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Abstract

Background: Writing patches to fix bugs or implement new features is an important
software development task, as it contributes to raise the quality of a software system.
Not all patches are accepted in the first attempt, though. Patches can be rejected
because of problems found during code review, automated testing, or manual testing.
A high rejection rate, specially later in the lifecycle, may indicate problems with the
software development process.

Our objective is to better understand the relationship among different forms of patch
rejection and to characterize their frequency within a project. This paper describes one
step towards this objective, by presenting an analysis of a large open source project,
Firefox.

Method: In order to characterize patch rejection, we relied on issues and source code
commits from over four years of the project’s history. We computed monthly metrics
on the occurrence of three indicators of patch rejection—negative code reviews,
commit backouts, and bug reopening—and measured the time it takes both to submit
a patch and to reject inappropriate patches.

Results: In Firefox, 20 % of the issues contain rejected patches. Negative reviews,
backouts, and issue reopening are relatively independent events; in particular, about
70 % of issue reopenings are premature; 75 % of all inappropriate changes are rejected
within four days.

Conclusions: Patch rejection is a frequent event, occurring multiple times a day. Given
the relative independence of rejection types, existing studies that focus on one single
rejection type fail to detect many rejections. Although inappropriate changes cause
rework, they have little effect on the quality of released versions of Firefox.

Keywords: Release engineering; Mining software repositories; Empirical software
engineering; Patch rejection

Introduction
According to Lehman et al. (1997), many software systems need to be constantly changed
to remain useful, and the quality of such systems will be perceived as declining unless
they are rigorously maintained. Therefore, for a high quality product, that satisfies users’
needs, it is important to keep track of issues with the product, the patches that resolve
those issues, and all verification steps during the lifecycle of a software release.

A patch goes through multiple stages before it is integrated into a release, depending
on the specific development process employed in a team. In Mozilla Firefox, for example,
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after a patch is written, it goes through code review, then it is committed to a source code
repository and compiled to multiple platforms, undergoes comprehensive automated
testing, and finally manual testing.

At any of these verification steps, a patch that is deemed incomplete or inappropriate
is rejected. Rejecting a patch for an issue raises the confidence that, when a new version
of Firefox is released, relevant issues found in the last version are indeed resolved. On
the other hand, a high rejection rate raises the concern that significant time is spent with
rework, i.e., writing, reviewing, and testing new patches for a previously handled issue.

In this paper, we use the following definitions: issues are bugs, feature requests, or other
types of maintenance requests (e.g., refactoring, creation of test cases) that are reported
in an issue tracking system for a software system; issue reports are closed when the corre-
sponding issues are resolved. Patches are source code changes that resolve issues; patches
are usually first submitted for code review and then committed into a source code reposi-
tory. Verification steps are tasks that evaluate whether a patch is appropriate, and include
code review, automated testing, and manual testing. A patch rejection is the finding, dur-
ing a verification step, that a patch is inappropriate; therefore, a patch may be rejected
during code review, automated testing, manual testing, or even after a release.

In this paper, we aim to characterize the problem of patch rejection in terms of its occur-
rence during code review, automated and manual testing, and by measuring its impacts
on the time needed to definitely resolve issues. We compare those three forms os patch
rejection, measuring how often they occur in the same issue report, and also compare
inappropriate and appropriate patches. Finally, we expand on previous studies that com-
pared patch rejection in Firefox under two distinct periods. To this end, we analyze a
four-year period of data from Firefox, a large open source project.

In order to allow other researchers to replicate our findings and to perform derived
research, we have made all the source code of our analysis scripts available on https://
github.com/rodrigorgs/withdrawal-firefox.

The remainder of this paper is organized as follows. Section ‘Literature review’ presents
related work on patch rejection. Section ‘Background’ presents the process and tools
adopted by Firefox. Section ‘Methods’ presents the data used in this study, together with
data transformation procedures and statistical methods employed. Section ‘Results and
discussion’ presents the quantitative results of the analysis, as well as some explanations
on the results and a discussion of threats to validity. Section ‘Conclusions’ summarizes
the conclusions of this study and presents perspectives on future work.

Literature review

This section presents previous work about patch rejection and related concepts. It
includes previous studies about patch rejection in Firefox, from which this work partially
derives.

Patch rejection can happen in different verification steps and be tracked in multiple
ways. It can be the rejection of a patch during code review by a peer, which may be tracked
in an issue tracking system, in a mailing list, or in a specialized review tool (Rigby and
Storey 2011). It can also happen after a patch is committed to a central code repository, in
which case a supplementary patch should be committed (Park et al. 2012). Many projects
close issues that are thought to be resolved, and then reopen the issue report to signal that
the patch was deemed inappropriate (Shihab et al. 2010).
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Although issues are, by definition, a superset of bugs, many software projects use the
term bug to refer to non-corrective maintenance (Chapin et al. 2001). A study on five
open source projects showed that about 33 % of all bug reports refer, instead, to feature
requests, requests for performance improvements, and other maintenance tasks (Herzig
et al. 2013). In the next subsections, we keep the terms bug and bug fix, used by the orig-
inal papers, although, more often than not, they can interchangeably be used with issue
and patch, respectively.

Bug reopening

A bug report may be closed even if it is not fixed when, for instance, it is considered a
duplicate or an invalid bug report. Therefore, bug reopening is not always related to patch
rejection; sometimes, it is the result of new information that helps triage bugs.

Shihab et al. (2010; 2012) developed a decision tree model, based on features about the
bug report, the bug fix, and human factors, to predict which bugs would be reopened.
They found that among the top predictors of bug reopening are the component in which
the bug was found and the time needed to submit the first fix to the bug.

In a partial replication of Shihab’s work, Zimmermann et al. (2012) found that bugs
reported by users are more likely to be reopened than those discovered through code
review or static analysis, supposedly because those reported by users are harder to repro-
duce and tend to be more complex. Other factors that favor reopening, according to the
authors, include bug severity and geographical distribution of developers participating in
the bug.

The authors also asked Microsoft engineers about the common causes for bug reopen-
ing. Responses included the difficulty to reproduce a bug, the misunderstanding of root
causes, the lack of information in the initial report, the increase of the bug priority,
incomplete fixes, and code integration problems.

Focusing on the reopening of bugs fixed by a source code patch, Almossawi (2012)
analyzed 32 open source systems in the GNOME project and, using a logistic regression
model, concluded that bugs located in code with high cyclomatic complexity are more
likely to be reopened. Jongyindee et al. (2011) found that bugs fixed by more experienced
developers are less likely to be reopened.

Regarding the impact of reopened bugs, the literature reports reopening rates as low
as 1.4 % (Almossawi 2012) and as high as 11.7 % (Jongyindee et al. 2011), obtained from
open source projects. Also, reopened bugs are said to have a life cycle from 2 to 5 times
higher (Jongyindee et al. 2011; Shihab et al. 2010) than regular bugs, and to involve the
participation of 40 % more developers (Jongyindee et al. 2011).

Supplementary bug fixes

Park et al. (2012) studied bug fixes with programming errors that led to the creation of
supplementary bug fixes, i.e., new, improved fixes for the same bug. By analyzing projects
from both Eclipse Foundation and Mozilla Foundation, they found that 22 % to 33 % of
resolved bugs involved more than one source code commit. The numbers overestimate
the proportion of rejected bug fixes because, while multiple commits often represent
multiple attempts to fix a bug (i.e., a commit fixes problems with a previous commit),
sometimes they are the result of a developer splitting a bug fix into multiple small commits
to facilitate peer review.
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An et al. (2014) analyzed the relationship between supplementary bug fixes and bug
reopening on WebKit and projects from Eclipse Foundation and Mozilla Foundation,
partially replicating the studies by Park et al. (2012) and by Shihab et al. (2010). They
found that between 21 % and 34 % of all bugs with supplementary fixes were eventu-
ally reopened, and that only a little more than 50 % of all reopened bugs are associated
with supplementary bug fixes. They conclude that bug reopening is not always related to
incorrect bug fixes.

Code review

Bird et al. (2007) developed an algorithm to detect patches in email messages and deter-
mine when such patches were applied to a code base. In their analysis of three open source
projects—Apache, Python, and PostgreSQL—they found that between 25 % and 49 % of
all submitted patches were applied without modifications to the code base. The remain-
ing patches were either rejected or applied with modifications—their algorithm cannot
tell the two cases apart.

Rigby et al. (2011; 2014) studied the peer review process of several open source projects.
They identified two styles of review processes: review-then-commit, and commit-then-
review. The first style is the most common, and is adopted by Mozilla. They also
characterized reviews according to their frequency, the participation of reviewers, among
other dimensions.

Jeong et al. (2009) studied the acceptance of bug fixes submitted to peer review in Fire-
fox and Mozilla Core. They found that about 7 % of the bug fixes are rejected, and that
an average review takes about 1.5 days. About 50 % of review requests are in an “open”
state (i.e., neither accepted nor rejected), which may indicate a “gentle rejection”, a lack of
interest from reviewers, or that the initial bug fix was superseded by an improved version
even before the reviewer had the opportunity to look at the first version.

Nurolahzade et al. (2009) inspected a random sample of 112 bug reports from Fire-
fox. They identified recurrent patterns in the behavior of contributors and reviewers. For
example, some contributors submit work-in-progress patches, and some reviewers avoid
explictly rejecting patches (what Jeong et al. called “gentle rejection”). They also make a
distinction between reviews conducted by module owners (i.e., developers responsible
for specific modules in the software), who are concerned with long-term maintainability,
and those conducted by other peers, who are usually more interested in functionality and
usability.

Patch rejection and rapid releases

In 2011, Firefox changed its release process from a traditional release model, delivering
major versions after more than one year of development, to a rapid release model, in
which versions containing new features are released every 6 weeks. The change gave rise
to numerous studies analyzing its impact on Firefox’s quality (Khombh et al. 2012), testing
efforts (Mantyla et al. 2013), and reputation among users (Plewnia et al. 2014).

In previous studies, we evaluated how rapid releases impacted the issue reopening rate
(Souza et al. 2014) and the backout rate (Souza et al. 2015), two forms of patch rejec-
tion. In this study, we add another form of patch rejection—negative code reviews—and
focus on characterizing and comparing, using data from Firefox, the three forms of patch

rejection.
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Summary on patch rejection

The papers in the scientific literature approach phenomena related to patch rejection
under a multitude of perspectives. Some papers analyze status changes in issue reports
to detect reopening events; such events may be related to patch rejection, but can also be
caused by insufficient information and communication problems in a team. Other papers
look at supplementary fixes, i.e., sets of commits aimed at the same issue, as an indica-
tor of inappropriate patches. To our knowledge, only one study (An et al. 2014) compares
bug reopening and supplementary fixes, and it concludes that, although both are used as
indicators of patch rejection, they agree at only 50 % of the issues. Finally, there are papers
that study strategies for code review, rejection rates and review time.

Background

The objective of this section is to explain the development process adopted by Mozilla,
as well as to describe how specific parts of the process are tracked using software devel-
opment tools. The description presented in this section is based on semi-structured
interviews with a former Mozilla engineer, and on information found in Mozilla’s wiki
(Mozilla 2014) and in Mozilla’s draft on process documentation for software release
mechanics (Mozilla 2011).

Tools
At Mozilla, two tools are central to coordinate the development of features and bug fixes:
Bugzilla!, an issue tracking system developed by Mozilla, and Mercurial?, a distributed

version control system.

Bugzilla

In Bugzilla, people can report issues and then update issue reports with information
regarding the issue and the process of resolving the issue, either by uploading files (screen-
shots, trace logs, patches...) or by commenting and updating issue report fields. Each issue
report has a status field, which can take values such as NEW, RESOLVED, VERIFIED, and
REOPENED.

For RESOLVED issues, a resolution must be chosen among FIXED, INVALID, WONT-
FIX, DUPLICATE, WORKFORME, or INCOMPLETE. Although the actual interpreta-
tion of each resolution is project-dependent, Bugzilla’s documentation (Bugzilla 2015)
proposes the following interpretations, which are followed by Mozilla’s projects:

e FIXED: a fix for the issue was commited to a source code repository and tested;

e INVALID: the report is not an issue;

e WONTFIX: the report is an issue, but developers have no intention of resolving it;
e DUPLICATE: the report is a duplicate of another report;

¢ WORKSFORME: developers were unable to reproduce the bug;

e INCOMPLETE: the report provides insufficient information.

Figure 1 shows typical issue status and transitions between them. An issue starts with
status UNCONFIRMED, if reported by a regular user, or NEW, if reported by a trusted
user. After that, the issue may be ASSIGNED to a developer, and then RESOLVED (with
resolution FIXED, if a patch was committed to the source code repository). After success-
ful manual testing, the status is changed to VERIFIED. Any issue marked RESOLVED or
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Open bug report Closed bug report
resolution :
——)[ NEW ASSIGNED RESOLVED FIXED,
INVALID,
WONTFIX,

DUPLICATE,

WORKSFORME,
——)EJNCONFIRMED] [REOPENED F ------ -| VERIFIED INCOMPLETE

Fig. 1 Issue status and their transitions on Bugzilla

VERIFIED is considered closed and may be REOPENED if the initial solution was deemed
inappropriate, so it can be RESOLVED correctly.

The code review process for Firefox also happens on Bugzilla, with the help of issue
report flags. First of all, a developer attaches a patch to an issue report and adds the flag
“review?” to the attachment, meaning that he wants someone to review the patch. The
reviewer then responds by replacing the flag “review?” with either “review+” or “review-”,
representing patch acceptance or rejection, respectively. When a patch is rejected, the
developer should submit a revised patch and flag the old one as “obsolete”.

Mercurial

Source code is kept in Mercurial repositories, the most important being called Mozilla-
central. Patches are represented by commits, identified by a hash. Besides the hash,
commits also contain a diff of the changes, a message that describes the change, and
metadata such as author and date. By convention, the commit message often refers to the
number of the issue resolved by the commit.

Whenever a commit is deemed inappropriate, it is backed out, a process that creates a
new commit reverting the inappropriate commit. By convention, backout commit mes-
sages contain the expression “backout”—or one the variations “back out”, “backing out”,
and “backed out”—, followed by the hash of the commit being backed out.

Since 2011, the conventions used in commit messages are enforced by a Mercurial hook
that prevents pushing to Mozilla repositories any commits whose message does not con-
form to conventions®. In addition to patches to issues and backout commits, there are

conventions for merge commits and a few other special cases.

Firefox’s change process
The process of resolving an issue starts with an issue being chosen by a developer. The
developer checks out a copy of Mozilla-central or, more likely, updates his local copy, and
then modifies it in order to resolve an issue. The changes are packed in a patch, which the
developer attaches to the issue report and asks a specific colleague to review, usually the
owner of the module being modified. If the reviewer approves the patch, the developer
commiits it to the Mozilla-central Mercurial repository. Otherwise, if the patch is rejected
during peer review, it should be marked as obsolete and the developer should improve his
patch to start the process again.

After the patch is committed, the Mozilla integration server checks out the code from
Mozilla-central, builds it for multiple platforms and runs automated tests. The whole pro-
cess takes hours to complete, and developers who commit code to Mozilla-central are
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expected to wait and see if the build was successful and all tests pass. If this is the case,
the developer should change the issue resolution to FIXED. Otherwise, the developer is
expected to backout his commit. A backout that occurs before a successful build is called
an early backout.

Backing out a problematic commit as soon as possible is important because other devel-
opers rely on code that is in Mozilla-central to write their patches. If that code cannot be
built or fail tests, a developer cannot test his own patches on that code.

For that reason, developers can try their patches on the so-called Try server before com-
mitting them to Mozilla-central. A developer submits a patch to the server and choose to
which platforms the code should be built and which test suites should be run. A success-
ful Try build, even on a limited set of plataforms and test suites, raises the confidence that
the patch will not break the build on Mozilla-central.

After a successful build, a tester downloads a nightly build and manually tests it to check
if all issues marked as RESOLVED were actually resolved. If this is the case, the issue
report is marked as VERIFIED; otherwise, it is marked as REOPENED, and the corre-
sponding commit is backed out. A backout that occurs after a successful build is called a
late backout.

Wrapping up, there are three types of patch rejection in the process: the negative review
of a patch submitted to code review, the backout of a commit, and the reopening of an
issue report. Backouts can be further split into early backouts, for commits that were not
integrated into a successful build, and late backouts, for commits that passed compilation
and automated tests but were later discovered to be inappropriate.

Integration repositories
In June 8, 2011, integration repositories, such as Mozilla-inbound, were introduced
in the process. With this change, developers stopped committing directly to Mozilla-
central, and started to commit to integration repositories instead. The code on integration
repositories is built and run against automated tests before being merged into central.
The merging to Mozilla-central is not performed by the developers who commit the
patches; instead, it is performed by designated developers called build sheriffs. Sheriffs
watch the build and are responsible for backing out commits that break the build or cause
test failures before merging commits into central.
With integration repositories, only code that passes build and automated tests are
merged into Mozilla-central, keeping it more stable. Furthermore, because of sheriffs,

developers do not need to watch builds and backout commits anymore.

Types of rejections and their interpretations
There are three types of events that are indicators of a patch rejection:

® negative review of patch under code review;
e backout of a commit (further classified in early and late);

e reopening of an issue report;

The three types of events have different meanings, and sometimes the difference is sub-
tle. Negative review is the very first form of rejection that can occur in the lifecycle of
patch. A developer can review negatively a patch for varied reasons (Tao et al. 2014),

e.g., because it could induce failures or poor performance in particular cases, because it
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does not conform to coding conventions, because it introduces unintuitive user interface
elements, and so on. Therefore, a rejection in peer review does not necessarily mean that
the patch is functionally wrong, it only means that the change is somehow inappropriate
or less than ideal.

A backout indicates that a patch that was eventually approved by a reviewer and com-
mitted to a code repository was then deemed inappropriate. Usually, in this case, it means
that there is a problem with the solution: a performance issue, incorrect outputs, uncov-
ered corner cases, and so on. A backout is classified as early when it occurs before the
corresponding issue report is closed (i.e., its status is changed to RESOLVED with resolu-
tion FIXED), which happens when the patch has been integrated into a successful build.
Therefore, early backouts are likely an indicator that the corresponding patch failed com-
pilation or automated testing. A backout is classified as late when it occurs after the issue
report is closed, meaning that the problem was likely discovered during manual testing.

A reopening occurs when someone explictly changes the status of an issue report to
REOPENED, which can only happen when the issue report is closed. It may appear that
reopenings and late backouts should always occur together, but this is not the case. Some-
times a closed issue report is prematurely reopened because of misunderstandings. For
instance, after a developer reopens an issue report, a second developer may argue that the
problem found by the first is in fact a different issue, and then change the status back to
RESOLVED. Therefore, reopening may imply a valid rejection, when it is followed by a
late backout, or may just signal communication problems.

Methods

In order to characterize patch rejection, we analyzed all issue reports and commit mes-
sages created in a period of more than four years, as shown in Fig. 2. This sample is not
intended to support conclusions about the earlier years of Firefox, since the development
process may have changed significantly along the years. The period includes about two
years of traditional releases, about two years of rapid releases, and also a five-month tran-
sitional period, during which two changes took place: the rapid release model was partially
implemented and integration repositories were created.

Issue reports were provided as a SQL database dump by a Mozilla engineer. The dump
contains everything that is stored by Bugzilla, except for some user data, for security
reasons, and attachment contents, which would increase significantly the data set size.

The database dump used to be publicly available, but was withdrawn in August, 2014.
As of November, 2014, Mozilla engineers are working on improving the data sanitization
process in order to release database dumps again. For more information see issue reports
1013953 and 1054795 at https://bugzilla.mozilla.org/.

Commit messages were extracted using Mercurial and further analyzed using regu-
lar expressions. The Mercurial repository is publicly available at https://hg.mozilla.org/
mozilla-central/.

start of rapid releases and
creation of integration repositories
February . February July . July
2009 traditional releases 2011 2011 rapid releases 2013

I I I I time
Fig. 2 Period analyzed in this study
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Research design

To enable the characterization of patch rejection, we detect, for each issue in our data
set—including those in traditional releases, in rapid releases, and in the transitional
period,—three types of rejection events:

o the negative review of a patch that was submitted to peer review;
e the backout of a patch that was committed (further split into early and late backout);
e the reopening of an issue report that was closed.

It should be noted that an issue report may, over its history, receive multiple patches,
which may be rejected multiple times. For the sake of simplicity, we study only the first
rejection, the first early backout, the first late backout, and the first reopening of an issue
report. Therefore, we do not measure directly the number of patches that were rejected;
instead, we measure the number of issue reports that had at least one patch rejected.

For each type of rejection event, we compute metrics related to three perspectives:
patch effectiveness, patch efficiency, and issue latency.

The patch effectiveness perspective is concerned with the proportion of issues that con-
tain only effective patches, i.e., patches that are not eventually rejected. For instance, the
metric backout rate computes the proportion of issues with at least one commit that was
considered inappropriate and was thus backed out. Other metrics include negative review
rate and issue reopening rate. A high proportion of issues with inappropriate patches sug-
gests that the source code is hard to understand or that it is hard to change without
breaking it.

The patch efficiency perspective is concerned with how long it takes to propose a patch.
For instance, the metric time to commit measures the time between the creation of an
issue report and the first commit of a patch to that report. Other metrics include time to
submission (time to submit to code review) and time to closing (the issue). We separately
compute the time it takes to propose an inappropriate patch (i.e., a patch that will be
eventually rejected), and the time it takes to propose a supplementary patch (i.e., a patch
that improves a previously rejected patch). This perspective helps weigh the problem of
rejections in terms of the time they take during development.

The issue latency perspective is concerned with how long it takes to reject an inap-
propriate patch. For instance, the metric time to backout measures that time it takes to
backout for the first time an inappropriate commit. Other metrics include time to nega-
tive review and time to reopening. If it takes too long to reject inappropriate patches, it is
more likely that developers write changes that rely on source code with problems.

Figure 3 shows important events in an issue lifecycle, and how they are used as refer-
ence to compute metrics related to patch efficiency and issue latency. For the peer review
process, for instance, we measure the time from issue report creation to the submission
of the first patch to Bugzilla (time to submission), the time between the first submission
and the first negative review (time to negative review), and the time from the first rejec-
tion to the next patch submission (time to supplementary submission). The same logic is
applied to backouts and reopenings.

We also partially replicate our previous studies about the impact of rapid releases on
patch rejection (Souza et al. 2014, 2015), however adding negative reviews, which were
not previously considered. In order to study how those metrics changed after Firefox’s
adoption of rapid releases, we compute them for two periods, one during which Firefox
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Fig. 3 Events and time-related metrics (efficiency and latency)

was developed with traditional releases, and another one during in which it was developed
with rapid releases and integration repositories. In this analysis, the transitional period is
ignored, since it is not representative of either traditional or rapid releases.

Data analysis

Figure 4 outlines the data analysis process. Boxes represent processing steps, and ovals
represent data, with arrows connecting a processing step to input and output data. Num-
bers near ovals represent number of data points (e.g., number of issues, number of
commits).

First, all issue reports for Firefox that ended up with resolution FIXED are loaded,
together with the history of their changes (step 1 of Fig. 4), resulting in 82920 issues
created between 1997 and 2013. Relevant attributes are extracted, such as issue num-
ber, creation date, changes to issue status, resolution and flags, together with dates for all
changes.

In parallel, all commits from 2007 to 2014 in Mozilla-central are loaded, resulting in
215296 commits (step 2). Note that not all those commits are for Firefox, since other
Mozilla products use this repository. For each commit, we extract the identifier, or

commit hash, the date, and the first line of the message.

Detection of events from issue reports
After that, all relevant events are detected from issue reports (steps 3 and 4). Events from

issue reports are stored as structured data.

88,910

closings,

(3) detect
closings and —>/
reopenings

from 1997 to 2013

reopenings
5,815
(1) load issue - (4) detect 160.'3§3
reports >issue reports.____| subm!ssipns > surlzjrzéstis:)?]rgs, from 1997 to 2014
82,920 and rejections 12374 \ ) comsondate @ compute
> event log —>» per-issue @

events N
metrics
354,009
(5) detect > fix commits /

52,832
fix commits events issues

130,588

from 1999 to 2013

from 2007 to 2014

(2) load
commit > commit messages,

messages 215,296

(6) detect

backouts —>{ backouts

10,942

Fig. 4 Data analysis process
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In step 3, we detect closings and reopenings:

o the event issue report creation is extracted from the “reported date” field;

e the event closing is detected whenever the issue resolution is changed to FIXED (we
ignore events that close an issue as INVALID, WONTFIX, DUPLICATE,
WORKFORME, or INCOMPLETE), resulting in 88910 closing events;

e the event reopening is detected whenever issue status is changed to REOPENED
when the issue resolution is set to FIXED (we ignore reopening of an issue when it is
tagged as duplicate, invalid, etc.), resulting in 5815 reopening events;

In step 4, we detect submissions and negative reviews:

o the event submission corresponds to adding the “review?” flag to an attachment (the
question mark stands for a developer “asking for a review”); we detected 160363
submissions;

e the event negative review corresponds to adding the “review-” flag to an attachment;
we detected 12374 such events.

Detection of events from commits
We detect two events from commits: “commit” (step 5), i.e., committing an issue-resolving

patch to a central repository, and “backout” (step 6), using the same heuristics we used in
previous work (Souza et al. 2014, 2015). Detecting issue-resolving and backout commits
is more difficult, since involves extracting information from messages written in natural
language. Also, besides detecting the type of commit, it is also necessary to map commits
to issues. Threats to validity are discussed later in this paper.

A commit is detected as issue-resolving if its message starts with the word “bug”, fol-
lowed by a 5- or 6-digit number (step 5). Firefox uses the term “bug” to refer to all issues,
even feature requests. We found 130588 such commits. The number is the issue identi-
fier, which allows mapping the commit to the issue report it resolves. The following is a
typical message for an issue-resolving patch (emphasis added):

Bug 939080 - Allow support-files in manifests to exist in parent paths.

For backout commits, it is necessary to determine which patches they backout (step
6). A typical backout commit references either the commits it reverts, the issues whose
patches are being reverted, or both, e.g.:

Back out 7273dbeaeb88 (bug 157846) for mochitest and reftest bustage.

All commits whose message matched the regular expression “back.{0,5}out”, i.e., the
words “back” and “out’separated by up to five characters, were interpreted as backout
commits. The purpose of the five characters separation is to match common variations,
such as “backed out” and “backing out”. In a backout commit, all decimal numbers with 5
to 6 digits were interpreted as issue report identifiers, and all hexadecimal numbers with
7 to 12 digits were interpreted as commit hashes.

Not all issue reports referenced in backout commits are issue whose patch is being
reverted, though. For instance, consider the following commit message:

Back out parts of bug 698986 to resolve bug 716945

The commit message references two issue reports. The first one is the issue being
reopened; the second one, though, is the the issue being resolved by the commit.
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Therefore, in the example, issue 716945 was not backed out (at least not in this particular
commit).

After reading a sample of backout commits, we decided that issue identifiers after the
following expressions should not be interpreted as issues being backed out:

e resolve, fix — e.g., “Backout bug 555133 to fix bug 555950.” (i.e., bug 555133 was
backed out, while bug 555950 was not);
e causing, cause, because — e.g., “Backed out changeset 705ef05105e8 for causing bug

503718 on OS X”;
e due to — e.g.,, “Backed out changeset 58fd8a926bf5 (bug 366203) due to it causing bug
524293

e suspicion — e.g., “Backout revisions (...) on suspicion of causing (...) bug 536382.”

Finally, whenever a back commit references other commits, we identify the issue they
tried to resolve. For example:

commit b6d4...: Bug 475968. Pad out the glyph extents of Windows text (...)
commit 980e...: Backed out changeset b6d4... for causing (...)

In this example, one can deduce that issue 475968 was reopened, because commit
bed4. . ., that resolved it, was later backed out by commit 980e. . ..

Consolidation of events and analysis

After all relevant events were detected, they were consolidated in a single data set with
records in the form (issue number, event, time when event occurred) (step 7 of Fig. 4). In
this step we only considered issues with a complete lifecycle, i.e., closed issues associated
with at least one issue-resolving commit, resulting in 354009 events.

After that, events were aggregated by issue, so all previously described per-issue metrics
could be computed, such as reopening rate and time to backout (step 8). This resulted in
52832 issues created between 1999 and 2013, which received commits between 2007 and
2014 (it may seem counterintuitive that an issue reported created in 1999 would receive a
commit in 2007, but that actually happens in our data set).

For the characterization of patch rejection, metrics were computed for all issues that
were created in the period under analysis (Fig. 2). Quartiles were computed to understand
the variation of time-related metrics across issues. Venn diagrams were created to help
understand how often different types of rejection occur together.

For the assessment of the impacts of Firefox’s adoption of rapid releases, issues were
split into two groups, those in traditional releases and those in rapid releases, based on
their timestamps, and metrics were computed for each group. Issues in the transitional
period were not considered in this analysis.

The specific timestamp used to determine the group of an issue depends on the metric.
For instance, when computing time to commit, we are interested in the time it takes to
commit a patch for an issue that was created in a certain period; therefore, for this specific
metric, issues are classified according to their creation time. When computing time to
backout, on the other hand, the question is “how long it takes to backout a patch that was
commited under rapid/traditional releases”; therefore, the timestamp of the first issue-
resolving commit is used. For some metrics, issues were groupped by month and a time
series was plotted to understand their variation over time.
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Because we use distinct timestamps for distinct analyses, our sample also changes for
each analysis. For instance, when analyzing issues created in the period under analysis, the
sample contains 39770 issues; when analyzing issues which received an issue-resolving
commit in the period, the sample contains 40419 issues.

To determine whether observed differences were statistically significant, we performed
statistical tests such as Mann-Whitney’s and Fisher’s. The Mann-Whitney test was per-
formed for efficiency and latency metrics, because these metrics are continuous and do
not follow a normal distribution. Fisher’s exact test was performed for effectiveness met-
rics, because those metrics are categorical. During the analysis, we talked to Mozilla
engineers in the firefox-dev mailing list in order to better understand their process and to

validate our early findings.

Results and discussion

All resolved issues that were created in the months of February, 2009, up to July, 2013,
were analyzed, totaling 39770 issues. On average, on each day, 24.2 issues were resolved,
2.5 received at least one negative review, 2 had at least one commit backed out, and 1.4
were eventually reopened. The numbers show that patch rejection is a recurrent task that

occurs on a daily basis.

Relationship between negative review, backout, and reopening
Figure 5 presents a Venn diagram displaying the proportion of resolved issues that
underwent any combination of negative reviews, backouts, and reopenings. The number
outside the circles, 80.4 %, is the proportion of issues in our data set that were not rejected.
The sum of the proportions equals 100 % (except for rounding errors).

The diagram shows that most resolved issues are associated with a single rejection type,
i.e., there are comparatively fewer issues that combine two or three rejection types. This
result supports our observation that negative reviews, backouts, and reopenings are three

negative reviews backouts

reopenings 80.4%

Fig. 5 Venn diagram of rejection types
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essentially different phenomena (see the Background section) and that it is worthwhile
to study all three to better understand patch rejection.

Still, the intersections on the diagram reveal useful information about the relationship
between rejection types. Rejections in code review occur in 10.3% (i.e., 8.3% + 0.4% +
1.0% + 0.6 %) of all issues, and also, in 1.6 % of all cases, an issue is both rejected in code
review and backed out. By dividing the latter by the former, we conclude that, although
those reviews were rigorous (after all, they led to the rejection of a patch), 15.6 % of the
time they failed to discover a problem that was later detected by automated or manual
testing.

The diagram also shows that issue reopening has a significant intersection with back-
outs. This intersection is detailed in Fig. 6, which shows a Venn diagram of issue
reopenings, early backouts, and late backouts (for simplicity, negative reviews are not
explicit in the diagram). Since an issue can only be reopened after it is closed, which
occurs when a patch is tested and commited, one would expect that reopened issues are
often associated with a late backout. However, the diagram shows that, 68.1 % of the time,
an issue reopening is premature: it is followed by some discussion that does not lead to
the rejection (late backout) of the corresponding patch. The percentage was computed
by dividing the proportion of issues that were reopened and not backed out late (3.3 % +
0.6 %) by the proportion of reopened issues (3.3% + 0.6% + 0.2 % + 1.6 %).

Patch effectiveness
Table 1 shows specific rejection rates in the period, i.e., what proportion of all resolved
issues had at least one negative review, backout, or reopening. This is a measure of patch
effectiveness, since it is related to the proportion of patches that were successful.

The table can be directly obtained by summing numbers obtained from Fig. 5 and from
Fig. 6. For instance, the negative review rate is the sum of the four percentages inside the
negative review circle in Fig. 5. Small discrepancies in the summation are due to the fact

early backouts late backouts

0.0%

e

reopenings 88.7%

Fig. 6 Venn diagram for reopening and backout
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Table 1 Metrics related to patch effectiveness

Metric Value
Negative review rate 10.3%
Backout rate 83 %

Early backout rate 6.1%

Late backout rate 22%
Reopening rate 57%
Overall rejection rate 19.6%

that all values are rounded to one decimal place. Notice that the overall rejection rate is
smaller than the sum of negative review, backout and reopening, since it is possible for
a single issue to be associated with more than one kind of rejection (e.g., backout and
reopening).

The numbers show that inappropriate patches (i.e., patches that are eventually rejected)
introduce a significant overhead in the process. About 19.6 % of all patches are rejected
either by negative review, backout, or reopening (overall rejection rate), inducing over-
head on developers, who have to write supplementary patches. Also, 10.3 % are rejected
during peer review, which also induces overhead on reviewers, who have to review a sup-
plementary patch, besides having to explain why the first one was rejected. Furthermore,
8.3 % of all resolved issues are backed out, a process that is performed nowadays by sheriffs
(and, before June, 2011, by developers themselves). Although usually a simple operation,
backouts can be hard when multiple commits are pushed together to the central repos-
itory; in this case, sheriffs must sort out which specific commit broke the build. Finally,
about 5.7 % of all resolved issues are reopened, which induces a discussion overhead, since
developers should discuss whether it was appropriate to reopen the issue.

Patch efficiency

As explained in the previous section, the patch efficiency perspective is concerned with
how long it takes to propose a patch for an issue. Table 2 shows metrics on the time it
takes to propose a patch in multiple contexts: the time to submit a patch to code review,
the time to commit a patch to a source code repository, and the time to close an issue
report. The metrics are also computed for two subsets of the data: inappropriate patches
and supplementary patches. For each metric, the table shows the first quartile (25 %), the
second quartile or median (50 %), and the third quartile (75 %).

Table 2 Metrics related to patch efficiency

25% 50% 75%

Time to submission (days) 03 1.1 129
(inappropriate patch) 04 4.6 357
(supplementary patch) 0.1 0.8 49
Time to commit (days) 14 6.8 308
(inappropriate patch) 2.8 13.0 519
(supplementary patch) 0.5 1.9 93
Time to closing (days) 30 10.0 39.7
(inappropriate patch) 4.8 16.4 587

(supplementary patch) 0.5 24 132
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The first observation is that the distribution of the times is heterogeneous, heavily
skewed to the right. That means that, while half of all patches is concentrated in a range
of little times to submission (taking up to 1.1 day to be submitted), the other half is spread
over a wider range of longer durations.

As expected, taking the time of issue creation as reference, commiting a patch takes
longer than submitting a patch for peer review, and closing an issue report takes even
longer. A patch is usually submitted shortly after the creation of an issue report; in half
of the cases, it takes less than 1.1 day, and 75 % take at most 12.9 days. Half of all issue
reports are closed within 10.0 days of its creation, while 75 % of issue reports are closed
within 39.7 days.

The table also shows metrics for inappropriate and supplementary patches. Those
metrics are discussed in the next subsections.

Inappropriate patches

By comparing the times of inappropriate patches with the times of patches in general (in
bold in Table 2), we can see that, compared to patches in general, inappropriate patches
take longer to submit, to commit, and the corresponding issue report takes longer to be
closed. For instance, while 75% of the issues take less than 12.9 days to have a patch
submitted, if we consider only inappropriate patches, the time raises to 35.7 (Table 2), a
2.8x increase. The same trend shows up if we analyze the time needed to commit a patch
or to close an issue report.

The implication of inappropriate patches taking longer to be submitted is that the over-
head they cause is higher than what the rejection rate (Table 1) suggests. While 10.3 % of
issue reports’ first patches are rejected by peer review, they account for more than 17.4 %
of the time needed to submit patches. Likewise, 8.3 % of all issues are associated with
issue-resolving commits that were backed out, but those commits account for 11.5% of
the time that takes for patches to be committed after the creation of an issue report.

It should be noted that, with the available data, it is not possible to measure the time
during which the developer was actually writing patches. Therefore, the time to submis-
sion and the time to commit of an issue includes the time in which the developer was

resting or working on other issues.

Supplementary patches
The numbers on Table 2 also confirm the intuition that correcting an inappropriate patch
takes less time than submitting the first patch for an issue. While in 75 % of the cases it
takes up to 12.9 days to submit the first patch for an issue, it takes less than 4.9 days to
submit a supplementary patch. Subsequent commits and closings also take significantly
less time when compared to the first commit and the first closing of an issue report.
Intuition suggests that the greater the time between the submission of an inappropriate
first patch and its rejection (i.e., latent time), the longer it would take to submit a supple-
mentary patch. After all, a long latent time means that the developer’s memory about the
issue context is not as fresh as when he wrote the first patch. However, we could not find a
significant correlation between latent time and the time to submit a supplementary patch.
We attribute this lack of correlation to the fact that we cannot measure how much time
was spent actually working on each patch, which is a subset of the time taken to submit it.
Also, we could not find a correlation between the time to submit an inappropriate patch
and the time to submit a supplementary patch after the rejection of the first patch, tested
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using Spearman’s nonparametric correlation coefficient. The lack of correlation, in this
case, suggests that the first and second patches are different in nature, and the effort
needed to write the former is unrelated to that needed to write the latter.

Latent time and product quality

Table 3 shows the proportion of rejected issues that were latent for at most 12 hours, 24
hours, 1 week, and 6 weeks, before they were rejected by either a negative review, a back-
out, or a reopening. Latent times represent either the time between a patch submission
and a negative review, the time between a commit and its backout, or the time between
closing and reopening an issue report.

Latent times are usually low: about half of issues that are eventually rejected remain
latent for 12 hours or less. More than 80 % of rejected issues are rejected within a week,
and less than 7 % take more than 6 weeks to be rejected. Low latent times contribute to fast
feedback cycles, which are valued in agile methodologies (Cockburn and Williams 2003).

Because inappropriate patches are rejected quickly, they are unlikely to be shipped with
the code for a release. Therefore, based on the analysis of the data set, there are ini-
tial evidences that the quality of the product delivered is not affected by inappropriate
patches.

Impact of rapid releases and integration repositories

In previous studies (Souza et al. 2014, 2015), we explored the evolution of patch rejection
over time by analyzing issue reopening and backout metrics under two periods: tradi-
tional releases, from February 2009 to February 2011, and rapid releases, from July 2011 to
July 2013. In this study, we replicate the analyses adding another form of patch rejection,
negative code reviews.

Although the two periods have roughly the same number of days, the number of
resolved issues under rapid releases was 1.8x higher (24536 vs 13434). This increase
does not represent an increase in the productivity, since the number of active developers
increased in the same proportion.

Patch effectiveness. Table 4 shows the variation of rejection rates under traditional and
rapid releases. All differences are statistically significant (p < 0.05 using Fisher’s exact
test for count data).

As shown in previous studies, reopening rate and late backout rate decreased in the
period, while early backout increased, supposedly because of integration repositories and
better automated testing. In this study, we show that the negative code review rate also
decreased.

Figure 7 presents the evolution of the negative review rate over time. It shows a
decreasing trend of the metric in the rapid release period.

Patch efficiency. Table 5 shows median values for time-related metrics under traditional
and rapid releases. The number of asterisks correspond to statistical significance (x =
p < 005, xx = p < 0.01, x x x = p < 0.001).

Table 3 Metrics related to bug latency

12h 24h T week 6 weeks
% of negative reviews that occur within... 49.5% 61.9% 88.7% 98.3%
% of backouts that occur within... 61.1% 67.6% 84.0% 94.6 %

% of reopenings that occur within... 50.8% 59.2% 824 % 93.9%
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Table 4 Metrics related to patch effectiveness under both traditional and rapid releases

Traditional Rapid

Negative review rate 122% 10.1%
Backout rate 6.1% 9.2%
Early backout rate 28% 7.7 %
Late backout rate 33% 1.6 %
Reopening rate 7.8% 4.7 %

Under rapid releases, the median times to submit or commit a patch, or to close an issue
report, were all reduced. Figure 8 shows that the metrics started to decrease after the
adoption of rapid releases and integration repositories, which suggests that they played a
role in this reduction.

Regarding code reviews, supplementary patches took approximately the same amount
of time to submit under rapid releases. The numbers suggest that submitting a supple-
mentary patch was already a fast task, and was not affected by either rapid releases or
integration repositories.

While the time to commit and the time to closing became about twice as fast under
rapid releases, the reduction in time to submission was much smaller. This result suggests
that the changes that Firefox underwent in 2011 affected mainly later stages of the change
process.

Threats to validity

As in any empirical study, the validity of the results presented in this paper is subject
to threats. The most relevant threats to construct, internal, and external validity are
described below.

Construct validity (to which extent the study measures what it intends to measure). The
detection of backouts and patches was based on heuristics, including pattern matching
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Table 5 Metrics related to patch efficiency under both traditional and rapid releases

Traditional Rapid Significance

Time to submission (days) 13 0.9 Frx
(inappropriate patch) 49 45 **
(supplementary patch) 0.8 0.8

Time to commit (days) 11.1 54 e
(inappropriate patch) 222 10.1 oo
(supplementary patch) 34 1.6 *xX

Time to closing (days) 159 7.7 Hxx
(inappropriate patch) 20.7 14.3 Hrx
(supplementary patch) 2.8 2.1 *

on commit messages. Although numerous messages were read in order to determine
recurrent patterns to help extract issue identifiers, not all commits conform to the most
common patterns. It is possible that the actual backout rate is different from what was
measured, although we believe that the deviance would not be large.

Also, in our analyses, we considered only the first negative review, the first backout,
and the first reopening of each issue report. We believe this simplification did not change
significantly the results, since few issue reports contain more than one ocurrence of each
of these events.

There are limitations on what can be measured with the available data. In particular, we
cannot measure the time each developer spent writing patches. As an imperfect substi-
tute, we measure the time between the creation of an issue report and the submission of a
corresponding patch. Also, it is possible that a developer discovered an issue and started
writing a patch even before reporting it on Bugzilla.

Internal validity (to which extent conclusions can be made from what was measured).
The observed differences under traditional and rapid releases could be attributed to fac-
tors other than release length, since the development process may have changed over time
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in many different ways. In this paper, we already identified factors such as improvements
in testing infrastructure, the introduction of sheriff-managed integration repositories.
Other factors may also play a role. For example, a Mozilla engineer pointed out that the
criteria used to determine when an issue should be reopened and when a new issue report
should be filled can change over time and influence the analysis of issue reopening. To
mitigate this threat, we have plotted the variation of metrics over time to visualize whether
there were significant variations within a release type.

External validity (to which extent results can be generalized). All the conclusions in
this study were based on data from one single open source project. The results are not
expected to be generalizable to other projects; instead, the purpose of this study is to pro-
vide insights on the questions beings studied. Furthermore, it is not trivial to extend the
study to other projects, since interpreting the results require a high level of understanding
about the process, in a detailed perspective, as well as about process changes over time.

Conclusions
In this paper we described an empirical study to characterize the rejection of inappro-
priate patches, an indicator of process quality, in Mozilla Firefox. We have looked at
three sources for studying patch rejections: code review, backouts—further divided into
early and late backouts—and issue reopening. The importance of this strategy revealed
itself when trends diverged. For instance, when assessing the impact of rapid releases and
integration repositories on rejection rate, some metrics increased, while others decreased.
Also, we discussed early results with Mozilla engineers in the firefox-dev mailing list,
some of which were surprising for them. Had we analyzed only one source of information
about rejections or relied only on quantitative data, we could have reached incomplete
and biased conclusions.
The main findings of this study are summarized below:

e patch rejection happens daily, on average;

® rejection by negative review, backout, and issue reopening are three events that,
although related, are relatively independent;

e almost 70 % of issue reopenings are premature, because they are not accompanied by
the backout of the corresponding patch;

e almost 20 % of all resolved issue reports contain at least one patch that is eventually
rejected, introducing overhead in the process;

e inappropriate patches take longer to be submitted when compared to patches in
general;

e supplementary patches are submitted faster than initial patches;

e the time it takes to submit a supplementary patch is not correlated with the time it
took to submit the first, inappropriate patch, nor with the time it took for the
inappropriate patch to be rejected;

e in 75 % of the cases, it takes less than 4 days to reject an inappropriate patch;

e for the reason above, inappropriate patches are unlikely to become part of a final
release;

o the late backout rate, the reopening rate, and the negative review rate decreases
under rapid releases;

¢ the time to submit a patch decreases under rapid releases.
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We believe that this study contributes both to scientific literature and to software
development practice in the following ways: (i) it compares negative review, backout, and
issue reopening, three events related to patch rejection that are usually studied separately;
(ii) it helps understand the overhead caused by inappropriate patches that are rejected;
(iii) it provides a detailed account on how patch rejection metrics evolved in a project that
adopted a rapid release model; (iv) it unveils facts previously unknown to Firefox engi-
neers that reinforce their perception that changes introduced in 2011 were benefical from
a technical point of view; (v) it reveals practices adopted by Firefox that were successful
in improving process quality while speeding up the release of new versions.

In a future work, we intend to study code reviews in greater detail, especially investi-
gating to what extent they anticipate problems that would otherwise be detected during
automated testing. Such study would cast light on the relationship between code review
and automated testing, two important methods for early problem detection.

Endnotes

http://www.bugzilla.org/.

2http://mercurial.selenic.com/.

3The Mercurial hook was proposed at https://bugzilla.mozilla.org/show_bug.cgi?id=
506949.
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