)) and cost reduction (CR(ok)),

respecting the order defined in the prioritization strategy suggested by DCLR(ok).

Fig. 7 Cumulative Cost versus Cost Reduction of mutation operator incremental strategy

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 25 of 32

Didactically, Figs. 6 and 7 can be understood by using three complementary scenarios:

• Scenario 1: no warning category/mutation operator. This case illustrates the
scenario in which Cumulative Cost is zero (0 %) and Cost Reduction is 100 %;

• Scenario 2: all warning categories/mutation operators are used. This case
illustrates the worst scenario where Cumulative Cost is 100 % and Cost Reduction is
zero (0 %);

• Scenario 3: any stage between Scenarios 1 and 2. This case illustrates situation
where only a subset of warning categories or mutation operators is used. In this case,
the reviewer/tester can combine both strategies in a complementary way considering
the trade off between Cost Reduction between 0 % ≤ CR ≤ 100 % and a Cumulative
Cost between 0 % ≤ (100 − CR) ≤ 100 %. For instance, considering the warning
categories in Fig. 6, if we choose a CR of 60 % we would consider the warning
categories from QF to DE, implying a CC of 40 %.
In the same way, when applying mutation operators as illustrated in Fig. 7, the tester
may want to obtain a cost reduction around 80 %. In this case, he/she may consider
to use operators from IHD to LOI, implying a CC around 20 %.

6 Lessons learned and threats to validity
For direct correspondence, mutation test showed (Table 5) a variation of direct corre-
spondence among the operators, that is, among the fault categories simulated by the
mutants. This result adds on the one obtained by Couto et al. (2013) since in that study it
was not possible to establish direct correspondence per line. The results herein presented
show strong evidence that a direct correspondence exists and it is established for specific
fault kinds, enabling the establishment of complimentary test strategies integrating static
and dynamic analysis.
Observe that our intention is to restrict the types of mutation operators we should use

to prioritize true positive static warnings and to identify possible types of faults which
FindBugs are not adequate to detect such that we can combine static and dynamic analysis
in a coordinated way to take the advantage of each other.
Cost and benefit of the suggested approach:
Benefit: the value obtained by theDCL(w) of each type of warningw is used to establish

a prioritization order to analyze the warnings.With the use of the suggested priority order,
it is expected that the true positive warnings are analyzed as soon as possible, leaving the
“less important” alarms (with smaller DCL) to be analyzed later if there are still available
resources. On the other hand, the incremental strategy for applying mutation operator
allows to consider firstly faults which FindBugs was not adequate to detect.
Cost: There is some cost to run FindBugs on the original program and on its mutants

for the database generation and DCL computation. However, as the mutants do not need
to be executed, the generation time is lower than the time demanded by mutation test.
To analyze the cost of database generation and DCL computation, first we need to run

FindBugs on all Java files of each system. Considering a notebook computer with an Intel
Core i5 processor and 8 Gb of RAM memory, FindBugs took 6.5 seconds, on average, to
run on each file. We compute the average runtime per file once when running FindBugs
onmutants, we need to run it only on themutated file and not on the entire system. In this
way, the most expensive system in terms of generated mutants is s17, which is composed

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 26 of 32

by 438 Java files and μJava generated 79,968 mutants. When running FindBugs on s17, it
took 48 minutes and 32 seconds, and reported 219 warnings in the original system. This
fact gives an average time for reporting warnings around 6,6 second for system S17. With
respect to mutants’ warnings computation time it was about 531,659.4 seconds (6.6 ×
79,968) which corresponds to 6.15 days to finish the data collection.
Observe that the biggest system we analyzed in terms of lines of code, s11, with 102,682

lines of code, has 519 Java files and FindBugs reported 359 warnings in 49 minutes and
50 seconds, giving an average time of 5.8 seconds for reporting warning per file. This was
the lowest runtime per file FindBugs obtained in our experiment. Considering that μJava
generated 65,529 mutants for s11, we finished the data collection for this system in 4,37
days. The smallest system in terms of lines of code, s9, was also the one which took the
lowest time to finish data collection, around 2 hours.
The cost of mutant generation and the cost for loading XML data into the database are

not representative taking only a few seconds and are not considered in this analysis.
Observe that, if we have seven cloud computers, similar to the one we have used, we

can collect all the data for the prioritization strategy in one day, considering the most
expensive program. Therefore, it is evident that our strategy has a manageable cost only
dependent on available hardware resources which, in general, are cheaper than human
resources.
Once it is determined the prioritization order, as presented in Sections 4.1 and 4.2, the

cost to use it, as shown in Section 5.1, is only to apply FindBugs and to analyze the warn-
ings reported, respecting the suggested order. In the same way, when applying mutation
testing, the tester may decided how much mutation operators he/she wants to applying
respecting the time and cost constraint available. The suggested order prioritizes faults
more difficult to be detected by FindBugs.
As any other study, this one also presents threats to validity and limitations as presented

below.
External Validity: In this study, we used 19 of 30 systems used by Couto et al. (2013).

One of the reasons for the absence of the other 11 systems is due to the difficulty in obtain-
ing its dependencies (jars files) so that μJava tool could not generate the corresponding
mutants.
Other limitations observed in the experiment are related to the programming language

and the static analysis tools used. In the experiment, it was considered only the Java lan-
guage and, therefore, the results cannot be extended to other languages, specially to those
of dynamic typing. In relation to static analysis tools, it was used only FindBugs and the
results cannot be automatically extended to other static analysis tools as well.
About equivalent mutants: one of the objectives of the study is to verify if a given

mutation produced is detected by FindBugs Tool, and this is done statically, without the
necessity of the mutant execution. Thus, in this first stage of the study, as the mutants
were not executed, there is no data about live, dead or equivalent mutants. However, we
shall explore the generation of test sets in automated and/or manual ways executing the
mutants, evaluating the effectiveness of such test suites, analysing live mutants to deter-
mine equivalence and to construct a historical data base for Java mutation operators,
similar to the one built to mutation operators for C language, enabling the automatic
treatment of equivalent mutants based on Bayesian learning technique (Vincenzi et al.
2002).

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 27 of 32

Internal Validity:We do not identified internal validity threats. Initially, mutants were
generated, through μJava tool (version 4), from the systems shown in Table 1. For this,
all available operators in μJava tool were selected with the aim of generating the highest
amount of mutants (fault) as possible.
After that, FindBugs Tool (version 3.0.0) was used with option -low so that warnings

of any priority could be reported. At this stage, FindBugs reports all possible warnings.
To calculate the place where mutation occurred, it was necessary to store in the data base
the textual difference between each mutant and the original file (diff).
Construction Risk: To control the experimentation process and reduce the risk of an

analysis based on incorrect data in systems shown in Table 1, data collection process and
the effective usage of the technique based on the faults were validated in simpler systems
used in previous experiments (Polo et al. 2009).

7 Related works
Ayewah et al. (2007a) examined different types of warnings reported by FindBugs classi-
fying them into false positives, trivial bugs and serious bugs. They concluded that, besides
the high false positive rates, static analysis tools often uncover true but trivial bugs.
Nagappan and Ball (2005) developed an empirical methodology for the early projection

of pre-release defect density based on the outcomes of two different static analysis tools.
They were able to establish a strong correspondence between the number of warnings
reported by the static analysis tools and the actual pre-release fault density for Windows
Server 2003 obtained through testing.
Daimi et al. (2013) also carried out a performance evaluation of five Java static

analyzers. They evaluated the five tools using Eclipse according to three different cri-
teria: the total number of violations (warnings) found, run time, and memory usage.
Based on these criteria each tool was evaluated against six fault categories: data faults,
control faults, interface faults, measurement faults, duplicated code, and code con-
vention violations. Based on these categories, faulty codes were temporary injected
in three different programs and each tool was evaluated against such a fault version.
Although such fault categories were plausible, they reported that Eclipse IDE for Java
was able to detect almost all the faults injected immediately once they were syntax
errors.
To investigate the direct correspondence, the work of Couto et al. (2013) used three

systems that together add up to around 118 thousand lines of code (LOC) and to those
were reported 277 corrective faults through Bugzilla and Jira tools. The approach used
in the studies presented in Couto et al. (2013) shows the following results concerning
correspondence between faults and warnings: non-existence of direct correspondence. In
these works, it was used change’s history from different versions store in iBugs repository
(Dallmeier and Zimmermann 2007) and reports of software faults registered in Bugzilla
(Bugzilla 2014) and Jira (Atlassian 2014) tools.
To the best of our knowledge we did not identify any research trying to combine muta-

tion and static analyzers as proposed in this paper. Our work is complementary to the
others described above in the sense it uses mutations to evaluate the capability of static
analyzers in detecting such mutations. The results obtained so far indicate we can use the
collected information to prioritize warning categories in an incremental strategy, allow-
ing the reviewer to apply specific warning categories more adequate to detect mutations

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 28 of 32

first by increasing the chance to analyze a true positive warning. On the other hand, it was
also possible to identify warning categories which are not adequate to detect any kind of
mutation suggesting these warning categories should be used only if there are time and
resources available.
Mutation operators not detected by static analyzers are also source of information to

improve the capability of static analyzers in detecting new kinds of faults. Such set of
mutation operators were identified and can be further investigated.

8 Conclusion and future work
In this study we provided evidences of direct correspondence by line between warnings
issued by FindBugs and mutations generated by μJava mutation operators.
Based on this correspondence we defined two incremental strategies for using FindBugs

bug kinds and μJava mutation operators in a complementary way.
In the case of the incremental strategy for using FindBugs, we observed that for four

specific bug kinds it is possible to have 100 % of direct correspondence with mutations,
i.e., bug patterns of these bug kinds are adequate to detect the difference between the
mutants and the original program. Even if we extend the analysis for the top 12 bug kinds,
the correspondence with mutations is above 33 %.
On the other hand, we also identified that for a group of 16 mutation operators, Find-

Bugs was not adequate to issue warnings on any of the mutants generated by such
operators. Again, we used this information to define another incremental strategy for
applying mutation operators considering faults modeled by these operators are very dif-
ficult to be statically detected by FindBugs. Moreover, these 16 mutation operators are
responsible for less than 10 % of the total number of mutants and should be considered a
good starting point for selective Mutation Testing.
As more resources are becoming available, additional bug kinds or mutation operators

can be included to improve the fault detection capability of the desired strategy.
A collateral effect of the direct correspondence by line is the possibility to know fault

categories FindBugs is not good enough to detect and to write additional bug patterns to
improve its capability once, in general, static analysis is cheaper than dynamic analysis.
As future work we intend: 1) to incorporate other static analysis tools for Java (e.g. PMD,

and JLint); 2) to extend this study to other programming languages; 3) to evaluate the use
of mutation testing as a fault model for static analyzers comparison; 4) to investigate the
Cases 2 and 3 shown in Figs. 3 and 4; and 4.2) to create a knowledge database which can
be evolved automatically, based on the continuous collection of correspondence data, or
manually, based on experts’ recommendations.

Endnotes
1 Bad casts of object references
2Null pointer dereference
3Dead local store
4Dubious method invocation
5The lines of code of each one of the systems presented in Table 1 were obtained

through JavaNCSS Tool.
6 KLOC is a acronym to Kilo Lines of Code (LOC/1,000).

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 29 of 32

Appendix A: Descriptions of mutation operators and warnings
A.1 μJava mutation operators

With respect tomutation operators,μJava has 19methodmutation operators and 28 class
mutation operators, as illustrated in Tables 10 and 11, respectively.
The reduced number of method operators implemented by μJava is due to the selective

approach adopted to create such a set of mutants (Offutt et al. 1996). As illustrated in
Table 10, fault categories are related to Arithmetic, Relational, Conditional, Shift, Logical
and Assignment, Variable, Constant, Operator and Statement operators.
Considering the class operators implemented by μJava, they are developed based on

object-oriented language features and Java specific features, as illustrated in Table 11.
The considered object-oriented features which have mutation operator implemented are:
Inheritance, Polymorphism and Overloading, with 8, 7 and 3 mutation operators per fea-
ture, respectively. Additionally, it has 6 Java specific mutation operators and 4 related to
common programming mistakes.
For more information about these set of mutant operators and examples of the muta-

tions they performed the interested reader may refer to Ma and Offutt (2005) and Ma
et al. (2005).

A.2 FindBugs warning categories

The version 3.0 of FindBugs there are 9 different warning categories. Each warning cat-
egory has a set of bug kinds. At all, there are 121 different bug kinds, and each bug kind
has a set of bug patterns, resulting in a set of 408 possible warnings. Table 12 presents all
warning categories supported by the FindBugs version used in our experiment, the total
of bug patterns on each category, and a sample of specific bug kind of each category.

Table 10 μJava traditional mutation operator (adapted from (Ma and Offutt 2005))

Language feature Operator Description

Arithmetic (6) AORB Arithmetic Operator Replacement (Binary)

AORS Arithmetic Operator Replacement (Short-cut)

AOIU Arithmetic Operator Insertion (Uniry)

AOIS Arithmetic Operator Insertion (Short-cut)

AODU Arithmetic Operator Deletion (Uniry)

AODS Arithmetic Operator Deletion (Short-cut)

Relational (1) ROR Relational Operator Replacement

Conditional (3) COR Conditional Operator Replacement

COD Conditional Operator Deletion

COI Conditional Operator Insertion

Shift (1) SOR Shift Operator Replacement

Logical (3) LOR Logical Operator Replacement

LOI Logical Operator Insertion

LOD Logical Operator Deletion

Assignment (1) ASRS Short-cut Assignment Operator Replacement

Statement (1) SDL Statement Deletion

Variable (1) VDL Variable Deletion

Constant (1) CDL Constant Deletion

Operator (1) ODL Operator Deletion

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 30 of 32

Table 11 μJava class mutation operator (adapted from Ma et al. (2005))

Language feature Operator Description

Inheritance (8) IHD Hiding variable deletion

IHI Hiding variable insertion

IOD Overriding method deletion

IOP Overriding method calling position change

IOR Overriding method rename

ISI super keyword insertion

ISD super keyword deletion

IPC Explicit call of a parent’s constructor deletion

Polymorphism (7) PNC newmethod call with child class type

PMD Instance variable declaration with parent class type

PPD Parameter variable declaration with child class type

PCI Type cast operator insertion

PCD Type cast operator deletion

PCC Cast type change

PRV Reference assignment with other comparable type

Overloading (3) OMR Overloading method contents change

OMD Overloading method deletion

OAN Argument number change

Java-Specific (6) JTI this keyword insertion

JTD this keyword deletion

JSI staticmodifier insertion

JSD staticmodifier deletion

JID Member variable initialization deletion

JDC Java-supported default constructor creation

Common Programming
Mistakes (4)

EOA Reference assignment and content assignment replacement

EOC Reference comparison and content comparison replacement

EAM Accessor method change

EMM Modifier method changes

Table 12 FindBugs warning categories

Category Warning count
by category

Example warning

1 Bad practice 84 ES: Comparison of String parameter using
== or !=

2 Correctness 145 RV: Method ignores return value

3 Experimental 3 OBL: Method may fail to clean up stream or
resource

4 Internationalization 2 Dm: Consider using Locale parameterized
version of invoked method

5 Malicious code vulnerability 15 DP: Classloaders should only be created
inside doPrivileged block

6 Multithreaded correctness 45 STCAL: Static DateFormat

7 Performance 30 UuF: Unused field

8 Security 11 Dm: Empty database password

9 Dodgy code 73 BC: Unchecked/unconfirmed cast

Sum 408 −

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 31 of 32

FindBugs also has different priority levels for each warning pattern from 1 to 3, higher
to lower priority. In general, priority 1means warnings that should be corrected and prob-
ably represents a fault reviewer would like to correct; priority 2 represents not so critical
warnings but that may be interesting to be analyzed after the ones with priority 1; and
priority 3 means warnings related to coding style and are considered informational.

Additional file

Additional file 1: Original versus mutated program samples. (ZIP 2 kb)

Acknowledgements
The authors would like to thank the Brazilian Funding Agency: CAPES, CNPq and FAPESP. The authors would also like to
thank the anonymous referees for their valuable comments.

Authors’ contributions
CAA carried out the experiment and data collection. AMRV participated in the organization of the experimental study
and proposed the use of mutantion testing to evaluate static analysis tools. JCM and MED participated in the work
suggestions and helped in the revision of the manuscript. All authors contributed on data analysis, conclusions and
future work sections. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Instituto de Informática, UFG, Alameda Palmeiras, Quadra D, Campus II, 74690-900 Goiânia, GO, Brazil. 2Instituto de
Ciências Matemáticas e de Computação, USP, Av. Trabalhador São Carlense, 400, 13566-590 São Carlos, SP, Brazil.
3Departamento de Computação, UFSCar, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil.

Received: 18 December 2015 Accepted: 8 October 2016

References
Acree AT, Budd TA, DeMillo RA, Lipton RJ, Sayward FG (1979) Mutation analysis. Tech rep DTIC Document
Andrews JH, Briand LC, Labiche Y (2005) Is mutation an appropriate tool for testing experiments. In: XXVII International

Conference on Software Engineering – ICSE’05. ACM Press, New York. pp 402–411. doi:10.1145/1062455.1062530
Atlassian (2014) Jira. Tool’s Homepage, available at: https://www.atlassian.com/software/jira/. Accessed 2 July 2014
Ayewah N, Pugh W, Morgenthaler JD, Penix J, Zhou Y (2007a) Evaluating static analysis defect warnings on production

software. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, PASTE’07. ACM, New York. pp 1–8. doi:10.1145/1251535.1251536

Ayewah N, Pugh W, Morgenthaler JD, Penix J, Zhou Y (2007b) Using findbugs on production software. In: Companion to
the 22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications Companion,
OOPSLA ’07. ACM, New York. pp 805–806. doi:10.1145/1297846.1297897

Bugzilla (2014) Bugzilla – bug-tracking system. Tool’s Homepage, available at: http://www.bugzilla.org/. Accessed 2 July
2014

Burn O (2014) Checkstyle – coding standard verifier. Tool’s Homepage, available at: https://github.com/checkstyle/
checkstyle. Accessed 2 July 2014

Coles H (2015) Pitest: real world mutation testing. Web page. http://pitest.org/. Last access: Accessed 2 July 2014
Copeland L (2004) A practitioner’s guide to software test design. Artech House
Copeland T (2005) PMD Applied: An Easy-to-use Guide for Developers. An easy-to-use guide for developers, Centennial

Books
Couto C, Montandon JaE, Silva C, Valente MT (2013) Static correspondence and correlation between field defects and

warnings reported by a bug finding tool. Softw Qual J 21(2):241–257. doi:10.1007/s11219-011-9172-5
Daimi K, Banitaan S, Liszka K (2013) Examining the performance of java static analyzers. In: XI International Conference on

Software Engineering Research and Practice – SERP’13. CSREA Press, Las Vegas. pp 225–230
Dallmeier V, Zimmermann T (2007) Extraction of bug localization benchmarks from history. In: Proceedings of the

Twenty-second IEEE/ACM International Conference on Automated Software Engineering, ASE’07. ACM, New York.
pp 433–436. doi:10.1145/1321631.1321702

de Araújo Filho JE, de Moura Couto CF, de Souza SJ, Valente MT (2010) A Study on the Correlation Between Field Defects
and Warnings Reported by a Static Analysis Tool. In: IX Brazilian Symposium on Software Quality – SBQS‘2010. SBC,
Belém. pp 9–23

DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: Help for the practicing programmer. Computer
11(4):34–43

Evans D, Larochelle D (2002) Improving security using extensible lightweight static analysis. IEEE Softw 19(1):42–51.
doi:10.1109/52.976940

Ferrari FC, Nakagawa EY, Maldonado JC, Rashid A (2011) Proteum/AJ: A mutation system for AspectJ programs. In: X
International Conference on Aspect-oriented Software Development Companion – AOSD’11. ACM, New York.
pp 73–74. doi:10.1145/1960314.1960340

http://dx.doi.org/10.1186/s40411-016-0031-8
http://doi.acm.org/10.1145/1062455.1062530
https://www.atlassian.com/software/jira/
http://dx.doi.org/10.1145/1251535.1251536
http://dx.doi.org/10.1145/1297846.1297897
http://www.bugzilla.org/
https://github.com/checkstyle/checkstyle
https://github.com/checkstyle/checkstyle
http://pitest.org/
http://dx.doi.org/10.1007/s11219-011-9172-5
http://dx.doi.org/10.1145/1321631.1321702
http://dx.doi.org/10.1109/52.976940
http://dx.doi.org/10.1145/1960314.1960340

Araújo et al. Journal of Software Engineering Research and Development (2016) 4:5 Page 32 of 32

Hovemeyer D, Pugh W (2004) Finding bugs is easy. SIGPLAN Not 39(12):92–106. doi:10.1145/1052883.1052895
IEEE (1990) IEEE Standard Glossary of Software Engineering Terminology. IEEE Standards Board, New York
Just R, Schweiggert F, Kapfhammer GM (2011) Major: An efficient and extensible tool for mutation analysis in a java

compiler. In: XXVI IEEE/ACM International Conference on Automated Software Engineering – ASE’11. IEEE Computer
Society, Washington, DC. pp 612–615. doi:10.1109/ASE.2011.6100138

Louridas P (2006) Static code analysis. IEEE Softw 23(4):58–61. doi:10.1109/MS.2006.114
Ma YS, Offutt J (2005) Description of method-level mutation operators for Java. On-line document, available at: http://cs.

gmu.edu/~offutt/mujava/mutopsMethod.pdf. Accessed 10 Aug 2015
Ma YS, Offutt J, Kwon YR (2005) Mujava: an automated class mutation system: Research articles. Softw Test Verification

Reliab 15(2):97–133. doi:10.1002/stvr.v15:2
Mathur AP (1991) Performance, effectiveness, and reliability issues in software testing. In: Computer Software and

Applications Conference, 1991. COMPSAC‘91., Proceedings of the Fifteenth Annual International. IEEE, New York.
pp 604–605. 10.1109/CMPSAC.1991.170248

Microsoft (2014) StyleCop. Tool Homepage, available at: https://stylecop.codeplex.com/. Accessed 2 July 2014
Mresa E, Bottaci L (1999) Efficiency of mutation operators and selective mutation strategies: an empirical study. J Softw

Test Verification Reliab 9(4):205–232
Nagappan N, Ball T (2005) Static analysis tools as early indicators of pre-release defect density. In: Proceedings of the 27th

International Conference on Software Engineering, ICSE ’05. ACM, New York. pp 580–586.
doi:10.1145/1062455.1062558

Offutt AJ, Rothermel G, Zapf C (1993) An experimental evaluation of selective mutation. In: 15th International Conference
on Software Engineering. IEEE Computer Society Press, Baltimore. pp 100–107

Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An experimental determination of sufficient mutant operators.
ACM Trans Softw Eng Methodol 5(2):99–118

Offutt J, Ma YS, Kwon YR (2006) The class-level mutants of mujava. In: Proceedings of the 2006 International Workshop on
Automation of Software Test, AST ’06. ACM, New York. pp 78–84. doi:10.1145/1138929.1138945

Pohl J (2001) Lint - C program verifier. Tool’s Man Page, available at: http://www.unix.com/man-page/FreeBSD/1/lint.
Access on: 2 July 2014

Polo M, Piattini M, García-Rodríguez I (2009) Decreasing the cost of mutation testing with second-order mutants. Softw
Test Verification Reliab 19(2):111–131. doi:10.1002/stvr.v19:2

Shen H, Fang J, Zhao J (2011) Efindbugs: Effective error ranking for findbugs. In: Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation, ICST ’11. IEEE Computer Society,
Washington, DC. pp 299–308. doi:10.1109/ICST.2011.51

Tomas P, Escalona MJ, Mejias M (2013) Open Source Tools for Measuring the Internal Quality of Java Software Products. A
Survey. Computer Standards & Interfaces 36(1):244–255. 10.1016/j.csi.2013.08.006

Vincenzi AMR, Nakagawa EY, Maldonado JC, Delamaro ME, Romero RAF (2002) Bayesian-learning based guidelines to
determine equivalent mutants. Int J Softw Eng Knowl Eng 12(06):675–689

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1109/ASE.2011.6100138
http://dx.doi.org/10.1109/MS.2006.114
http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf
http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf
http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1109/CMPSAC.1991.170248
https://stylecop.codeplex.com/
http://dx.doi.org/10.1145/1062455.1062558
http://dx.doi.org/10.1145/1138929.1138945
http://www.unix.com/man-page/FreeBSD/1/lint
http://dx.doi.org/10.1002/stvr.v19:2
http://dx.doi.org/10.1109/ICST.2011.51
http://dx.doi.org/10.1016/j.csi.2013.08.006

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Introduction
	Background
	Experimental study
	Definitions
	Direct Correspondence per Line (DCL)

	Experimental process

	Results and Discussion
	Using DCL for bug kinds prioritization
	Using DCL for mutation operators prioritization

	Incremental strategies: example of application
	Prioritization of bug kinds based on DCLR(w)
	Prioritization mutation operators based on DCLR(ok)

	Lessons learned and threats to validity
	Related works
	Conclusion and future work
	A
	A.1 Java mutation operators
	A.2 FindBugs warning categories

	Additional file
	Additional file 1

	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References

