
Oizumi et al. Journal of Software Engineering Research and
Development (2015) 3:11
DOI 10.1186/s40411-015-0025-y

RESEARCH Open Access

On the relationship of code-anomaly
agglomerations and architectural problems
Willian N. Oizumi1*, Alessandro F. Garcia1, Thelma E. Colanzi2, Manuele Ferreira1 and Arndt V. Staa1

*Correspondence:
woizumi@inf.puc-rio.br
1OPUS Group - Informatics
Department, PUC-Rio, Marques de
Sao Vicente Street, 225, 22451-900
Rio de Janeiro, Brazil
Full list of author information is
available at the end of the article

Abstract

Several projects have been discontinued in the history of the software industry due to
the presence of software architecture problems. The identification of such problems in
source code is often required in real project settings, but it is a time-consuming and
challenging task. Some authors assume that architectural problems are reflected in
source code through individual code anomalies. However, each architectural problem
may be realized by multiple code anomalies, which are intertwined in several program
elements. The relationships of these various code anomalies and their architecture
problems’ counterparts are hard to reveal and characterize. To overcome this limitation,
we are studying the architecture impact of a wide range of code-anomaly
agglomerations. An agglomeration is a group of code anomalies that are explicitly
related to each other in the implementation – e.g. two or more anomalies affecting the
same class or method in the program. In our empirical study, we analyzed a total of
5418 code anomalies and 2229 agglomerations within 7 systems. In particular, our
analysis focused in understanding (i) how agglomerations and architectural problems
relate to each other, and (ii) how agglomerations can support the diagnosis of
well-known architectural problems. We observed that most of the anomalous code
elements related to architectural problems are members of one or more
agglomerations. In addition, this study revealed that, for each agglomeration related to
an architectural problem, an average of 2 to 4 anomalous code elements contribute to
the architectural problem. Finally, the result of our study suggests that certain types of
agglomerations are better indicators of architectural problems than others.

Keywords: Code anomaly; Architectural problem; Source code analysis

1 Introduction
Several projects have been discontinued in the history of the software industry due
to the presence of software architecture problems (Garcia et al. 2009; Hochstein and
Lindvall 2005; Macia et al. 2012; Macia 2013) Such problems are caused by architectural
design decisions that negatively impact the resulting system’s quality (Garcia et al. 2009).
Even though software architecture drives software development in real project settings,
architectural design is rarely formally documented (Macia et al. 2012). As a result,
analysis of architectural problems cannot be performed with existing documentation-
driven techniques (Eichberg et al. 2008; Marwan and Aldrich 2009 Morgan 2007;
Ubayashi et al. 2010). Hence, evidence of architectural problems has to be identified
based on the source code analysis Macia et al. (2012). Along years of research on the

© 2015 Oizumi et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-015-0025-y-x&domain=pdf
mailto: woizumi@inf.puc-rio.br
http://creativecommons.org/licenses/by/4.0

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 2 of 22

software quality field, different studies (Fowler 1999; Lanza and Marinescu 2006) have
agreed with the idea that source code anomalies, such as Long Methods and God Classes
(Fowler 1999), are relevant indicators of different kinds of maintainability problem,
including architectural problems.
Our recent studies (Macia 2013; Macia et al. 2012a,b) started to investigate the

relation of code anomalies and architectural problems. However, these studies revealed
the relationships of code anomalies and their architectural problems’ counterparts are
hard to understand and characterize (Macia 2013; Macia et al. 2012a,b). As an architec-
tural component is often implemented by several code elements, the aim of identifying
architectural problems might not be fulfilled by analyzing individual code anomalies in
isolation (Macia et al. 2012; Macia 2013; Macia et al. 2012b). As an architectural problem
is likely to affect several elements of the implementation, it might be the presence of two
or more code anomalies better indicate an architectural problem (Macia et al. 2012,b).
It might be even the case that these inter-related code anomalies more often indicate
architectural problems than individual code anomalies. Unfortunately, there is little
knowledge about the manifestation of inter-related code anomalies in software projects.
A few studies investigated when inter-related code anomalies adversely affect the software
architecture (Macia 2013; Oizumi et al. 2014). Nevertheless, to the extent of our knowl-
edge, there is no work investigating the extension of the relation between architectural
problems and inter-related code anomalies. In addition, existent studies do not investigate
whether and how inter-related code anomalies can support the diagnosis of well-known
architectural problems.
Therefore, in this paper, we present a study about the relationship between code-

anomaly agglomerations and architectural problems. An agglomeration consists of a
group of code anomalies that are related to each other in the source code. There are differ-
ent types of relationships amongst the code anomalies involved in an agglomeration. For
example, the relation between two or more code anomalies can be established through a
single method shared by these anomalies. That is, a group of two or more code anoma-
lies may simultaneously affect the same method. Therefore, in this case, we consider
this group of code anomalies (affecting the same method) is an agglomeration of code
anomalies. In the study, we take into consideration a categorization of four types of code-
anomaly agglomerations. Each of these types determine the elements and relationships
that compose its agglomerations.We analyze seven systems of different sizes (8 KSLOC to
129 KSLOC) and domains. Our sample of systems goes from older versions (e.g. version
0.2 of OODT) to newer versions (e.g. version 10 of Health Watcher). We perform sev-
eral analyses to understand whether and when code-anomaly agglomerations represent
architectural problems. The analyses of this study can be summarized as follows:

1. We analyze if architectural problems are reflected in code-anomaly agglomerations
more often than in individual code anomalies.

2. We compute the proportion of elements in each agglomeration related to
architectural problems.

3. We investigate which types of agglomerations are more (or less) related to
architectural problems.

4. We discuss concrete examples of how each of these agglomeration types can be
used to reveal architectural problems.

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 3 of 22

In our previous work (Oizumi et al. 2014), we have not addressed the second and fourth
analyzes described above. The execution of these analyses altogether allowed us to fur-
ther reinforce that agglomerations are significantly better than individual code anomalies
to indicate the presence of architectural problems. In most of the target systems, agglom-
erations were at least twice better than individual code anomalies to indicate the presence
of architectural problems; in some projects, the superiority of agglomerations was even
more than five times better. As far as the relation of agglomerations and architectural
problems is concerned, we observed that most of the anomalous code elements related
to architectural problems are members of one or more agglomerations. Moreover, we
observed that each agglomeration has, on average, 2 to 4 elements related to architec-
tural problems. Finally, analyzing the circumstances in which agglomerations represent
architectural problems, we observed that some types of agglomeration are better indica-
tors than others. We have collected representative examples of how agglomerations can
be used to support the diagnosis of significantly-different architectural problems.
The remainder of this paper is organized as follows. Section 2 contains the background

and literature review. Section 3 presents the study settings. Section 3.4 presents the empir-
ical procedures. Section 4 presents the results and findings. Finally, Section 5 summarizes
our main conclusions.

2 Background and literature review
When software changes are made, the system’s architecture can degrade due to different
architectural problems (Hochstein and Lindvall 2005). These problems may be related to
code anomalies (Fowler 1999). We refer to an individual manifestation of an architectural
problem as an architectural problem instance.

2.1 Architectural problem

An architectural problem occurs due to the addition of unintended design decisions that
either violate (1) the original, intended architecture of a system or (2) general software
modularity principles (Perry and Wolf 1992). To illustrate the violation of an intended
architecture, consider the Health Watcher architecture in Fig. 1. For each figure in this
paper, we rely on a UML-like notation (Booch et al. 2005). Elements that are not part
of UML are explained in each figure’s legend. We partially represent the system imple-
mentation in two different views. At the top of Fig. 1, we represent the components of
Health Watcher and interactions between them. Solid arrows represent expected rela-
tionships between components; dotted arrows represent unexpected relationships. We
represent the concerns of the Business component by characters within circles. At the
bottom of Fig. 1, we represent some (but not all) classes of the Business component
that have instances of code anomalies (initials within circles). In this example, we have
three instances of architectural problems: (1) a dependency from Data to Business, (2) a
dependency fromData toGUI and (3) a dependency from Business toGUI. These depen-
dencies were not part of the intended architecture of HealthWatcher. However, they were
implemented in the actual architecture, thus violating the intended architecture.
Architectural problems also occur when elements of an architecture violate

modularity principles. A catalog of such architectural problems can be found in
(Garcia et al. 2009). As an example, consider the webgrid component from the Apache
OODT (Object Oriented Data Technology) system in Fig. 2. The webgrid component (1)

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 4 of 22

C D E P

HealthWatcherFacade

Component View

Class View

RMIFacadeAdapter

Legend

Shotgun Surgery God Class

Data Business

C

D E

P

GUI

Concurrency

Distribution

Persistence

Exception Handling

Expected Flow

Architectural Problem

SS GC

SS GC GC

B Business

B

A Data

A P

G GUI

G

Architectural Component

Fig. 1 Concern-based agglomeration in the Health Watcher system

retrieves resources (e.g. scientific datasets, images, and documents) in platform-neutral
formats and (2) describes and discovers resources using extensiblemetadata. This compo-
nent uses HTTP to transmit resources. TheConfiguration class (which is encompassed by
webgrid) holds the complete runtime configuration of resource servers, metadata servers,
properties, and other settings for the webgrid component. The webgrid component has
an instance of the Connector Envy problem, which is caused by including the implemen-
tation of interaction-related functionality along with system-specific functionality. For
example, besides implementing its main concern, the Configuration class also performs
conversion services (from and to XML files) through the parse method. These interac-
tion services are best delegated to a specific connector - detaching the conversion services
from the main functionality of Configuration. Like the Configuration class, other classes
in webgrid also contribute to the Connector Envy problem.

2.2 Architectural problems and code anomalies

Architectural problems have caused the discontinuation or reengineering of several
software projects (Hochstein and Lindvall 2005). As previously mentioned, developers
frequently need to detect such problems in the source code due to the lack of formal

Fig. 2 Intra-boundary agglomeration in the OODT system

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 5 of 22

architecture documentation. In other words, it is expected that a wide range of architec-
tural problems are reflected in a system’s implementation through code anomalies (Fowler
1999; Hochstein and Lindvall 2005). A code anomaly, popularly known as a “bad smell”,
is a symptom observed in a program’s structure and usually indicates deeper mainte-
nance problems, such as architectural problems. A code anomaly negatively impacts the
maintainability of classes and methods. The manifestation of a code anomaly in a code
element is called a code-anomaly instance. A method infected by Long Method (Fowler
1999), for example, is highly complex and contains excessive functionality. As an exam-
ple, consider the code snippet of the method parse on the right side of Fig. 2. This method
parses a serialized configuration file and stores the result to an instance of the Config-
uration class. The parse method is complex and overloaded in terms of responsibilities,
as manifested as nested conditions and loops that handle different details of the config-
uration file. The method’s complexity reduces its understandability and maintainability.
To reduce this complexity, the method can be refactored into smaller methods. However,
this refactoring in isolation may not be enough to remove the Connector Envy problem
from webgrid. As we mentioned, a group of inter-related classes of this component con-
tribute to the same problem. Therefore, the fully removal of Connector Envy depends on
the refactoring of multiple classes.

2.3 Studies on the impact of code anomalies

The impact of code anomalies has been largely studied. Khomh et al. (2009), Kim et al.
(2005), Lozano et al. (2008) and Olbrich et al. (2010) investigated the impact of code
anomalies throughout the system’s evolution. Specifically, the authors analyzed whether
the number of code anomalies tended to increase over time, and how often they resulted
in code changes. D’Ambros et al. (2010) observed that code anomalies are often related to
software defects. Sjoberg et al. (2013) showed that single code anomalies were not related
to maintenance effort. Macia et al. (2012) analyzed the relevance of code anomalies to
identify architectural problems. This research revealed that none of the studied code
anomalies was consistently strong indicators of architecture problems. The results also
revealed that a higher proportion of individual code anomalies did not impact the system
architecture.
Moha et al. (2010) documented relationships among code anomalies that are recur-

rently related to four design anomalies. According to them (Moha et al. 2010), relation-
ships among Long Method and God Classes are usually indicators of Spaghetti Code
design anomaly. The study by Abbes et al. (2011) brings up the notion of interaction
effects across code anomalies. They concluded that classes and methods identified as
God Classes and God Methods in isolation had no effect on effort, but when appearing
together, they led to a statistically significant increase in maintenance effort. Yamashita
and Moonen (2013) observed that inter-related code anomalies negatively affect systems
maintenance. None of the aforementioned authors investigated the relation of architec-
tural problems and code-anomaly agglomerations. In this context, Macia (2013) observed
that a specific set of nine inter-related code anomalies are better indicators of archi-
tectural problems than individual code anomalies. The results of her study revealed a
statistically-significant relationship between some of these inter-related anomalies and
architectural problems. However, to the extent of our knowledge, our previous work
(Oizumi et al. 2014) was the first to investigate when and whether different forms of

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 6 of 22

agglomerations represent architectural problems. However, our previous study has not
analyzed in details the relation between architectural problems and agglomerations. In
addition, we did not present concrete scenarios where agglomerations would be useful
to effectively reveal architectural problems. Therefore, this paper extends our previous
work by (i) providing a deeper analysis on the relationship of architectural problems and
agglomerations, (ii) presenting a more detailed description about the concept and clas-
sification of code-anomaly agglomerations, and (iii) providing a discussion on various
concrete examples of agglomerations extracted from our target systems. These examples
serve to indicate how agglomerations could be used to find or anticipate (the side effects
of) architectural problems.

3 Methods
In this section, we present the key settings of our study. Section 3.1 presents our definition
and categorization of code-anomaly agglomerations. Section 3.2 describes the research
questions answered in this paper. Finally, Section 3.3 describes the target systems of our
study. Section 3.4 will present more detailed procedures of our empirical study.

3.1 Code-anomaly agglomeration

Prior work (Macia et al. 2012b) has shown that current techniques are unable to detect
architecturally-relevant code anomalies. In this paper, we investigate to what extent code
anomaly agglomerations represent architectural problems. In order to do a thorough
analysis, the first step of our study was the categorization of code-anomaly agglomer-
ations into topologies, considering their particular characteristics. We considered four
topologies of code-anomaly agglomeration: (i) intra-boundary, (ii) cross-boundary, (iii)
hierarchical, and (iv) concern-based.We focused in these four topologies because they are
simple to describe and understand. In addition, they can be automatically (and reliably)
detected with existing tool assistance (Macia et al. 2012a). Section 3.4 carefully describes
the procedures followed for data collection and analysis.
Before providing a detailed description of each topology, in Fig. 3 we present a meta-

model that characterizes the concept of code-anomaly agglomeration. It also establishes
the relation of this concept with other concepts relevant to our study. In the meta-model
(Fig. 3), each topology is associated with a detection strategy. Conversely, each strategy is
used by only one topology. Each strategy considers different types of element and rela-
tionship. Element types can be source code element (methods and classes) or architectural
component. Relationship types can be hierarchy, dependency or common concern.
Each agglomeration has a specific topology. Each agglomeration comprises one or more

relationships that determine the grouping of code anomalies. There may be none, one or
more agglomerations of each topology type in a program. Moreover, each agglomeration
is composed by one or more code anomalies. In addition, each agglomeration uses one
or more relationships to group code anomalies. Each code anomaly affects a specific
code element, which may be affected by several code anomalies. A code element may
realize multiple architectural problems. Conversely, an architectural problem is realized
by one or multiple code elements. Finally, an agglomeration may help to diagnose an
architectural problem by grouping anomalous code elements that collaborate to the real-
ization of an architectural problem. We present below a detailed description of each
topology accompanied by illustrative examples.

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 7 of 22

Fig. 3 Code-anomaly agglomeration meta-model

3.1.1 Intra-boundary agglomeration

It is an agglomeration composed of anomalous code elements that implement the same
architectural component. Falls into this topology the agglomerations located within a
single component and composed by: (1) inner anomalous code elements that are syntac-
tically related or (2) inner anomalous code elements infected by the same type of code
anomaly. In both cases, none of the code elements takes part in the implementation of a
different architectural component. In the second case, there is no syntactical relationship
between the anomalous code elements. To understand what we consider a syntactic rela-
tionship, assume we have two classes, T and X, and two methods M and N. The classes
T and X are syntactically related if X is referenced inside T or vice versa. The methods M
and N are syntactically related if M calls N or vice versa. We do not consider the inher-
itance relationship, because it characterizes the occurrence of a hierarchical topology.
Figure 2 shows an example of intra-boundary agglomeration. In this case, the method cre-
ateHandler is infected by Divergent Change and the method parse is infected by Long
Method. As both of them are enclosed by the same architectural component (webgrid)
and there is an association between them, the createHandler and parse elements form an
intra-boundary agglomeration.

3.1.2 Cross-boundary Agglomeration

It is an agglomeration composed of anomalous code elements syntactically related, but
located in the implementation of different architectural components. The syntactical
relationships considered are the same as for the intra-boundary agglomerations. A cross-
boundary agglomeration always involve two or more components. There might be more
than one anomalous code element in each of the involved components. However, there
must be at least one anomalous element within each agglomeration’s component (two
or more). Agglomerations composed by code elements of a single component falls into
the intra-boundary category. As an example of cross-boundary agglomeration, consider
the architecture diagram from OODT in Fig. 4. This diagram presents a partial view
from four components of OODT: metadata, crawler, filemgr and pushpull. The code

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 8 of 22

metadata

filemgr

crawler

pushpull

Metadata

Long Method

Legend

Shotgun Surgery

Divergent Change

XmlRpcFileManager

ProductCrawler

RemoteFile

God Class

Architectural Component

GC

LMDC

SS

DC SS GCLM

DC SS LM

DC SS LM

DC LM

Fig. 4 Cross-boundary agglomeration in the OODT system

anomalies identified in the program elements are represented by initials within cir-
cles and described in the legend. The metadata component encloses, among others,
an anomalous code element (Metadata), which is “used” by three external anomalous
code elements (ProductCrawler, RemoteFile and XmlRpcFileManager). As the anomalous
code elements are enclosed by different components, they form an agglomeration that
crosses the component boundaries. In this example we only consider one agglomeration,
which has four anomalous code elements (i.e. ProductCrawler,Metadata, RemoteFile and
XmlRpcFileManager).

3.1.3 Hierarchical agglomeration

It is an agglomeration composed of anomalous code elements that take part in the same
inheritance tree. The hierarchies might occur either in the implementation of a single
component or across multiple components. In this topology, we consider only hierarchies
where the code elements are infected by the same type of code anomaly. The recur-
rent introduction of the same code anomaly in different code elements may represent a
bigger problem in the hierarchy. An example of this agglomeration topology is in the Ver-
sioner hierarchy (Fig. 5). All the classes of Versioner are affected by the same anomalies –
Divergent Change, Feature Envy, Long Method and Shotgun Surgery – thus, they can be
grouped into a hierarchical agglomeration.

3.1.4 Concern-based agglomeration

It is an agglomeration composed of anomalous code elements correlated through
architectural concerns. On the one hand, an architectural component only represents the
overall purpose of its classes, i.e. their main purpose. On the other hand, classes of each
component might be realizing other multiple and specific concerns, which are not the
main purpose of the component. As a consequence, each architectural concern might
not be well modularized. When this phenomenon happens, an architectural concern is
implemented by several classes in a single or multiple components. Classes comprising

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 9 of 22

Long Method

Legend

Shotgun Surgery

Divergent Change

God ClassGC

LM

DC

SSFilemgr

Cas

Feature EnvyFE

AI
Ambiguous
Interface
Architectural
Component

Versioner

BasicVersioner

AI

Product

MetadataBasedFileVersioner

Metadata

SS LM DC FE

SS LM DC FE

SingleFileBasicVersioner

AI SS LM DC FE

AI

SS LM

DC FE

LM DC FE

Fig. 5 Hierarchical agglomeration in the OODT system

a concern-based agglomeration may be grouped through: (i) an overload of concerns in
their enclosing component, or (ii) through a single concern that is spread across several
code elements in which it is not the primary concern.
The concern-based topology differs from others by also considering the purposes (con-

cerns) associated with the realization of architecture components. Figure 1 shows a partial
view from the HealthWatcher architecture. Characters represent the concerns addressed
by the code elements of Business and their respective names are described in the leg-
end. We consider that the anomalous code elements of Business (HealthWatcherFacade
and RMIFacadeAdapter) form a concern-based agglomeration. The explanation is that
Business is responsible for realizing several concerns, such as Persistence and Exception
Handling, which are not related to its main concern. Hence, the anomalous code elements
of Business are inter-related through an overload of concerns.

3.2 Research questions

Previous research (Macia 2013) showed that code-anomaly agglomerations may help to
reveal architecturally-relevant code anomalies. However, there is little knowledge about
the relationship between agglomerations and architectural problems. Therefore, we aim
at expanding existing literature about code-anomaly agglomerations. To this end, we
focus the degree of the relationship involving code-anomaly agglomerations and archi-
tectural problems. We address three particular research questions associated with this
general objective:

RQ1. Are architectural problems reflected in code-anomaly agglomerations more often
than in individual code anomalies?
RQ2. Are agglomerations fully related to architectural problems?
RQ3. In which circumstances agglomerations are related (or not) to architectural prob-
lems?

RQ1 compares the relevance of code-anomaly agglomerations against individual code
anomalies. If agglomerations represent more often architectural problems, it means

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 10 of 22

developers need complementary techniques to reveal them in the source code. RQ2 mea-
sures the proportion of elements in each agglomeration related to architectural problems.
This question is addressed by investigating the number of elements in each agglomera-
tion realizing architectural problems. With RQ2, we intend to investigate the extension
of the relation between each agglomeration with respect to architectural problems. In
this context, the extension is measured by the proportion of elements in each agglomer-
ation contributing to architectural problems. Finally, RQ3 investigates whether specific
agglomeration topologies are better indicators of architectural problems than others. This
investigation enables us to reveal when the topology of an agglomeration contributes to
the detection of architectural problems in the source code.

3.3 Target systems

The focus of this study is to investigate the relationship between architectural problems
and code-anomaly agglomerations. In order to study this relationship, we analyzed sys-
tems with a wide range of characteristics. Aiming at reducing the influence of particular
software characteristics in the results, we selected systems of different sizes (8 KSLOC
to 129 KSLOC), leveraging different architectural styles, and spanning different domains.
We studied 7 systems, of which 2 are academic and 5 are from industry. Table 1 sum-
marizes the general characteristics of each target system. The first four systems are
proprietary and, due to intellectual-property constraints, we will refer to them as S1, S2,
S3 and S4. The goal of S1 and S2 is to manage activities related to the production and
distribution of oil. S3 manages the stock of oil, while S4 is intended to support the finan-
cial market analysis. The next is Mobile Media (MM), an academic software product
line to derive applications that manipulate photos, videos and music on mobile devices
(Mobile Media Source Code 2015; Young 2005). The next is HealthWatcher (HW), a web
framework system, whose objective is to allow citizens to register complaints regarding
health issues in public institutions (HealthWatcher Source Code 2015; Soares et al. 2002).
The last system is Apache OODT (Apache OODT Source Code 2015), whose goal is to
develop and promote the management and storage of scientific data (Mattmann et al.
2006). For all the target systems, several classes implement each component. In OODT,
for example, each component is implemented by an average of 24 classes.

3.4 Empirical procedures

In this section, we present the empirical procedures of our study. Section 3.5 presents
the procedures to detect code anomalies and agglomerations. Section 3.6 presents the
procedures to identify architectural problems. Finally, Section 3.7 presents the procedures
to analyze the relation of architectural problems and agglomerations.

Table 1 Target systems. Characteristics of each target system

System Application type Architectural design KSLOC

S1 Desktop Application Client-Server 122

S2 Desktop Application Client-Server 118

S3 Desktop Application Client-Server 93

S4 Web Application MVC 116

MM Software Product Line MVC 10

HW Web Framework Layers 8

OODT Middleware Components and Connectors 129

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 11 of 22

3.5 Detecting code anomalies and agglomerations

This task was accomplished using detection strategies (Lanza and Marinescu 2006)
similar to those used in related studies. Such strategies have proven to be the most
effective in other systems, with precision (percentage of true positives) higher than 80%
(Macia et al. 2012, Macia 2013). The process of detection was undertaken with the
assistance of a tool called SCOOP (Macia et al. 2012a). SCOOPwas designed to use archi-
tectural information to identify code anomalies. It uses architecturally-sensitive metrics
and strategies to try to identify architecturally-relevant code anomalies. We collected
the metrics using a third-party tool called Understand (Understand: User Guide and
Reference Manual 2015).
SCOOP does not detect a fixed set of code anomalies. Instead, it provides a DSL for

the specification of detection strategies. That is, using SCOOP it is possible to select the
metrics and thresholds for each code anomaly. In this study, we specified metrics for 6
code anomalies (Table 2). As the selected anomalies are widely discussed elsewhere, read-
ers may refer to (Fowler 1999) and (Lanza and Marinescu 2006) for details about each of
them.
SCOOP presents two different outputs. The first is a list of code anomaly instances

identified in the system. As we mentioned, SCOOP detects only code anomalies specified
by the user. The second output is composed by groups of inter-related code anoma-
lies. In this study, we categorized the inter-related code anomalies into four topologies
(Section 3.1), according to their characteristics. To the extent of our knowledge, SCOOP
is the only tool that exploits the several forms of relationships between code anomalies.

3.6 Identifying architectural problems

Given that this task had to be performed manually, we tried to avoid mistakes by involv-
ing architects of the target systems in the whole process. For all the target systems, the
identification of architectural problems was performed using the source code and the
intended architecture. For systems without architectural documentation, we relied on a
suite of architecture recovery tools (Garcia et al. 2013). Original architects of the tar-
get systems assisted us in all the steps of this task. The procedure for deriving the list
of architectural problems with architects was the following: (i) an initial list of architec-
tural problems was identified using detection strategies presented in (Macia 2013), (ii) the
architects had to confirm, refute or expand the architectural problems identified, (iii) the
architects provided a brief explanation to the researcher on the (ir)relevance of the archi-
tectural problem, and (iv) when we suspected there was still inaccuracies in the confirmed
list of architectural problems, we asked the architects for further feedback. In Table 3, we
briefly describe each type of architectural problem identified in this procedure.

Table 2 Code anomalies

Code anomaly References

Data Class (Lanza and Marinescu 2006)

Divergent Change (Fowler 1999; Lanza and Marinescu 2006)

Feature Envy (Fowler 1999; Lanza and Marinescu 2006)

God Class (Lanza and Marinescu 2006)

Long Method (Fowler 1999; Lanza and Marinescu 2006)

Shotgun Surgery (Fowler 1999; Lanza and Marinescu 2006)

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 12 of 22

Due to need of human involvement in the study, it means that we preferred to dedicate
much more effort on the reliability of our data set rather than on just increasing our sam-
ple. For Mobile Media, Health Watcher, S1, S2 and S3 the lists of architectural problems
have been identified in another study (Macia 2013), which already produced and used this
information using the procedure described above. Despite the fact that MobileMedia and
HealthWatcher were built a long time ago, their architects were still available because one
of the authors was somehow involved in those projects. For OODT and S4, we followed
the same procedures that were followed in the other study (Macia 2013). OODT devel-
opment started in 1999, however, this was still being actively developed in 2012-2013,
when the list of architectural problems was validated with one of the leading architects.
The leading architect of OODT’s development collaborated with us on all the steps of this
task. Finally, S4 was developed by a private medium-sized company, which collaborated
with us to build the list of architectural problems, following the same procedure followed
with other systems.

3.7 Analyzing the relation of Architectural Problems and Agglomerations

Aiming to analyze the different agglomeration topologies and how they are related to
architectural problems, we defined the research questions described in Section 3.2. To
answer our research questions, the criteria used for correlating code-anomaly agglom-
erations and single code anomalies with architectural problems were the following. A
code-anomaly agglomeration and an architectural problem are related if they co-occur in,
at least, one code element. Even though both agglomeration and architectural problem
usually involve many elements, in our definition is sufficient that they co-occur in one
element. Similarly, an individual code anomaly and an architectural problem are corre-
lated if they occur in one code element together. We considered this decision appropriate
because there were no previous evidence to base our study on. Therefore, in this first
study we had to analyze the largest set of possible relations between agglomerations and
architectural problems.
In order to answer research question RQ1, we performed both downstream and

upstream analyses in all the seven systems. The downstream analysis is from the
perspective of the architecture, i.e., we analyzed how the architectural problems are
related to code-anomaly agglomerations and individual code anomalies. Conversely, in

Table 3 Architectural problem types

Name Description

Ambiguous Interface Interface that offers only a single, general entry-point, but provides two
or more services.

Architectural Violation Dependency that violates an intended architectural rule.

Connector Envy Component that encompasses extensive interaction-related
functionality that should be delegated to a connector.

Concern Overload Component that is responsible for realizing two or more unrelated
system’s concerns.

Cyclic Dependency Two or more components that directly or indirectly depend on each
other to function properly.

Extraneous Connector Two connectors of different types that are used to link the same pair of
components.

Scattered Functionality Multiple components that are responsible for realizing the same high
level concern, with some of them responsible for orthogonal concerns.

Unused Interface Interface that is never used by external components.

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 13 of 22

the upstream analysis we analyzed how agglomerations and individual code anoma-
lies are related to architectural problems. Furthermore, to answer research question
RQ2, we analyzed the relation between architectural problems and agglomerations.
To measure the extension of this relation, we conducted two complementary anal-
yses. First, we calculated the average of anomalous elements, which take part in
individual agglomerations and directly contribute to an architectural problem. Sec-
ond, we analyzed the proportion of anomalous elements related to architectural prob-
lems and taking part in one or more agglomerations. To answer RQ3 we compared
the number of agglomerations related to architectural problems in each topology.
Finally, to illustrate our findings, we selected insightful examples from our target
systems.

4 Results and discussion
This section presents the findings of our study. Section 4.1 presents a comparison
between individual code anomalies and code-anomaly agglomerations. Section 4.2
presents an analysis on the extension of the relation between architectural problems and
agglomerations. Section 4.3 discusses in which specific circumstances agglomerations are
related to architectural problems. Finally, Section 4.4 presents threats to validity of this
study.

4.1 Comparing anomaly instances vs. agglomerations

This section addresses the question RQ1: “Are architectural problems reflected in code-
anomaly agglomerations more often than in individual code anomalies?” A previous
study have revealed that architectural problems are related to individual code anomalies
(Macia et al. 2012). At the same time, many code anomalies had no relation to archi-
tectural problems (Macia et al. 2012). Then, the answer to RQ1 would enable us to
understand whether the analysis of code-anomaly agglomerationsmay improve the detec-
tion of architectural problems. As mentioned in Section 3.4, we performed the analysis
from two perspectives: downstream and upstream.

4.1.1 Downstream perspective

The first two columns of Table 4 present the results of the downstream analysis. The first
column (AG) presents, for each system, the proportion of architectural problems related
to agglomerations. The second column (CA) shows the proportion of architectural prob-
lems related to single code anomalies. As it can be seen, the relationship of architectural
problems and agglomerations was always above 57% and in most cases above 70%. The
proportions of architectural problems related to agglomerations were in most cases much
higher than the proportions unrelated to agglomerations.
A comparison of the Downstream AG and CA columns of Table 4 reveals that the

results were very consistent: in all the systems, architectural problems are much more
often related to code-anomaly agglomerations than to individual code anomalies. While
there was some variation, the difference between the two groups ranged from 17% to 25%
for most systems. There were two cases (S3 and S4) of projects where the difference was
much higher than 50% and only one case (HW) where the difference was under 10%. In
addition, further analysis confirmed that most of the architectural problems unrelated to
agglomerations were also unrelated to individual code anomalies.

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 14 of 22

Table 4 Relation of architectural problems with agglomerations and code anomalies

System

Downstream Upstream

Architectural problem Architectural problem

AG CA AG CA

S1 78% 53% 80% 18%

S2 85% 68% 82% 2%

S3 73% 11% 75% 14%

S4 93% 14% 50% 10%

MM 57% 35% 58% 26%

HW 100% 91% 45% 22%

OODT 62% 38% 71% 58%

AG = Code-anomaly agglomeration; CA = Individual code anomaly

4.1.2 Upstream perspective

Next, we investigated if the observation of agglomerations in the source code can help to
indicate the presence of architectural problems. To this end, we compared the upstream
relationship of code-anomaly agglomerations and individual code anomalies to architec-
tural problems. The Upstream AG (agglomerations) and CA (individual code anomalies)
columns of Table 4 show that agglomerations presented even better results from this
perspective. With the exception of OODT, the proportion of agglomerations related to
architectural problems was at least twice as large as the proportion of individual code
anomalies. Moreover, for five systems (HW, S1, S2, S3 and S4), the proportion of single
code anomalies related to architectural problems was lower than 25%. These results fur-
ther reinforce the potential of exploring code-anomaly agglomerations as indicators of
architectural problems.
The two analyses above provide evidence that agglomerations are more helpful than

individual code anomalies to diagnose architectural problems. However, these analysis are
not enough to determine if architectural problems and agglomerations have a strong rela-
tion. Next, in Section 4.2, we address this issue by further analyzing the relation between
agglomerations and architectural problems.

4.2 Agglomerations and architectural problems: are they fully related?

The previous research question does not consider the fact that code-anomaly agglomer-
ations have higher probability of being related to architectural problems. The probability
increase stems from the fact that each agglomeration involves more code elements than a
single code anomaly. Then, it would be interesting to analyze to what extent various code
elements of the agglomeration are, in fact, contributing to the realization of an architec-
tural problem. In order to address this concern, we performed a further analysis about the
relation between agglomerations and architectural problems. As a first step, for each sys-
tem, we separated the anomalous code elements related to architectural problems in two
sets: (1) anomalous code elements participating in one or more agglomerations; and (2)
anomalous code elements not participating in any agglomeration. The union of the two
groups forms the set of all anomalous code elements involved in architectural problems.
Table 5 shows, for each system, the number of anomalous elements related to archi-

tectural problems. The AG column represents how many of these elements take part
in agglomerations. The NoAG column shows the number of anomalous elements not

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 15 of 22

involved in agglomerations. As we can observe, for each system, the number of anoma-
lous code elements encompassed by agglomerations and related to architectural problems
was substantially much higher.
Some code anomalies related to architectural problems are member of more than one

agglomeration. However, we do not consider that those individual anomalies are better
than agglomerations to diagnose architectural problems. Even though the effort to detect
agglomerations is higher, we observed that the vast majority of the individual agglomera-
tions had from 2 to 4 anomalous code elements simultaneously related to the same single
architectural problem in all systems. Almost 98% of the anomalies, taking part in agglom-
erations, were related to architectural problems. It means that, when fixing a particular
architectural problem, the developer can reveal which set of anomalous code elements
need to be involved in the refactoring strategy. In addition, the scope of analysis is reduced
to the list of code anomalies taking part in the agglomeration (rather than a huge list
of individual anomalies). All these results reinforce the observation that agglomerations
are almost fully related to architectural problems and are very likely to contribute to the
diagnoses of architectural problems.
To illustrate this relation between architectural problems and agglomerations, consider

the webgrid component depicted in Fig. 2. As we already discussed, webgrid suffers from
the Connector Envy problem (Section 2) and contains an intra-boundary agglomeration
(Section 3.1). Analyzing the anomalous elements of the intra-boundary agglomeration,
we observed that all of them contribute to the Connector Envy problem. That is, all
elements in the agglomeration mix their main functionalities with interaction services.
This example reinforce the findings of this section: agglomerations are useful to diagnose
architectural problems since each of them reveals multiple anomalies that realize a
unique architectural problem. Even in the agglomerations where some anomalies do not
contribute to the architectural problem, the agglomeration is helpful to developers since
it (i) reduces the scope of analysis and (ii) provides information about code elements that
may be affected when removing the architectural problem.

4.3 Relevance of agglomeration topologies

We investigated the architectural relevance of specific agglomeration topologies in terms
of their likelihood of indicating architectural problems. We selected a sub-set of systems
aiming to illustrate the key findings with respect to the RQ3: “In which circumstances
agglomerations are related (or not) to architectural problems?” To answer this question,
we analyzed circumstances defined by the four agglomeration topologies considered in

Table 5 Anomalous code elements involved in architectural problems

System AG NoAG

S1 157 123

S2 287 203

S3 192 92

S4 87 5

MM 23 4

HW 62 19

OODT 212 92

AG = Encompassed by agglomeraions; NoAG = Not encompassed by agglomerations

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 16 of 22

this paper (Section 4.3.1). We have also collected concrete examples on how the use of
agglomerations can help to indicate the presence of architectural problems (Section 4.3.2).

4.3.1 Architecturally-relevant topologies

Table 6 shows, for each agglomeration topology (line): (A-AP) the number of agglom-
erations related to some architectural problems, and (A-NoAP) the number of
agglomerations not related to architectural problems. Across all systems, the concern-
based agglomerations presented, proportionally, the highest correlation with architec-
tural problems. In OODT, 48 out of 53 instances (90%) of the concern-based topology
were related to architectural problems. In HW, 3 out of 4 concern-based instances
(75%) were related to architectural problems. In S4 the 4 instances were related to
architectural problems. Finally, considering all the systems 153 out of 183 concern-
based instances (83%) were related to architectural problems. In terms of absolute
values, the cross-boundary and intra-boundary topologies presented the highest num-
ber of architecturally-relevant instances. Despite the high number of instances, there
were several cross-boundaries and intra-boundaries instances not related to architectural
problems. In MM for example, more than 50% (7 out of 11) of the cross-boundaries
agglomerations were not related to architectural problems. This means that, analyz-
ing MM, a developer or an architect could have to inspect more than 50% of the
cross-boundaries agglomerations to find one architectural problem.
Summarizing, we observed that the concern-based topology is the best indicator of

architectural problems. Even though the intra-boundary and cross-boundary topologies
identify higher numbers of architectural problems, several instances of them are unrelated
to architectural problems. The hierarchical topology presented a low number of instances
in most of the target systems. However, analyzing individual instances, we found inter-
esting examples of hierarchical agglomerations related to architectural problems. The
examples are presented and further explored in Section 4.3.2.

4.3.2 Diagnosing architectural problemswith agglomerations: examples

In this study we collected evidence that (i) code-anomaly agglomerations are related to
architectural problems more often than single code anomalies; (ii) most of the agglom-
erations are almost fully related to architectural problems, and (iii) the concern-based
topology is more related to architectural problems than other topologies. Next, to
illustrate these findings, we present concrete examples (extracted from the analyzed sys-
tems) of how different agglomeration types can support the diagnosis of architectural
problems.

Table 6 Number of agglomerations related and unrelated to architectural problems

Agglomeration topology A-AP A-NoAP

intra-boundary 506 234

cross-boundary 748 467

hierarchical 69 22

concern-based 153 30

TOTAL 1476 753

A-AP = Agglomeration instances related to at least one architectural problem; A-NoAP = Agglomeration instances unrelated to
architectural problems

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 17 of 22

Wide architectural problem in mobile media During the evolution of the Mobile
Media system, theController component suffered amajor refactoring in the system’s sixth
version. This refactoring affected the vast majority of the other system components. The
Controller component had to be decomposed into three components. This “wide” refac-
toring had to be made: it was no longer possible to maintain all the emerging controller
responsibilities in a single component. Until then, both the interface and the classes real-
izing the component in the program were being artificially changed every time other
non-related requirements were being implemented or modified. The artificial changes
were not only related to the Controller component, but also its client components, which
were realizing other requirements. In other words, there were increasingly-critical ripple
effects being observed as the system evolved. This overload of adjacent responsibilities
in the Controller component reflected in the architecture as the Concern Overload and
Scattered Functionality problems (Garcia et al. 2009).
In this context, we observed an instance of concern-based agglomeration (see concern-

based topology in Section 3.1) involving the Controller component occurring in the
first version of Mobile Media. In other words, the concern-based agglomeration of code
anomalies could be used in the first version to early reveal the manifestation of a congen-
ital architectural problem. This agglomeration provided useful information about how
different anomalies were contributing to such a major architectural problem. Then, the
high cost involving this particular case of wide architectural refactoring could be avoided
if developers had reasoned about the manifestation of the concern-based agglomeration
while developing the first version. We observed that similar cases of early manifestation
of code-anomaly agglomerations also occurred often in the other systems.

Architectural problem in a single component Another interesting case of usage of
code-anomaly agglomerations occurred in the OODT system. Differently from the exam-
ple above, we observed an architectural problem instance confined to the RPCWorkflow-
Manager component. This component encloses twomain classes: XmlRpcWorkflowMan-
ager and XmlRpcWorkflowManagerClient. Both classes contribute to the realization of an
architectural problem called Connector Envy (Garcia et al. 2009). Connector Envy indi-
cates that the component’s implementation mix its main functionalities with connector
functionalities. This problem can dramatically reduce the component’s maintainability.
The mixed functionalities force developers to reason about two or more different con-
cepts while changing a single class. This can hinder developers, leading them (i) to make
the code structure more complex or (ii) to introduce bugs. In a system such as OODT it
would not be easy to diagnose this problem. OODT contains several complex function-
alities implemented by hundreds of classes. As a result, diagnose architectural problems
in this system requires the analysis of several classes. Due to the large scope of analysis,
this task would be exhaustive and time consuming. This scenario often leads developers
to neglect the diagnose of architectural problems.
For architectural problems like Connector Envy, it is possible to help developers by

revealing intra-boundary agglomerations. In our example, XmlRpcWorkflowManager and
XmlRpcWorkflowManagerClient compose an intra-boundary agglomeration because (i)
they are enclosed by the same component (RPCWorkflowManager) and (ii) both of them
are God Classes. This combination of God Classes indicates that the main classes of
RPCWorkflowManager are highly complex and implement multiple functionalities. This

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 18 of 22

combination of complex classes is an evidence of a bigger problem. Knowing that both
classes are complex and implement multiple functionalities, a developer could diagnose
the Connector Envy problem in RPCWorkflowManager. It is important to note that the
analysis of code anomalies in isolation would not be as helpful as the analysis of agglom-
erations. Developers would have to manually inspect several anomalies, mentally trying
to identify possible relations between them.

Architectural problem in a hierarchy In the OODT data-grid sub-system, the Ver-
sioner hierarchy is responsible for managing and storing versions of different Product
types using different storage strategies. All classes in the Versioner hierarchy have to
implement the createDataStoreReferences method. This method has two parameters: a
Product instance and a Metadata instance. As there are no sub-classes for each type
of Product, each createDataStoreReferences implementation has to decide if it is han-
dling the correct Product type (e.g., theMetadataBasedFileVersioner only deals with “flat”
products). Consequently, the Product type handled by each Versioner implementation
cannot be discovered from the createDataStoreReferences interface. Hence, according to
the OODT developers, the Versioner implementations were realizing Ambiguous Inter-
faces (Garcia et al. 2009), which are interfaces that exposemultiple functionalities through
a general interface.
While an Ambiguous Interface decouples components and simplifies use of it, such

components are also less understandable and analyzable. Determining the actual ser-
vices exposed by such a component requires inspecting its implementation. Furthermore,
the generality of the interface, which simplifies its use, also makes it easier to misuse,
since different functionalities are exposed by the same interface. Therefore, the archi-
tectural problem cannot be simply detected by observing a single code anomaly. In fact,
the analysis of code anomalies in isolation would not be useful to detect architectural
problems, such as Ambiguous Interfaces. However, as we already discussed, the Versioner
hierarchy contains multiple occurrences of a hierarchical code-anomaly agglomeration.
More specifically, in several classes the createDataStoreReferences method is affected by
the Shotgun Surgery, Long Method, and Feature Envy code anomalies. These anoma-
lies in isolation may not represent severe problems. Nevertheless, they may indicate a
deeper problem in the systemwhen they are inter-related. In our example, the hierarchical
agglomeration could help developers to early diagnose and remove the Ambiguous Inter-
face problem, by revealing the recurring introduction of anomalies in different Versioner
implementations. The early removal of the Ambiguous Interface problem would pre-
vent the problem to grow during the addition of new Versioner implementations. We
observed that the most relevant instances of hierarchical agglomeration occurred in sys-
tem such as OODT, which uses polymorphism to implement abstractions. This suggests
that hierarchical agglomerations are more suitable to diagnose architectural problems in
systems with intensive use of polymorphism.

Usefulness of agglomerations In this section we highlighted several situations in which
code anomaly agglomerations are useful to diagnose architectural problems. One of the
given examples showed that some architectural problems are difficult to diagnose due
to being spread through diverse unrelated modules. In these cases, our findings suggests
that the Concern-based agglomerations are the most helpful in diagnosing architectural

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 19 of 22

problems. On the other hand, other agglomerations may be useful in other situations.
For example, hierarchical agglomerations showed to be useful to reveal architectural
problems that involves several classes in a unique hierarchy.

4.4 Threats to validity

Construct validity The construct validity is threatened mainly by possible errors intro-
duced in the identification of architectural problems, code anomalies and code-anomaly
agglomerations. Recent studies suggests that there are no metric’s threshold that applies
to every project, since software metric values usually follow heavy-tailed distributions
(Baxter et al. 2006; Louridas et al. 2008). Therefore, in order to mitigate this threat for
code anomalies, we selected detection strategies and thresholds that presented satis-
factory results in a previous study (Macia et al. 2012; Macia 2013). For code-anomaly
agglomerations, we relied on the only known tool that is able to identify agglomerations
using architectural information. The use of a tool to detect code anomalies and agglom-
erations is another threat, since there is no code anomaly tool with 100% of accuracy.
The choice of SCOOP mitigates this threat since SCOOP presented near 80% of accu-
racy for code anomaly detection in a previous study (Macia 2013). This level of accuracy
was never reported by other techniques (and their supporting tools) studied in the lit-
erature. Furthermore, we are not aware of other tools that can be used to support the
detection of agglomerations, in particular concern-based agglomerations. Regarding the
identification of architectural problems, we mitigated the imprecision of manual inspec-
tion involving the original developers and architects in this process. Architects, who
had previous experience on the detection of architectural problems and code anomalies,
made the identification of architectural problems. Finally, the procedure used to correlate
code anomalies and agglomerations with architectural problems (Section 3.4) is another
threat to the construct validity. As we already discussed, agglomerations have higher
chance to be related to architectural problems than individual anomalies as they naturally
affect more code elements than individual code anomalies. We mitigated this threat by
answering RQ2 (Section 4.2).

Conclusion validity The main threat to the conclusion validity is the number of evalu-
ated versions of each system. A study involving several versions of each system is always
desired. Nevertheless, it was impracticable in our study due to the number of systems (7)
and the limited availability that original developers and architects had to help us. There-
fore, we tried to mitigate this threat by selecting, for each different system, a version in
a different life-cycle stage. However, in order to evaluate other aspects of the relation
between code-anomaly agglomerations and architectural problems, studies involving sev-
eral versions of a system should be performed in the future. Another threat to conclusion
validity is related to the lack of statistical tests. In order to have a significant sample, we
would have to consider the full history of architectural problems along several versions
of each system, which are not available. In order to reduce the impact of this threat, we
made our best effort in: (i) selecting an heterogeneous set of systems in terms of domain,
complexity and degree of architecture decay, and (ii) selecting systems with varied types
of architectural problems and code anomalies. Our results encourage more rigorous anal-
yses to be developed in the future. We intend to continue expanding our data set over the
next years so that statistical tests can be successfully applied.

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 20 of 22

Internal and external validity The main threat to the internal and external validity is
related to the set of analyzed systems. We tried to mitigate this threat using systems with
different sizes (ranging from 8 to 129 KSLOC), with different purposes (academic, com-
mercial and open-source), with different domains, that were implemented using different
architectural styles and that suffer from a different set of architectural problems. Further-
more, the analyzed systems were developed by teams of different sizes and with different
levels of software development skills. However, we are aware that we should performmore
studies involving different systems.

5 Conclusions
In this work, we analyzed in which circumstances code-anomaly agglomerations rep-
resent architectural problems. We conducted an exploratory study involving 7 systems
with different sizes. We characterized and studied four agglomeration topologies and
compared them to individual code anomalies. We observed that more than 70% of all
architectural problems are related to agglomerations in most of the target systems. In
the opposite (upstream) analysis, we noticed that most agglomerations represent most
of the architectural problems (50–70%). Our results confirmed that agglomerations are
better than single anomaly instances to indicate the presence of an architectural prob-
lem. Moreover, in all target systems, most of the architecturally-relevant anomalous code
elements (i.e. realizing an architectural problem) are encompassed by agglomerations.
Regarding the circumstances in which agglomerations represent architectural problems,
we observed that the concern-based topology is the best indicator of architectural prob-
lems. The intra-boundary and cross-boundary topologies identified the highest number
of architectural problems. However, they also presented the highest number instances
unrelated to architectural problems. The hierarchical topology may be more useful in
systems with intense use of hierarchical relationships.

5.1 Extending the analysis of code anomaly agglomerations

Based on the aforementioned results, we plan to perform further studies to address
issues. First, further studies need to identify and characterize possible causalities between
agglomerations and architectural problems. Several steps need to be made to address
this issue. A first and simpler step is enriching the data sample and conducting a more
rigorous statistical analysis. For example, the architectural problems analyzed in this
study were identified from the perspective of the software architects and developers.
However, automated analysis of the implemented architecture (i.e. directly extracted
from the source code) could present different and, possibly, relevant results. There-
fore, by combining these two points of view, we may possibly reach complementary
findings.

5.2 Design and implementation of a synthesis technique

Given our study results, the implementation of a generic technique for detecting agglom-
erations is required. Unlike the methodology applied in this study, we have to design
and implement a synthesis technique; that is, a technique able to automatically detect
agglomerations using information from different artifacts of a system beyond the source
code. The idea is to help the users to identify architectural problems by (i) revealing
different topologies of agglomeration in a software system, and (ii) allowing users to

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 21 of 22

define their own topologies according to their needs. Before implementing a synthe-
sis technique, it is necessary to define the main requirements that such a technique
must satisfy. Hence, the data analyzed in this paper may be explored to define such
requirements.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WO conducted the data collection and analysis, participated in the design of the study, and drafted the manuscript. AG
conceived the study, participated in its design, coordinated the research activities and helped to draft the manuscript. TC
participated in the design of the study, and in the data analysis and helped to polish the text for external readers. MF
participated in the data collection, and in the data analysis and helped to draft the manuscript. AS helped to conceive
the study and participated in its design. All authors read and approved the final manuscript.

Acknowledgements
This work was funded by CNPq (productivity grant 305526/2009-0 and Universal Project grant number 485348/2011-0)
and FAPERJ (MSc Scholarship, distinguished scientist grant E-26/102.211/2009, project grant number E-26/111.152/2011
and grant E-26/103.366/2012). We also thanks Nenad Medvidovic, Isela Macia, Chris Mattmann and Joshua Garcia for the
contribution to the data collection and revision of the manuscript.

Author details
1OPUS Group - Informatics Department, PUC-Rio, Marques de Sao Vicente Street, 225, 22451-900 Rio de Janeiro, Brazil.
2Informatics Department, State University of Maringa, Colombo Avenue, 5790, 87020-900 Maringa, Brazil.

Received: 8 December 2014 Accepted: 30 June 2015

References
Abbes M, Khomh F, Gueheneuc Y, Antoniol G (2011) An empirical study of the impact of two antipatterns, blob and

spaghetti code, on program comprehension. In: Proceedings of the 15th European Software Engineering
Conference. IEEE Computer Society, Oldenburg, Germany. pp 181–190

Apache OODT Source Code (2015). https://github.com/apache/oodt
Baxter G, Frean M, Noble J, Rickerby M, Smith H, Visser M, Melton H, Tempero E (2006) Understanding the shape of java

software. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications. ACM. pp 397–412

Booch G, Rumbaugh J, Jacobson I (2005) The Unified Modeling Language User Guide. Addison-Wesley, Boston
D’Ambros M, Bacchelli A, Lanza M (2010) On the impact of design flaws on software defects. In: Proceedings of the 10th

International Conference on Quality Software. IEEE Computer Society, Zhangjiajie, China. pp 23–31
Eichberg M, Kloppenburg S, Klose K, Mezini M (2008) Defining and continuous checking of structural program

dependencies. In: Proceedings of the 30th International Conference on Software Engineering. ACM, Leipzig,
Germany. pp 391–400

Fowler M (1999) Refactoring: Improving the Design of Existing Code. Pearson Education, India
Garcia J, Popescu D, Edwards G, Medvidovic N (2009) Identifying architectural bad smells. In: Proceedings of the 13th

European Conference on Software Maintenance and Reengineering; Kaiserslautern, Germany. IEEE Computer
Society. pp 255–258

Garcia J, Ivkovic I, Medvidovic N (2013) A comparative analysis of software architecture recovery techniques. In:
Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer
Society, Palo Alto, USA. pp 486–496

Health Watcher Source Code (2015). http://ptolemy.cs.iastate.edu/design-study/#healthwatcher
Hochstein L, Lindvall M (2005) Combating architectural degeneration: a survey. Inf Softw Technol 47:643–656
Khomh K, Penta MD, Gueheneuc Y (2009) An exploratory study of the impact of code smells on software

change-proneness. In: Proceedings of the 16th Working Conference on Reverse Engineering. IEEE Computer Society,
Lille, France. pp 75–84

Kim M, Sazawal V, Notkin D, Murphy G (2005) An empirical study of code clone genealogies. In: Proceedings of the 10th
European Software Engineering Conference. ACM, Lisbon, Portugal. pp 187–196

Lanza M, Marinescu R (2006) Object-Oriented Metrics in Practice. Springer, Heidelberg
Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Trans Softw Eng Methodol 18:1–26
Lozano A, Wermelinger M (2008) Assessing the effect of clones of changeability. In: Proceedings of the 24th IEEE

International Conference on Software Maintenance. IEEE Computer Society, Beijing, China. pp 227–236
Marwan A, Aldrich J (2009) Static extraction and conformance analysis of hierarchical runtime architectural structure

using annotations. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications. ACM, Orlando, USA. pp 321–340

Macia I, Arcoverde R, Garcia A, Chavez C, Staa A (2012) On the relevance of code anomalies for identifying architecture
degradation symptoms. In: Proceedings of the 16th European Conference on Software Maintenance and
Reengineering. Computer Society, Szeged, Hungary. pp 277–286

Macia I (2013) On the detection of architecturally-relevant code anomalies in software systems. PhD thesis, Pontifical
Catholic University of Rio de Janeiro, Informatics Department

https://github.com/apache/oodt
http://ptolemy.cs.iastate.edu/design-study/#healthwatcher

Oizumi et al. Journal of Software Engineering Research and Development (2015) 3:11 Page 22 of 22

Macia I, Arcoverde R, Cirilo E, Garcia A, Staa A (2012a) Supporting the identification of architecturally-relevant code
anomalies. In: Proceedings of the 28th IEEE International Conference on Software Maintenance. Computer Society,
Trento, Italy. pp 662–665

Macia I, Garcia J, Popescu D, Garcia A, Medvidovic N, Staa A (2012b) Are automatically-detected code anomalies relevant
to architectural modularity? An exploratory analysis of evolving systems. In: Proceedings of the 11st International
Conference on Aspect-Oriented Software Development. ACM, Postdam, Germany. pp 167–178

Mattmann C, Crichton D, Medvidovic N, Hughes S (2006) A software architecture-based framework for highly distributed
and data intensive scientific applications. In: Proceedings of the 28th International Conference on Software
Engineering: Software Engineering Achievements Track. ACM, Shanghai, China. pp 721–730

Morgan C (2007) A static aspect language of checking design rules. In: Proceedings of the 6th International Conference
on Aspect-oriented Software Development. ACM, Vancouver, Canada. pp 63–72

Moha N, Gueheneuc Y, Duchien L, Meur AL (2010) Decor: A method for the specification and detection of code and
design smells. IEEE Trans Softw Eng 36:20–36

Mobile Media Source Code (2015). http://ptolemy.cs.iastate.edu/design-study/#mobilemedia
Oizumi W, Garcia A, Colanzi T, Ferreira M, Staa A (2014) When code-anomaly agglomerations represent architectural

problems? An exploratory study. In: Proceedings of the 2014 Brazilian Symposium on Software Engineering (SBES).
IEEE Computer Society, Maceio, Brazil. pp 91–100

Olbrich SM, Cruzes DS, Sjoberg DIK (2010) Are all code smells harmful? A study of god classes and brain classes in the
evolution of three open source systems. In: Proceedings of the 26th IEEE International Conference on Software
Maintenance. IEEE Computer Society, Timisoara, Romania. pp 1–10

Perry DE, Wolf AL (1992) Foundations for the study of software architecture. ACM Softw Eng Notes 17:40–52
Sjobert D, Yamashita A, Anda B, Mockus A, Dyba T (2013) Quantifying the effect of code smells on maintenance effort.

IEEE Trans Softw Eng 39:1144–1156
Soares S, Laureano E, Borba P (2002) Implementing distribution and persistence aspects with aspectj. In: Proceedings of

the 17th ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM Press,
Seattle, USA. pp 174–190

Ubayashi N, Nomura J, Tamai T (2010) Archface: A contract place where architectural design and code meet together. In:
Proceedings of the 32nd International Conference on Software Engineering. ACM, Cape Town, South Africa. pp 75–84

Understand: User Guide and Reference Manual (2015). https://scitools.com/documents/manuals/pdf/understand.pdf
Yamashita A, Moonen L (2013) Exploring the impact of inter-smell relations on software maintainability: an empirical

study. In: Proceedings of the 35th International Conference on Software Engineering. IEEE Press, San Francisco, USA.
pp 682–691

Young TJ (2005) Using aspectj to build a software product line for mobile devices, University of British Columbia

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://ptolemy.cs.iastate.edu/design-study/#mobilemedia
https://scitools.com/documents/manuals/pdf/understand.pdf

	Abstract
	Keywords

	Introduction
	Background and literature review
	Architectural problem
	Architectural problems and code anomalies
	Studies on the impact of code anomalies

	Methods
	Code-anomaly agglomeration
	Intra-boundary agglomeration
	Cross-boundary Agglomeration
	Hierarchical agglomeration
	Concern-based agglomeration

	Research questions
	Target systems
	Empirical procedures
	Detecting code anomalies and agglomerations
	Identifying architectural problems
	Analyzing the relation of Architectural Problems and Agglomerations

	Results and discussion
	Comparing anomaly instances vs. agglomerations
	Downstream perspective
	Upstream perspective

	Agglomerations and architectural problems: are they fully related?
	Relevance of agglomeration topologies
	Architecturally-relevant topologies
	Diagnosing architectural problems with agglomerations: examples
	Wide architectural problem in mobile media
	Architectural problem in a single component
	Architectural problem in a hierarchy
	Usefulness of agglomerations

	Threats to validity
	Construct validity
	Conclusion validity
	Internal and external validity

	Conclusions
	Extending the analysis of code anomaly agglomerations
	Design and implementation of a synthesis technique

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

