
Andrade and Macêdo Journal of Software Engineering Research and
Development (2015) 3:2
DOI 10.1186/s40411-015-0016-z

RESEARCH Open Access

Assessing the benefits of search-based
approaches when designing self-adaptive
systems: a controlled experiment
Sandro S Andrade1,2*† and Raimundo J de A Macêdo1†

*Correspondence: sandros@ufba.br
†Equal contributors
1Distributed Systems Laboratory
(LaSiD), Federal University of Bahia
(UFBa), Institute of Mathematics,
Department of Computer Science,
Av Adhemar de Barros, s/n, Ondina,
40.170-110 Salvador-BA, Brazil
2GSORT Distributed Systems Group,
Federal Institute of Education,
Science, and Technology of Bahia
(IFBa), Department of Computer
Science, Av. Araújo Pinho, 39,
Canela, 40.110-150 Salvador-BA,
Brazil

Abstract

Background: The well-orchestrated use of distilled experience, domain-specific
knowledge, and well-informed trade-off decisions is imperative if we are to design
effective architectures for complex software-intensive systems. In particular, designing
modern self-adaptive systems requires intricate decision-making over a remarkably
complex problem space and a vast array of solution mechanisms. Nowadays, a large
number of approaches tackle the issue of endowing software systemswith self-adaptive
behavior from different perspectives and under diverse assumptions, making it harder
for architects to make judicious decisions about design alternatives and quality
attributes trade-offs. It has currently been claimed that search-based software design
approaches may improve the quality of resulting artifacts and the productivity of
design processes, as a consequence of promoting a more comprehensive and
systematic representation of design knowledge and preventing design bias and false
intuition. To the best of our knowledge, no empirical studies have been performed to
provide sound evidence of such claim in the self-adaptive systems domain.

Methods: This paper reports the results of a quasi-experiment performed with 24
students of a graduate program in Distributed and Ubiquitous Computing. The
experiment evaluated the design of self-adaptive systems using a search-based
approach proposed by us, in contrast to the use of a non-automated approach based
on architectural styles catalogs. The goal was to investigate to which extent the
adoption of search-based design approaches impacts on the effectiveness and
complexity of resulting architectures. In addition, we also analyzed the approach’s
potential for leveraging the acquisition of distilled design knowledge.

Results: Our findings show that search-based approaches can improve the
effectiveness of resulting self-adaptive systems architectures and reduce their design
complexity. We found no evidence regarding the approach’s potential for leveraging
the acquisition of distilled design knowledge by novice software architects.

Conclusion: This study contributes to reveal empirical evidence on the benefits of
search-based approaches when designing self-adaptive systems architectures. The
results presented herein increase our belief that the systematic representation of
distilled design knowledge and the adoption of search-based design approaches
indeed lead to improved architectures.

Keywords: Self-adaptive systems; Software architecture; Software modeling;
Search-based software engineering; Empirical software engineering

© 2015 Andrade and Macêdo; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto: sandros@ufba.br
http://creativecommons.org/licenses/by/4.0

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 2 of 27

1 Background
Modern software-intensive systems are becoming increasingly complex and the fulfill-
ment of requirements for performance, flexibility, dependability, and energy-efficiency
in uncertain and dynamic environments is still a quite challenging task (Huebscher and
McCann 2008). Elastic data storage services, energy-aware mobile systems, self-tuning
databases, and reconfigurable network services are some of the application domains in
which self-adaptive mechanisms play a paramount role (Patikirikorala et al. 2012). Such
scenarios are usually characterized by incomplete knowledge about user requirements,
workloads, and available resources. As a consequence, committing to a particular solution
in design time may yield suboptimal architectures, which easily degrade the service when
conditions deviate from those previously defined. Establishing the foundations that enable
the systematic design, development, and evolution of systems with self-management
capabilities has been the focus of many research efforts in areas such as self-adaptive
systems, autonomic computing, and artificial intelligence (Salehie and Tahvildari 2009).
A self-adaptive (SA) system continuously monitor its own behavior and its operating

environment, adapting itself whenever current conditions prevent it from delivering the
expected quality of service (Salehie and Tahvildari 2009). SA systems usually comprise
two parts: a managed element and a managing element (Huebscher and McCann 2008).
The managed element provides functional services to the user, operating in a potentially
dynamic and uncertain environment. The managing system is responsible for adapt-
ing the managed element, mostly by using a particular implementation of an adaptation
loop. The MAPE-K approach (Kephart and Chess 2003) is a widely accepted reference
architecture for adaptation loops. It defines the basic components for the loop’s tasks
of Monitoring, Analyzing, Planning, and Executing; performed with the support of a
Knowledge Base.
The many approaches for self-adaptation available nowadays employ different mecha-

nisms for the aforementioned tasks. Reflexive middleware platforms (Ogel et al. 2003),
graph grammars (Bruni et al. 2008), intelligent agents (Benyon and Murray 1993), policy-
based approaches (Georgas and Taylor 2008), self-organizing structures (Georgiadis
et al. 2002), and control theory (Tilbury et al. 2004) are some of the currently adopted
underpinnings for enabling self-adaptation. Becoming familiar with the most prominent
modeling dimensions for SA systems is crucial for specifying relevant adaptation require-
ments; making unbiased and well-informed decisions about alternative architectures; and
accurately evaluating the resulting system’s quality attributes.
Although some previous work have already tackled this issue (Andersson et al. 2009;

Brun et al. 2009; de Lemos et al. 2010; Patikirikorala et al. 2012), representing such dimen-
sions by using ill-structured notations – such as natural language, ad-hoc architectural
styles catalogs, and informally depicted reference architectures – makes it harder and
time-consuming for novice architects to grasp the architectural tactics that lead to partic-
ular adaptation quality attributes. As a consequence, effective subtle architectures for an
adaptation problem at hand may not be considered because of design bias, limited knowl-
edge about the solution domain, or time constraints. Furthermore, the lack of flexible,
expressive, and automated mechanisms for performing the usual decide-design-evaluate
cycles hampers the eliciting of relevant insights about quality attributes trade-offs.
Over the past twelve years, Search-Based Software Engineering (SBSE) (Harman et al.

2012) has provided promising approaches for tackling the aforementioned issues in areas

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 3 of 27

such as requirements engineering, design, testing, and refactoring, just to mention a few.
SBSE claims that the majority of issues in such areas are indeed optimization questions
and that the software’s virtual nature is inherently well suited for search-based optimiza-
tion (Harman 2010). In particular, substantial work towards search-based software design
(Räihä 2010) advocates the benefits of SBSE in finding out subtle effective designs and
providing well-informed means to reveal quality attributes trade-offs.
To the best of our knowledge, the first effort in applying search-based approaches to the

design of SA systems is that proposed by us in (Andrade and de Araújo Macêdo 2013a,b).
In such work, we provide a meta-modeling infrastructure for defining domain-specific
design spaces which systematically capture the domain’s prominent design dimensions,
their associated variation points (alternative solutions), and the architectural changes
required to implement each solution. The goal is to support the automated redesign of
an initial model, endowing it with additional capabilities from the application domain
at hand. Each domain-specific design space entails a set of quality metrics that eval-
uate each candidate architecture regarding different attributes. We have been using
such an approach to enable the automated design of managing elements for initial
(non-adaptive) systems such as web servers and MapReduce distributed architectures
(Dean and Ghemawat 2008). Since even small input models usually span huge design
spaces, we also provide a domain-independent multi-objective optimization engine. Such
engine currently relies on the NSGA-II (Non-dominated Sorting Genetic Algorithm II)
algorithm (Deb et al. 2002) to find out a set of Pareto-optimal (Deb and Kalyanmoy 2001)
candidate architectures. All these solutions represent optimal architectures, differing only
in which quality metric they favor.
In (Andrade and de AraújoMacêdom 2014), we report the results of a quasi-experiment

which investigated the benefits of search-based approaches when designing SA systems
architectures. In this paper, we extend such a report by providing amore accurate descrip-
tion of involved treatments, analysis of resulting data, and threats to validity. The study
was performed with 24 students of a graduate program in Distributed and Ubiquitous
Computing and evaluated the design of SA systems using our search-based approach,
in contrast to using a style-based non-automated approach. The experiment aimed at
evaluating the impact of the adopted design method on three dependent variables: the
effectiveness and complexity of resulting architectures, as well as the method’s potential
for leveraging the acquisition of distilled design knowledge by novice architects. All the
material used in the experiment is available at http://wiki.ifba.edu.br/tr-ce012014.
The remainder of this paper is organized as follows. Section 2 presents the foundations

of SA systems and feedback control. Section 3 describes the automated software architec-
ture design approach proposed by us and adopted as one of the experiment treatments.
Section 4 presents an overview of the experiment. Section 5 explains the experiment
objects, the hypotheses being investigated, the adopted measurement approach, and the
experiment design. In Section 6, we analyze and discuss the experiment results. Threats
to validity are identified in Section 7 and related work is discussed in Section 8. Finally,
conclusions and venues for future work are presented in Section 9.

2 Self-adaptive systems and feedback control
A SA system is defined in (DARPA 1997) as “a software that evaluates its own behav-
ior and changes behavior when the evaluation indicates that it is not accomplishing what

http://wiki.ifba.edu.br/tr-ce012014

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 4 of 27

the software is intended to do, or when better functionality or performance is possi-
ble”. We adopt a slightly broader perspective by defining a SA system as a system which
presents some on-line infrastructure which allows moving a specific development pro-
cess stage (e.g.: design, implementation, or deployment) – usually undertaken off-line –
to runtime. Such definition entails from simple adaptive algorithms to more sophisti-
cated solutions such as self-optimization by automated redeployment (Malek et al. 2010)
and self-organization enabled by dynamic architectures (Parunak and Brueckner 2011).
Feedback control is a well-established technology for handling dynamic electromechani-
cal systems in areas such as avionics, chemical processes, and factory automation. Under
such perspective, the use of feedback control considering software applications as the sys-
tem under control (Tilbury et al. 2004) is still on its early days, albeit the large number of
recent work towards this topic (Patikirikorala et al. 2012).
Figure 1 presents the common elements of a feedback control system. The target system

is a software system with a system output – y(t) – which represents the quality attribute
(e.g.: average service response time or CPU utilization) intended to be controlled. Such
attribute is directly influenced by a system input signal – v(t), which manipulates, for
instance, buffer sizes or the number of threads in a pool. The goal is to retain the system
output as close as possible to a reference input, which represents the desired service level
specified by the administrator. Uncertainties in the operating environment (e.g.: changing
workloads or hardware failures) introduce a disturbance input signal – d(t) – which
makes it harder to derive accurate models for system input-output relationships. Noise
input signals – n(t) – produced by sensors with high stochastic sensitivity may further
complicate the control goals. Dealing with unmodeled and unforeseen disturbances and
noises has motivated the idea where the measured output – m(t)=y(t)+n(t) – is fed
back to the controller. By calculating how much the measured output deviates from the
reference input (control error – e(t)), the feedback controller makes use of some specific
control law to decide about the control input signal – u(t) – to be applied in the target
system. A transducer is commonly used in cases demanding unit conversion and/or delay
handling.
It is worth mentioning that, in contrast to frameworks for steady-state analysis such as

queue theory, control theory provides the means to design controllers that systematically
exhibit particular behavior for both steady-state and transient responses. That allows for
characterizing the resulting system (controller + target system) in terms of the so-called
SASO properties (Tilbury et al. 2004): Stability, Accuracy, Settling time, and Overshoot.

Figure 1 Basic elements of a feedback control loop. The feedback controller aims at retaining the target
system’s output y(t) as close as possible to the reference input r(t), irrespective of the presence of
unforeseen disturbance and noise signals.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 5 of 27

Among several definitions of stability available today (Slotine and Li 1991), one widely
used in feedback control is that of BIBO-stability (Hayes 2011). A system is BIBO-stable
if for any bounded input signal v(t) the output y(t) is bounded.
Being the resulting system stable, the remaining SASO properties can be investigated.

As depicted in Figure 2a, the smaller the steady-state error ess (difference between the
reference input and measured output), the more accurate is the resulting system. The
settling time Ks is the time elapsed from the change in input to when themeasured output
is within some variation range (usually 2%) of its steady-state value. Finally, the maximum
overshoot Mp is the normalized maximum amount by which the system output exceeds
its steady-state value.
The systematic design of control architectures which exhibit intentionally chosen val-

ues of accuracy, settling time and overshoot is imperative if we are to conceive effective
self-adaptive systems. Disregarding such an aspect may lead to over/under provisioning
of resources (due to inaccurate convergence), violations of service level agreements (due
to slower responses), or excessive use of resources during transient response as a conse-
quence of large overshoots. Figure 2b depicts the step response (dynamics exhibited by
the target system when the reference input changes from 0 to 1) for systems with different
controllers. The controller 3 presents an ideal response, with no overshoot, high accuracy,
and small settling time.
A large body of knowledge regarding control laws andmethods for designing controllers

is currently available (Patikirikorala et al. 2012). Currently adopted control-theoretic
approaches for endowing systems with self-adaptation capabilities include the use of
PID control, state-space models, MIMO (Multiple-Input Multiple-Output) control, gain
scheduling, self-tuning regulators, fluid flow analysis, and fuzzy control (Tilbury et al.
2004). As a consequence, designing effective architectures for SA systems requires archi-
tects become familiar with the intricacies of both the problem space (so that accurate
and realistic self-adaptation requirements can be elicited) and solution space (in order
to adopt the most effective adaptation strategy/mechanism for the problem at hand).
That involves deciding on self-adaptation goals; system and environment monitoring
mechanisms; measurement noises and uncertainties; unanticipated/unforeseen adapta-
tions; diverse control robustness degrees; change enacting mechanisms; and adaptation

(a) (b)
Figure 2 Feedback control properties (a) and step response of systems with different controllers (b).
Properties such as settling time (Ks), steady-state error (ess), and overshoot (Mp) are commonly affected by
the control law and tuning techniques chosen for the feedback controller managing the target system.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 6 of 27

temporal predictability, just to mention a few (Andersson et al. 2009; Brun et al. 2009;
Patikirikorala et al. 2012).

3 Searching for effective self-adaptive systems architectures
A number of efforts from the software engineering for SA systems community (de Lemos
et al. 2010) have addressed the issue of providing principled engineering approaches
for such an application domain, leveraging the systematic capture of design knowledge
and enabling the early reasoning of self-adaptation quality attributes. In previous work
(Andrade and de Araújo Macêdo 2013a,b), we presented an infrastructure for systemati-
cally representing distilled architecture design knowledge for a given application domain
(design space), along with a domain-independent architecture optimization engine as
the underlying mechanism for explicitly eliciting design trade-offs (conflicting quality
attributes). Such an infrastructure, depicted in Figure 3, provides the underpinnings of
our search-based approach for designing self-adaptive systems architectures. The ulti-
mate goal is to support the automatic extension of an initial UML (Unified Modeling
Language) model – describing the managed element – with new architectural elements
(which implements the managing system), searching for those solutions that exhibit
desired control properties.
A concrete design space and its quality attributes are specified by experts once per n

domain (design space inception stage) by using a modeling language – namely DuSE –
we have designed for such a purpose. A supporting UML profile is also defined for that
domain, enabling the annotations that drive the automated design process. A design space
(e.g.: for networked and concurrent systems) is defined as a set of n design dimensions

Figure 3 Overview of our architecture design approach. In the design space inception stage (a), domain
experts use the DuSE’s constructs for specifying a domain-specific design space (degrees of freedom, their
corresponding alternative solutions, and the architecture extensions required to implement each solution).
Henceforth – in the design space usage stage (b) – architects submit initial models to the optimization
engine, which searches for those (near-)optimal extensions revealing design trade-offs. A particular design
space instance – SA:DuSE – enables the use of such an infrastructure in the self-adaptive systems domain.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 7 of 27

representing specific design concerns in such a domain (e.g.: concurrency strategy and
event dispatching model).

Definition 1. A design space is a tuple ds=〈DD,QM,P〉, where DD is a non-empty totally
ordered set of design dimensions, QM is a non-empty totally ordered set of quality metrics,
and P is the accompanying UML profile for such an design space.
Each design dimension entails a set of variation points, representing alternative solu-

tions for such a concern (e.g.: leader-followers or half-sync/half-async; for the concur-
rency strategy dimension).

Definition 2. A design dimension is a tuple dd=
〈
VP, targetElementsExp

〉
, where VP is a

non-empty totally ordered set of variation points and targetElementsExp is anOCL (Object
Constraint Language) expression which returns – when evaluated on an initial UML archi-
tectural model M – the elements of M that demand a decision about the architectural
concern represented by dd. Such elements are named target elements of dd with respect to
M and denoted by targetElements(dd,M).

The targetElementsExp expression relies on the associated UML profile’s annotations
to detect, in the initial model, the architectural loci that demand decisions about such
concern. For instance, an initial model may require the choice of particular control
strategies for two different service components. Therefore, two instances of the control
strategy design dimension are created to capture the decisions for those architectural
loci.

Definition 3. A design dimension instance is a tuple ddi=〈M, dd, te〉, where M is an
initial UML architectural model, dd is a design dimension, and te is a target element of dd
with respect to M.

A variation point describes the elements (architectural extensions) that must be added
to the initial model in order to implement such particular solution.

Definition 4. A variation point is a tuple vp=
〈
C, postConditionExp

〉
, where C is a totally

ordered set of architectural changes and postConditionExp is an OCL expression evaluated
after all changes in C are applied in the initial model. Such an expression must return true
for valid architectures or false otherwise.

Definition 5. An architectural change c is a single indivisible operation that, when
applied to a model M, results in a model M′ �= M. An architectural change c may represent
an element addition, element removal or element’s property change.

The set of all design dimension instances generated by ds, when evaluated in M, pro-
vides the underlying infrastructure of our search-based approach for automating the
architecture design process.

Definition 6. An application specific design space is a tuple asds=〈M, ds,DDI〉, where
M is an initial UML architectural model, ds is a design space, and DDI is a partially
ordered set of design dimension instances, defined as:

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 8 of 27

DDI =
dd∈ds.DD⋃ ⎛

⎝te∈dd.targetElements(M)⋃
ddi = 〈M, dd, te〉

⎞
⎠ (1)

The ultimate decision space may then be specified in terms of an application specific
design space.

Definition 7. The architectural decision space Dasds for a given application spe-
cific design space asds is the Cartesian product of all variation point indexes of design
dimensions associated to each design dimension instance in asds.DDI:

Dasds = {1, 2, . . . , |asds.DDI1.dd.VP|} × (2)

{1, 2, . . . , |asds.DDI2.dd.VP|} ×
. . .

{1, 2, . . . , ∣∣asds.DDI|DDI|.dd.VP∣∣}
A vector x ∈ Dasds is named candidate vector. The architectural model resulting from
the valid application of all changes of variation points whose indexes are described in x
is named candidate architecture. The subset of Dasds formed only by those candidate
vectors resulting in valid architectures is named architectural feasible space (Fasds).

Therefore, a candidate architecture (a location in such n-dimensional space) is formed
by the initial model extended with the merge of all architectural extensions provided by
all involved variation points.
Finally, a quality metric may be defined for a given design space.

Definition 8. A quality metric is a tuple qm = 〈
�, g

〉
. � is a function � : Fasds → V ,

where Fasds is an architectural feasible space and V is a set supporting measurements at
least in interval scale (Stevens 1946). g must take the value 1 or −1 indicating, respectively,
whether the metric should be maximized or minimized. The architectural objective space
Oasds is defined as the Cartesian product V1 × V2 × . . . × Vn, where Vi is the image of the
function �i (evaluation of the i-th metric of asds.ds.QM).

As a consequence of such an infrastructure, huge design spaces may easily be spawned
even for small input models, motivating the adoption of meta-heuristics and multi-
objective optimization approaches. The number of different candidate vectors in Dasds
(including those resulting in invalid architectures) is given by:

∏
dd∈ds.DD

|dd.VP||dd.targetElements(M)| (3)

Once a concrete design space is defined, architects can submit initial models to manual
design space exploration or rely on the multi-objective optimization engine we provide
(design space usage stage). The domain-independent optimization engine we provide han-
dles all required steps to forge candidate architectures for a given set of design space
locations, evaluate their quality regarding the attributes defined for the design space, and
find out a set of Pareto-optimal architectures.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 9 of 27

Let �asds.ds.QM(Mc) be the function that evaluate all quality metrics in asds.ds.QM with
respect to a candidate architectureMc:

�QM : Fasds → O (4)

�QM(Mr) �→ (−g1 · �1(Mr),−g2 · �2(Mr), . . . ,−gn · �n(Mr))

Let T : x′ → Mc be the function that produces the candidate architectureMc associated
to a candidate vector x′ ∈ Fasds. The optimization problem may then be stated as:

≺
min

x′∈Fasds
�QM(T (x′)) (5)

where
≺

min denoteminimization for Pareto optimality (Deb andKalyanmoy 2001). Further
information about the DuSEmeta-model and its architecture optimization engine may be
found in (Andrade and de Araújo Macêdo 2013a,b).
The aforementioned infrastructure provides the underpinnings of our SA systems

design approach. We have specified a particular DuSE instance (SA:DuSE) that cap-
tures the most prominent degrees of freedom and quality attributes when designing
adaptation loops based on feedback control (Tilbury et al. 2004). Currently, SA:DuSE
yields architectural extensions regarding seven different control laws (Tilbury et al. 2004)
(Proportional, Integral, Proportional-Integral, Proportional-Derivative, Proportional-
Integral-Derivative, Static State Feedback, and Dynamic State Feedback), seven empirical
tuning approaches (Wang 2005) (four Chien-Hrones-Reswick variations, Ziegler-Nichols,
Cohen-Coon, and Linear Quadratic Regulator), five mechanisms for control adaptation
(Landau et al. 2011) (fixed gain, gain scheduling, model-reference, model-identification,
and reconfiguring control), and six different multiple loops arrangements (Weyns
et al. 2010) (no cooperation, information sharing, coordinated control, regional planning,
master/slave, and hierarchical).
In addition, four quality metrics (objective functions) evaluate the resulting archi-

tectures regarding the average settling time, average overshoot, control overhead, and
control robustness. The first three metrics are intended to be minimized, while the last
one is intended to be maximized. It is well-known from studies (Tilbury et al. 2004) in
control theory field that settling time and average overshoot represent conflicting con-
trol goals (as presented in Figure 2b). The same has been observed for control overhead
and control robustness metrics. One of our research goals was to investigate to which
extent the proposed SA:DuSE design space captures such trade-offs when automating
the design of SA systems architectures (as discussed below). Moreover, the architec-
tural decision space produced by SA:DuSE exhibited 8,643,600 candidate vectors for an
input model with two controllable ports. For models with four controllable ports, such
number rapidly increases to 7.4711821e13, further motivating the need for effective
search-based approaches. Further information about the SA:DuSE design dimensions,
its corresponding variation points, and the adopted quality metrics may be found in
(Andrade and de Araújo Macêdo 2013a).
Our approach has been fully implemented in a supporting tool named DuSE-MT

(http://duse.sf.net), developed using the C++ programming language and the Qt cross-
platform toolkit (http://www.qt.io). DuSE-MT is a meta-model agnostic tool we develop
in order to support general software modeling activities and, in particular, the automated

http://duse.sf.net
http://www.qt.io

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 10 of 27

design process we propose. The NSGA-II evolutionary algorithm (Deb et al. 2002) is cur-
rently used as optimization back-end, but other approaches can be easily adopted in the
future thanks to the DuSE-MT’s plugin-based architecture and the optimization engine’s
internals we have designed.
Figure 4 depicts the scatter plot matrix for the population of architectures resulting

from one optimization run using a web server architecture (presented in Section 5.1)
as initial model. The matrix’s main diagonal presents – for each quality metric – the
histograms of solutions in the Pareto-front and of dominated solutions. The remaining
cells present the projection of the final population with respect to the quality met-
rics indicated at the cell’s row and column. For instance, the scatter plot at the first
column and second row depicts solutions using average settling time values in the
abscissa and average overshoot values in the ordinate. Solutions in the Pareto-front

Figure 4 Scatter plot matrix depicting a population of architectures resulting from one optimization
run using a web server initial model. The four charts at the matrix’s main diagonal present the histograms
of solutions in the Pareto-front and of dominated solutions. The remaining cells present the projection of the
population for every pair of quality metrics.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 11 of 27

are presented as diamonds, while the dominated ones are depicted as circles. A par-
tial Pareto-front – regarding only the two quality metrics involved in a given cell – is
shown as diamonds connected by a line. As indicated in the figure’s legend, the solution
color represents the controller tuning approach adopted by such an architecture. Finally,
the solution size denotes the architecture’s control robustness (the bigger, the more
robust).
The outcome of our approach provides useful insights and supports the self-adaptive

systems architect in several aspects. First, we observe that architectures exhibiting short
average settling times are quite rare in the final population, making it harder for novice
architects to find out such effective solutions by manually scouring the design space
or by performing random searches. Second, the outcome reveals pronounced trade-offs
between two pairs of quality attributes: i) average settling time and average overshoot
(first column, second row); and ii) control robustness and control overhead (third column,
fourth row). The Pareto-fronts for such combinations are smooth, providing alternative
solutions regarding the fulfillment of such quality attributes. No significant trade-offs
have been found in other quality metric pairs. Third, the rigorous identification of
Pareto-optimal solutions prevents novice architects from adopting those combinations
of control law, tuning technique, and control adaptation mechanism that lead to inferior
architectures. Finally, the metric values presented by solutions in the Pareto-front allow
for the early analysis of the dynamics exhibited by real prototypes implementing such
architectures.
As part of the activities we have been conducting for evaluating our approach, in

this work we look for any empirical evidence supporting the claim that search-based
approaches improve the effectiveness and reduce the complexity of SA systems archi-
tectures. Furthermore, we want to know whether search-based approaches leverage the
acquisition of distilled design knowledge by novice architects.

4 Methods
The goal of the experiment we report herein was to analyze the design of SA systems,
for the purpose of evaluating the search-based design approach we propose and a design
process based on architecture styles catalogs, with respect to the effectiveness and com-
plexity of resulting architectures, as well as the method’s potential for leveraging the
acquisition of distilled design knowledge by novice SA systems architects, from the view-
point of researchers, and in the context of graduate students endowing systems with
self-adaptation capabilities.
The quasi-experiment (Wohlin et al. 2012) is characterized as a blocked subject-object

study with a paired comparison design. Two UML models representing a web server
and a MapReduce distributed architecture are used as experiment objects and two treat-
ments (search-based approach and style-based approach) are considered for the design
method factor (independent variable). We use the Generational Distance metric (Deb
and Kalyanmoy 2001; Van Veldhuizen and Lamont 2000) to assess effectiveness in terms
of how far the architectures designed by the subjects are from a previously determined
Pareto-optimal set of architectures. Design complexity is evaluated by using the Com-
ponent Point approach (Wijayasiriwardhane and Lai 2010) while a questionnaire with
multiple choice questions evaluates the method’s potential for leveraging the acquisition
of design knowledge.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 12 of 27

5 Experiment planning
The experiment took place as part of a 32 hours course on Software Engineering for
Distributed Systems, arranged in eight classes (four hours each) along four weeks. As
presented in Table 1, the course was split in three parts: lectures, exam and train-
ing, and experiment. In the first four classes, students were exposed to the foundations
of SA systems and feedback control, as well as to the SISO (Single-Input Single-
Output) and MIMO (Multiple-Input Multiple-Output) feedback control strategies
(Tilbury et al. 2004) more widely adopted in SA systems. It is worth mentioning that
all students had previously undertaken a 32 hours course on Software Architecture and
Software Modeling.
Roughly half of the students work as software developers/designers, while the remain-

ing have a stronger background in network administration. We try to insulate the effect
of this factor by using blocking techniques as described in Section 5.4. Furthermore, no
explicit guidance about self-adaptation quality attributes trade-offs was given during the
lectures, since such an aspect is part of the hypotheses investigated herein. In the 5th day,
we conducted an one hour discussion about thematter, followed up by a three hours exam
where students used pen and paper to answer open-ended questions. In the 6th day, we
discussed the exam results and presented a 3 hours training session about the DuSE-MT
tool and the architecture styles catalog for SA systems we developed for this experiment.
The experiment took place in the last two days of the course. Students were randomly

assigned to two equal size groups, blocked by their stronger technical background (see
Section 5.4). Since we undertook the experiment as a blocked subject-object study with
three objects (web server initial model, MapReduce architecture initial model, and ques-
tionnaire) and two treatments (search-based approach and style-based approach), a total
of twelve tests were undertaken (presented in Table 2 and discussed later in Section 5.4).
Each group experienced every combination of an experiment object and a treatment,
exchanging the first experienced combination at the second day in order tominimizemat-
uration threats. All design tests aimed at extending an initial model with a SAmechanism
which regulates a performance metric, while yet minimizing the settling time, maximum

Table 1 Overview of the 32 h course in which the experiment was undertaken

Part Day Activity

Lectures

1 Self-adaptive systems foundations (motivation, MAPE-K

reference architecture, current approaches, challenges)

2 Feedback control introduction (control goals, control

properties, fixed gain SISO approaches)

3 Feedback control (MIMO and adaptive approaches)

4 Self-adaptive systems - case studies

Exam and training

5 First hour: discussion

Next 3 hours: Pen and paper exam

6 First hour: exam discussion

Next 3 hours: Training (DuSE-MT and architectural styles catalog)

Experiment

7 First 110 minutes: Tests #1 and #2

Next 110 minutes: Tests #3 and #4

Next 20 minutes: Tests #5 and #6 (questionnaire)

8 First 110 minutes: Tests #7 and #8

Next 110 minutes: Tests #9 and #10

Next 20 minutes: Tests #11 and #12 (questionnaire)

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 13 of 27

Table 2 Tests defined for the experiment

#Test Object Treatment Subjects

1 Web server Style-based approach Group 1

2 MapReduce architecture Search-based approach Group 2

3 MapReduce architecture Style-based approach Group 1

4 Web server Search-based approach Group 2

5 Questionnaire Style-based approach Group 1

6 Questionnaire Search-based approach Group 2

7 MapReduce architecture Search-based approach Group 1

8 Web server Style-based approach Group 2

9 Web server Search-based approach Group 1

10 MapReduce architecture Style-based approach Group 2

11 Questionnaire Search-based approach Group 1

12 Questionnaire Style-based approach Group 2

overshoot, and control overhead. Both groups used DuSE-MT as the design tool, but
all functionalities regarding design space navigation and architecture optimization were
turned off when using the style-based approach as treatment. Conversely, students had
no access to the style catalog when using the search-based approach. We would like to
emphasize that the experiment was not intended to investigate design productivity and
fault density, since those aspects are obviously favored when adopting automated design
approaches.

5.1 Design objects

The experiment’s design tests aimed to create managing elements (adaptation loops)
for two distinct managed elements: a web server and a MapReduce distributed archi-
tecture (Dean and Ghemawat 2008). Such managed elements were used as experiment
objects and are depicted in Figure 5a and 5b as elements with the “input model elements”
key. Experiment subjects were expected to extend such input models with a particu-
lar feedback loop design that produces short settling times, minimum overshoot, and
low control overhead. Figure 5 shows two examples of such loops as elements with the
“added elements” key. We chose these experiment objects because they constitute two
self-adaptation scenarios widely investigated nowadays and pose different design chal-
lenges: MIMO local control for the web server case study vs. SISO nested control in a
distributed environment for the MapReduce architecture case study.
The web server model (WS) – depicted in Figure 5a – entails a single component

providing four interfaces: two for monitoring purposes (IAvgCPUUtilization and
IAvgMemUtilization) and two for adjusting parameters that directly impacts the
measured outputs (IKeepAliveTimeout and IMaxRequestWorkers). The goal is
to retain web server’s CPU andmemory utilization as close as possible to the specified ref-
erence values, by simultaneously adjusting the number of threads serving HTTP requests
(via IMaxRequestWorkers interface) and the amount of time the server must wait for
subsequent requests on a given connection (via IKeepAliveTimeout interface).
The MapReduce architecture model (MR) – depicted in Figure 5b – describes a

distributed computing infrastructure (cluster) where an array of n nodes stores and
analyzes huge datasets. The cluster infrastructure orchestrates the parallel execution
of a Map function for each data block stored in cluster’s nodes and combines all

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 14 of 27

(a)

(b)
Figure 5 Experiment objects (input model elements only): web server model (a) and MapReduce
architecture model (b). The added elements exemplify the architectural extensions to be designed by the
experiment subjects, either by applying the architectural styles catalog (reference approach) or by adopting
our automated design space exploration mechanism (intervention approach).

Map’s outputs to form the Reduce function’s input (Dean and Ghemawat 2008). Apache
Hadoop (White 2009) is a well-established open source implementation of the MapRe-
duce programming model, whose performance may be fine-tuned through nearly 190
configuration parameters. Although default values for such parameters are already pro-
vided by Hadoop, improvements of 50% in performance have been observed in properly
configured setups (Jiang et al. 2010). In spite of that, Hadoop provides no services for
parameter self-optimization or feedback control loops. Themodel we present in Figure 5b
entails two nested controllable components: NodeManager and ElasticCluster.
Each cluster machine runs the NodeManager service, which may have its partial
job’s average response time (measured via IAvgRespTime interface) regulated by
adjusting the maximum number of map tasks simultaneously executing in that host
(Hadoop’s mapreduce.tasktracker.map.tasks.maximum parameter, changed
via IMaxMapTasks interface). Additionally, the overall cluster utilization (measured via
IClusterUtilization interface) may also be regulated by adjusting the number of
cluster hosts serving the job (via IMaxNodes interface).

5.2 Variables selection

In this quasi-experiment, we are interested in analyzing the impact of the adopted
design method on three dependent variables: the effectiveness of the resulting man-
aging element, the complexity of managing element’s architecture, and the method’s

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 15 of 27

potential for promoting the acquisition of insights and refined experience about quality
attributes trade-offs involved in SA systems design. This subsection describes the metrics
we adopted to quantify such variables.

5.2.1 Measuring effectiveness (Generational distance)

We quantify the effectiveness of resulting feedback control loops in terms of how close
their quality attributes are from a set of Pareto-optimal solutions previously obtained.
Since meta-heuristics-based approaches – like ours – do not guarantee global optimality,
we performed a set of 50 optimization runs and calculated the reference Pareto-front P∗ of
the union of all runs’ outputs. A Pareto-front is a set of solutions for which it is impossible
to make any other architecture better off without make at least another one worse. We
assume that P∗ (triangle path in Figure 6) is a nice representative of the most effective
solutions and constitutes a reasonable reference value for evaluating how effective are the
architectures designed by the experiment subjects.We have done such procedure for both
the objects (WS and MR) used in the experiment, producing the P∗

WS and P∗
MR reference

Pareto-fronts.
The Generational Distance (GD) (Deb and Kalyanmoy 2001; Van Veldhuizen and Lamont

2000) is a widely used metric to evaluate closeness between two Pareto-Fronts Q and P∗.
The metric finds an average distance of the solutions of Q (or r) from P∗, as follows:

GD =
(∑|Q|

i=1 d
p
i

)1/p
|Q| ; where d2i = |P∗|

min
k=1

√√√√ M∑
m=1

(
f (i)
m − f ∗(k)

m
)2

(6)

f (i)
m is the m-th objective function value of the i-th member of Pareto-front Q. d2i calcu-
lates the shortest distance between f (i)

m and f ∗(k)
m : them-th objective function value of the

k-th member of Pareto-front P∗. Any Lp-norm can be used in Generational Distance. For
p = 2 as described above, d2i is the Euclidean distance between the solution i ∈ Q and the
nearest member of P∗. We chose the Generational Distance because it is more suitable

Figure 6 Example of reference Pareto-front P∗ and Generational Distance (GD) metric. GD finds the
average Euclidean distance from each i-th solution in Q to the nearest solution in P∗ . The lower the GD value,
the more effective are the architectures regarding self-adaptation quality attributes. The style-based
architecture r is shown as more effective than those produced by the search-based approach. That is one of
the null hypotheses investigated herein.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 16 of 27

than alternatives like Error Ratio and Set Coverage (Deb and Kalyanmoy 2001) when com-
paring disjoint Pareto-fronts. Furthermore, its evaluation can be performed with lower
computational costs when compared to metrics such as Hypervolume (van Veldhuizen
and Lamont 1999) and Attainment Surface Based Statistical Metric (Fonseca and Fleming
1996).
As for designs produced with the style-based approach (e.g.: solution r in Figure 6), their

corresponding location in objective space (quality metrics values) were first calculated
and then compared to the reference Pareto-front using Generational Distance. Note that
a Pareto-front Q obtained with the search-based approach (e.g.: square path in Figure 6)
is not necessarily as effective as the reference Pareto-front P∗, because of the inherent
randomness in the adopted evolutionary multi-objective optimization approach (NSGA-
II).
Although r is shown, in Figure 6, more effective than any solution in Q, we believe

that this is unlikely to happen in designs undertaken by architects with no previous
experience in SA systems. Therefore, in this experiment, we look for any evidence that
supports/rejects our claim that search-based approaches may improve the effectiveness
of such designs.

5.2.2 Measuring complexity (Component Point)

The second dependent variable we focus in this experiment is design complexity, since
it directly impacts the development effort required to implement the proposed architec-
tures. We used the Component Point (CP) approach (Wijayasiriwardhane and Lai 2010)
to quantify such an aspect, motivated by its original conception towards the measure-
ment of UMLmodels and by the existence of empirical evidence regarding its validity and
usefulness (Wijayasiriwardhane and Lai 2010). CP provides the means to measure design
complexity in terms of component’s interfaces complexity and component’s interaction
complexity. We define the complexity CCc for a component c as:

CCc = IFCIc + ITCIc = IFCc
nc

+ ITCc
mc

(7)

IFCIc is the Interface Complexity per Interface, defined as the component’s Interface
Complexity (IFCc) divided by the number of component’s provided interfaces (nc). Sim-
ilarly, the Interaction Complexity per Interaction (ITCIc) is defined as the component’s
Interaction Complexity (ITCc) divided by the number of component’s interactions (mc).
IFCc and ITCc, in their turn, are defined as follows.
The first step when calculating IFCc is classifying each interface of a component into

two types: ILF (Internal Logical Files) or EIF (External Interface Files). ILF interfaces are
those whose operations change attributes of other interfaces, while the remaining inter-
faces as classified as EIF. The CP approach also specifies how a complexity level (Low,
Average, High) should be assigned to each interface, based on the number of operations
and number of operation’s parameters it presents. Hence, IFCc is defined as:

IFCc =
2∑

j=1

3∑
k=1

Ijk × Wjk (8)

Ijk is the number of interfaces of type j (1=ILF and 2=EIF) with complexity level k (1=Low,
2=Average, and 3=High). Wjk is the weight, given by the CP approach, for the interface
type j with complexity level k.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 17 of 27

ITCc is evaluated in terms of the Interaction Frequency (IFij) of the j-th operation of
the i-th interface and the Complexity Measure (CMijk) of the k-th data type involved in
the execution of the j-th operation of the i-th interface. IFij is defined as a ratio of the
number of interactions (NO) performed by the operation and the number of interactions
(NI) performed by all operations of the interface. CMijk , in its turn, is defined as:

CMijk(D, L) = L +
m∑

n=1
CM(DTn, L + 1) (9)

D is the data type under measurement, L is the number of the level where the data type
D occurs in the component data type graph (initially 1), DTn is the data type of the n-th
D’s data member andm is the number of data members in D. Finally, ITCc can be defined
as:

ITCc =
p∑

i=1

q∑
j=1

(
IFij ×

r∑
k=1

CMijk

)
(10)

p is the number of interfaces provided by component c, q is the number of operations that
the i-th interface provides, and r is the number of data types involved in the execution of
the j-th operation of the i-th interface. The overall architecture complexity AC is defined
as the sum of the CCi of every component i comprising the solution.

5.2.3 Measuring the acquisition of distilled design knowledge (post-experiment

questionnaire)

The third dependent variable we investigated herein is the method’s potential for lever-
aging the acquisition of distilled design knowledge. For that purpose, we prepared a
questionnaire with 10 multiple choice questions related to refined knowledge about qual-
ity attribute trade-offs in the SA systems domain. Students answered such questionnaire
at the end of each experiment day and we assigned grades according to the number
of correctly answered questions. The goal was to evaluate to which extent the adopted
design approach may leverage the acquisition of distilled knowledge about such design
trade-offs. The questionnaire is available at the experiment website.

5.3 Hypotheses formulation

In the quasi-experiment we report herein, we compare the use of a search-based architec-
ture design approach and a style-based design approach with respect to the effectiveness
and complexity of resulting architectures, as well as to the method’s potential to pro-
mote the acquisition of distilled design knowledge. Such goal has been stated in three null
hypotheses (H0) and their corresponding alternative hypotheses (H1):

• H1
0 : there is no difference in design effectiveness (measured in terms of the

Generational Distance GD) between a feedback control loop design created using the
style-based approach (reference approach: RA) and a feedback control loop design
created using the search-based approach (intervention approach: IA).

H1
0 : μGDRA = μGDIA

H1
1 : μGDRA > μGDIA

• H2
0 : there is no difference in design complexity (measured in terms of the

Architectural Complexity AC) between a feedback control loop design created using

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 18 of 27

the style-based approach and a feedback control loop design created using the
search-based approach.

H2
0 : μACRA = μACIA

H2
1 : μACRA > μACIA

• H3
0 : there is no difference in the acquisition of distilled design knowledge (measured

in terms of applied questionnaire’s grade QG) between designing a feedback control
loop using the style-based approach and designing a feedback control loop using the
search-based approach.

H3
0 : μQGRA = μQGIA

H3
1 : μQGRA < μQGIA

5.4 Experiment design

The experiment was undertaken as a blocked subject-object study, which means that
each subject exercises both treatments and that effects can be compared in pairs. Since
the experiment students had a stronger technical background in two different fields (14
devoted to software development and 10 devoted to network administration), we used
such an information as a blocking factor. By doing that, we eliminate the undesired effect
of student’s technical background on the dependent variables, increasing the precision of
the experiment.
Students from each technical background partition were randomly and equally assigned

to groups 1 and 2, yielding a similar proportion of developers and network administrators
in each group. As presented in Table 2, a total of eight design tests and four question-
naire answering tests were conducted in the experiment. Each group experienced every
combination of an object (WS model, MR model, or the questionnaire) and a treatment
(style-based approach or search-based approach). In the first experiment day, group 1
applied the style-based approach, initially in the WS model and then in the MR model,
while group 2 adopted the search-based approach with the opposite object order. At the
end of the day, both groups answered the questionnaire based on their experience with
the corresponding approach. In the second experiment day, groups exchanged the treat-
ments and experienced the objects in the opposite order to the one conducted by them in
the previous day. The same questionnaire was applied again at the end of the second day.
To minimize the effect of subjects gaining information from previous assignments, we

systematically balanced which object-treatment combination is first experienced in each
group. The tests’ operation order is presented in Table 1. To reduce hypotheses guessing
and other social threats, students did not receive any feedback and were not aware of the
experiment until its completion.
The architecture styles catalog we developed for this experiment documents the same

design knowledge present in the SA:DuSE design space as a group of eleven architectural
styles. Table 3 presents one of such styles. We describe each solution using a schema
that documents the style’s prominent components, connectors, and data elements, the
resulting architecture topology, induced qualities, typical uses, and potential cautions,
among other aspects.

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 19 of 27

Table 3 One of the eleven architectural styles for self-adaptive systems described in the
catalog

Style #2 – P(ID) Feedback control with system identification

Summary A separate component (controller) measures system output and acts
accordingly to drive the system to the expected output (feedback)

Components System, controller, effector, sensor, transducer/QoS subsystem
(optional, if output not directly delivered by the system itself)

Connectors (Remote) procedure call, event bus or data access

Data elements Reference value(s), input values, output values, transduced values
(optional)

Topology Circular with one entry point: (reference input → controller → system
→ measured output [→ transducer/QoS subsystem] → ...)

Variants #2.1: PID-SI with Precompensation - (PID-SI/PC)

#2.2: PID-SI with Sensor Delay - (PID-SI/SD)

#2.3: PID-SI with Filtering - (PID-SI/F)

Qualities yielded Reactive behavior; adaptation to unmodeled disturbances; no need for
an accurate system model; can make stable an unstable system

Typical uses When a good enough system model is available, disturbance model-
ing is quite complicated, target system is unstable but linear or with
identifiable linear operating regions

Cautions When disturbance spans over a wide range; when system is primary
non-linear or have dynamics that are difficult to be modeled; when
structural reconfiguration is needed

Example ...

As for the operation stage, we commit the participants by presenting some real
cases demanding self-adaptation capabilities and explaining how the myriad of avail-
able approaches makes things harder for novice architects. Grades have been assigned
to all tests as a form of inducement. Some instrumentation was required in order to
enable/disable the search features in DuSE-MT and collect the resulting architectures
from each participant. After the experiment operation, 20 subjects provided usable
data for paired comparison of Generational Distance and Architecture Complexity.
Questionnaire answers were restrict to those provided by such 20 subjects.

6 Results and discussion
With the support of DuSE-MT, all UMLmodels resulting from the design tests were seri-
alized in XML (eXtensibleMarkup Language) files, along with their corresponding quality
attributes values (objective-space location). Such values were used to compute the Gen-
erational Distance for all resulting models. The Architecture Complexity value was also
calculated for each resulting UML model.

6.1 Analysis

Table 4 and Figure 7 summarize the measured values of all dependent variables, as well
as their paired difference with respect to the adopted treatment. The first step we under-
took in the analysis stage was to investigate whether the usual assumptions for the use
of parametric tests – preferable because of their enhanced power – hold in the collected
data. Such assumptions are: i) data is taken from an interval or ratio scale (held for all
experiment’s dependent variables); ii) observations are independent (enforced by exper-
iment design); iii) measured values are normally distributed in the populations; and iv)
population variances are equal between groups (homoscedasticity).

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 20 of 27

Table 4 Descriptive statistics for the experiment’s dependent variables

Generational distance (GD)

Mean(μ) Median Std. dev.

Search-based approach (IA) 2.40 2.45 1.08

Style-based approach (RA) 2.59 2.41 1.03

Difference (IA−RA) -0.19 -0.62 1.32

Architecture complexity (AC)

Mean(μ) Median Std. dev.

Search-based approach (IA) 6.46 6.65 2.77

Style-based approach (RA) 7.02 7.05 2.70

Difference (IA−RA) -0.57 -1.90 3.47

Questionnaire grade (QG)

Mean(μ) Median Std. dev.

Search-based approach (IA) 6.85 7.00 1.43

Style-based approach (RA) 7.04 7.25 1.27

Difference (IA−RA) -0.19 -0.50 1.51

We used the Anderson-Darling test (Corder and Foreman 2009) to evaluate to which
extent the paired differences are normally distributed. The Brown-Forsythe test (Good
2005) was applied to investigate the null hypothesis of homoscedasticity between the
intervention approach and reference approach groups. Table 5 presents such a results.
With a significance level (α) of 0.05, we observed that only the Questionnaire Grade (QG)
paired difference could be considered normally distributed (Anderson-Darling p-value
> 0.05). In addition, for all dependent variables, the null hypothesis of homoscedastic-
ity could not be rejected (Brown-Forsythe p-value > 0.05). Since all assumptions must
hold, only hypothesisH3

0 was evaluated by using a parametric test. The paired differences
of Generational Distance (GD) and Architecture Complexity (AC) were not considered
normally distributed (p-value < α = 0.05) and, as such, hypotheses H1

0 and H2
0 were

evaluated by using a non-parametric test. As presented in Table 6, we used the Wilcoxon
Signed-Rank test (Gibbons and Chakraborti 2003; Wohlin et al. 2012) to investigate H1

0
and H2

0 and the Paired t-test (Wohlin et al. 2012) to investigate H3
0 . With a significance

level (α) of 0.05, H1
0 and H2

0 were rejected while no evidence could be found about H3
0 .

(a) (b) (c)

Figure 7 Box and whiskers plots for design effectiveness (a), design complexity (b), andmethod’s
potential for leveraging the acquisition of distilled knowledge (c). For each dependent variable it is
shown the values for the search-based approach (IA: intervention approach), the style-based approach (RA:
reference approach), as well as the values of the paired difference (IA−RA).

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 21 of 27

Table 5 Results of Anderson-Darling normality test and Brown-Forsythe
heteroscedasticity test (α = 0.05)

Dependent variable Anderson-Darling p-value Brown-Forsythe p-value

Generational distance 1.29814505086953E-007 0.9009324909

Architecture complexity 2.88672812219819E-010 0.7207666486

Questionnaire grade 0.635529605 0.7167840476

6.2 Discussion

The descriptive statistics and results of hypotheses tests show that there are improve-
ments in the dependent variables, except for the Questionnaire Grade (QG). Actually,
students who first exercised the search-based approach got slightly smaller grades (6.85)
than other ones (7.04). Since both the architecture style catalog and the design space used
in the experiment contain the same information, two possible reasons for such difference
remain. First, students exposed to the search-based approach may have experienced a
larger set of candidate architectures, which would contribute to obfuscate some quality
trade-offs evaluated in the questionnaire. Second, the quality trade-offs may actually be
not too difficult to grasp without the use of structured design spaces and automated archi-
tecture optimization, so that the difference is actually by chance. Further experiments are
needed to better investigate such an aspect.
Generational Distance (adopted measure for effectiveness) is, on average, 7% lower

with the search-based approach (2.40) when compared to the style-based approach (2.59).
Architecture Complexity is, on average, 7% lower with the search-based approach (6.46)
when compared to the style-based approach (7.02). While such values already indicate
some improvements in the resulting architectures, we still lack further investigation about
the boundaries that such enhancements may present.

7 Threats to validity
This section presents the threats to validity (Wohlin et al. 2012) we identified for the
experiment.

7.1 Threats to construct validity

Construct Validity is the degree to which the objects and measurements reflect their
associated constructs in the real world. We have identified three such threats: inad-
equate pre-operational explication of constructs, hypothesis guessing, and objects
representativeness.
First, since the theory behind feedback control loops encompasses areas such as systems

and signals, modeling of dynamic behavior, and analysis in frequency domain, students
may have had no enough time to get a firm grasp about such mathematical background.
To reduce this threat, we focused on requiring minimum knowledge about such as aspect
and tried to leverage tool support regarding this issue in DuSE-MT. Second, students

Table 6 Results of statistical tests (α = 0.05)

Hi
0 Test Criteria Conclusion

1 Wilcoxon signed-rank T(410) > T-critical(378) Rejected

2 Wilcoxon signed-rank T(367) > T-critical(361) Rejected

3 Paired t-test p-value=0.5488018266 Not rejected

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 22 of 27

may have tried to perform better when using the search-based approach because it is
the treatment proposed by the course holders. Moreover, authors involvement with the
intervening approach may have lead to better training on the use of the search-based
mechanism. To mitigate this issue, students were not aware of the experiment and were
graded on all tests. Third, the objects used in the experiment may not actually reflect the
kind of problems routinely faced in the SA systems domain. Since the two adopted self-
adaptation scenarios have been repeatedly investigated in a number of recent papers, we
believe they constitute interesting and representative examples of current practice.

7.2 Threats to internal validity

Internal Validity concerns in analyzing to which extent unknown factors may affect the
dependent variables with respect to causality. We have identified two such threats. The
first one is maturation, where subject gain insights from previous experiment sessions. To
reduce this threat, we alternately assigned such objects during the two experiment days.
The second is related to instrumentation. Since a new modeling tool was adopted in the
experiment (DuSE-MT), that may have impacted in some extent the student’s abilities for
developing the required models.

7.3 Threats to external validity

External Validity is related to the ability of generalizing the experiment results to other
settings. Since we used students of a graduate program in Distributed and Ubiqui-
tous Computing, they may not represent the expected background in current industry
practice.

7.4 Threats to conclusion validity

Conclusion Validity is related to the ability of generalizing the results to the overall con-
cept or theory which supports the experiment. Since the experiment objects were created
by us, there is a potential threat that such objects do not actually represent the prob-
lem under investigation. Such threat could have been reduced by relying on external SA
systems experts to design such objects.

8 Related work
To the best of our knowledge, no controlled experiments regarding the use of search-
based approaches when designing SA systems have been undertaken so far. However, we
identified one experiment regarding SA systems design and a number of papers reporting
on controlled experiments about software architecture design.
In (Weyns et al. 2013), the authors report the results of a quasi-experiment that

investigates whether the use of external feedback loops (when compared with internal
adaptation mechanisms) improves the design of SA systems. The design was evalu-
ated with respect to design complexity (in terms of activity complexity and control flow
complexity), fault density, and design productivity. The experiment shows that exter-
nal feedback loops reduce the number of adopted control flow primitives, increasing
the design’s understandability and maintainability. They also observed improvements in
design productivity when using external feedback loops, but found no significant effects
on design complexity in terms of activity complexity. The experiment we present herein
tackles a similar design issue but with different treatments, objects, measurements, and

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 23 of 27

hypotheses. While their experiment reveals evidence about the decoupling and reusabil-
ity benefits of external feedback loops, we believe our experiment contributes by revealing
the potential benefits of systematic design knowledge representation and search-based
automated design approaches in such a domain.
A controlled experiment aimed at evaluating the impact of design rationale documen-

tation techniques on effectiveness and efficiency of decision-making in the presence of
requirements changing is presented in (Falessi et al. 2006). The results show that the use of
such documentation technique significantly improves effectiveness but with no impacts
on efficiency. In (Bratthall et al. 2000), the authors present a controlled experiment which
evaluates the impact of the use of design rationale documentation on software evolu-
tion. They conclude that there are improvements in correctness and productivity when
such documentation is available. Our search-based design approach – under evaluation
herein – supports rationale documentation in terms of domain-specific design spaces.
The experiment we report in this paper is ultimately assessing the impact of having such
rationale documented in a structured and systematic way, in contrast to ad-hoc styles
catalogs or unstructured rationale documents.
In (Golden et al. 2005), a controlled experiment was performed to evaluate the use-

fulness of architectural patterns when evolving architectures to support specific usability
concerns. The authors conclude that usability concerns are amenable to be handled
in architectural level and that architectural patterns can significantly leverage such an
aspect. In the SA systems domain, architecture-centric approaches with explicit (first-
class) representation of feedback loops have been advocated as a promising research
direction (Brun et al. 2009; Hebig et al. 2010; Müller et al. 2008), due to their general-
ity and support for early reasoning of self-adaptation quality attributes. The experiment
we describe in this paper evaluates how search-based design approaches impact such
first-class representation of feedback loops.
A controlled experiment about the impact of the use of design patterns on the pro-

ductivity and correctness of software evolution activities is described in (Vokác et al.
2004). They conclude that each design pattern presents a specific impact on such depen-
dent variables and, therefore, claim that design patterns should not be characterized as
useful or harmful in general. In contrast, our experiment compares the use of two dis-
tinct representations of such distilled design knowledge: architectural styles vs. structured
design spaces. Furthermore, we are interested in evaluating whether search-based design
automation improves the effectiveness of SA systems.
With respect to software engineering mechanisms for SA systems, (Weyns et al. 2012)

present FORMS (FOrmal Reference Model for Self-adaptation): an unifying reference
model for formal specification of distributed SA systems. Their approach provides a small
number of modeling elements capturing key design concerns in the SA systems domain.
In contrast to our approach, FORMS provides no means for automated design of feed-
back loops and a steep learning curve may be experienced because of its rigorous formal
underpinnings.
(Vogel and Giese 2012) propose a new modeling language for explicitly describing

feedback control loops as runtime megamodels (multiple models@runtime). In contrast,
our approach builds on top of widely accepted standards for modeling languages, like
MOF (Meta Object Facility) and UML. Although our approach has been used as an off-
line design mechanism, future work includes moving such an infrastructure to runtime,

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 24 of 27

providing a models@runtime approach for Dynamic Adaptive Search-Based Software
Engineering (Harman et al. 2012).
A UML profile for modeling feedback control loops as first-class entities is presented in

(Hebig et al. 2010). In our mechanism, we go a step further towards the use of UML pro-
files as the underlying mechanism for identifying loci of architectural decisions, enabling
automated design, and detecting invalid candidate architectures. (Cheng et al. 2006)
present an adaptation language which relies on utility theory for handling self-adaptation
in the presence of multiple objectives.A priori preference articulationmethods – like util-
ity functions – convert amulti-objective optimization problem into a single-objective one,
but its effectiveness highly depends on an well-chosen preference vector. Our approach,
on the other hand, accommodates the multi-objective nature of SA systems design as an
essential aspect by using a posteriori preference articulation.
An on-line learning-based approach for handling unanticipated changes at runtime is

presented in (Esfahani et al. 2013). Whilst we have considered in this work only feedback
control as the enabling mechanism for self-adaptation, other strategies may be modeled
as new variation points. (Křikava et al. 2012) propose a models@runtime approach which
represents adaptation logic as networks of messaging passing actors. Our work, in con-
trast, leverages design reuse by requiring the use of highly distilled design knowledge only
once – when designing a domain-specific DuSE design space. Thereafter, novice archi-
tects have better support for designing effective architectures and getting insights from
the search activities.

9 Conclusions
This paper presented a quasi-experiment aimed at evaluating whether search-based
architecture design approaches improve the effectiveness and complexity of SA systems
when compared to style-based design approaches. To the best of our knowledge, this is
the first endeavor in evaluating how search-based automated design impacts the qual-
ity of SA systems. The results reveal that the use of systematically structured design
spaces and architecture optimization mechanisms indeed provide enhanced support to
the evaluation of quality trade-offs, for the experiment objects considered herein.
Some insights have been identified from the experiment results. We found no evi-

dence that search-based approaches leverage the acquisition of distilled design knowledge
in the SA systems domain. Alternative instruments for evaluating such an aspect may
be adopted in future research, enabling the eliciting of more elucidative conclusions.
However, search-based design approaches do contribute in revealing architectures which
indeed exhibit a near-optimal trade-off between quality attributes. In contrast, archi-
tects using the style-based approach are more likely to design sub-optimal architectures.
Improved effectiveness results in managing elements with lower overhead and enhanced
use of resources, leveraging the overall SA behavior. Moreover, designs with lower
complexity were also obtained when using the search-based approach, fostered by the
systematic representation of the architecture changes required to implement the involved
feedback loops. As a consequence, one should expect positive effects in understandability,
maintainability, and testability of development artifacts implementing such architectures.
A lot of current research are driving their efforts towards the establishment of prin-

cipled and well-founded underpinnings for engineering software-intensive systems, spe-
cially in particular application domains like SA systems. The organization of software

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 25 of 27

design knowledge for routine use is mandatory if we are to realize the upcoming
generation of software-intensive systems.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors planned the experiment. SSA carried it out, analyzed its results, and prepared the initial draft of the
manuscript. Corrections and reviews were made by RJAM. Both authors read and approved the final manuscript.

Received: 1 December 2014 Accepted: 3 March 2015

References
Andersson J, Lemos R, Malek S, Weyns D (2009) Software engineering for self-adaptive systems. In: Cheng BH, Lemos R,

Giese H, Inverardi P, Magee J (eds). Software Engineering for Self-Adaptive Systems. Springer, Berlin, Heidelberg.
pp 27–47. Chap. Modeling Dimensions of Self-Adaptive Software Systems doi:10.1007/978-3-642-02161-9_2

Andrade SS, de Araújo Macêdo RJ (2013) A search-based approach for architectural design of feedback control concerns
in self-adaptive systems. In: 7th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2013, Philadelphia, PA, USA, September 9-13, 2013. IEEE Computer Society, Washington, DC, USA. pp 61–70.
doi:10.1109/SASO.2013.42. http://dx.doi.org/10.1109/SASO.2013.42

Andrade SS, de Araújo Macêdo RJ (2013) Architectural design spaces for feedback control concerns in self-adaptive
systems (S). In: The 25th International Conference on Software Engineering and Knowledge Engineering, Boston, MA,
USA, June 27-29, 2013. Knowledge Systems Institute Graduate School, Skokie, Illinois, USA. pp 741–746

Andrade SS, de Araújo Macêdom RJ (2014) Do search-based approaches improve the design of self-adaptive systems? A
controlled experiment. In: 2014 Brazilian Symposium on Software Engineering, Maceió, Brazil, September 28 - October
3, 2014. IEEE, Washington, DC, USA. pp 101–110. doi:10.1109/SBES.2014.17. http://dx.doi.org/10.1109/SBES.2014.17

DARPA (1997) Self-adaptive software. Technical Report 98-12, Defense Advanced Research Projects Agency
Bratthall L, Johansson E, Regnell B (2000) Is a design rationale vital when predicting change impact? A controlled

experiment on software architecture evolution. In: Bomarius F, Oivo M (eds). Product Focused Software Process
Improvement, Second International Conference, PROFES 2000, Oulu, Finland, June 20-22, 2000, Proceedings. Lecture
Notes in Computer Science. Springer, New York, NY, USA Vol. 1840. pp 126–139. doi:10.1007/978-3-540-45051-1_14.
http://dx.doi.org/10.1007/978-3-540-45051-1_14

Benyon D, Murray D (1993) Adaptive systems: from intelligent tutoring to autonomous agents. Knowledge Based
Systems 6(4):179–219. doi:10.1016/0950-7051(93)90012-I

Bruni R, Bucchiarone A, Gnesi S, Melgratti H (2008) Modelling dynamic software architectures using typed graph
grammars. Electronic Notes in Theoretical Computer Science 213(1):39–53. doi:10.1016/j.entcs.2008.04.073.
Proceedings of the Third Workshop on Graph Transformation for Concurrency and Verification (GT-VC 2007)

Brun Y, Serugendo GDM, Gacek C, Giese H, Kienle HM, Litoiu M, Müller HA, Pezzè M, Shaw M (2009) Engineering
self-adaptive systems through feedback loops. In: Cheng BHC, de Lemos R, Giese H, Inverardi P, Magee J (eds).
Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. Lecture Notes in Computer
Science. Springer, New York, NY, USA Vol. 5525. pp 48–70. doi:10.1007/978-3-642-02161-9_3. http://dx.doi.org/10.
1007/978-3-642-02161-9_3

Cheng S-W, Garlan D, Schmerl B (2006) Architecture-based self-adaptation in the presence of multiple objectives. In:
Proceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing Systems. SEAMS 2006. ACM,
New York, NY, USA. pp 2–8. doi:10.1145/1137677.1137679. http://doi.acm.org/10.1145/1137677.1137679

Corder GW, Foreman DI (2009) Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Wiley, Hoboken,
NJ, USA

de Lemos R, Giese H, Müller HA, Shaw M, Andersson J, Litoiu M, Schmerl BR, Tamura G, Villegas NM, Vogel T, Weyns D,
Baresi L, Becker B, Bencomo N, Brun Y, Cukic B, Desmarais R, Dustdar S, Engels G, Geihs K, Göschka KM, Gorla A, Grassi
V, Inverardi P, Karsai G, Kramer J, Lopes A, Magee J, Malek S, Mankovski S, et al (2010) Software engineering for
self-adaptive systems: A second research roadmap. In: de Lemos R, Giese H, Müller HA, Shaw M (eds). Software
Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers. Lecture Notes in Computer Science. Springer, New York, NY, USA Vol. 7475.
pp 1–32. doi:10.1007/978-3-642-35813-5_1. http://dx.doi.org/10.1007/978-3-642-35813-5_1

Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Communications of the ACM
51(1):107–113. doi:10.1145/1327452.1327492

Deb K, Kalyanmoy D (2001) Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New
York, NY, USA

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6(2):182–197. doi:10.1109/4235.996017

Esfahani N, Elkhodary A, Malek S (2013) A learning-based framework for engineering feature-oriented self-adaptive
software systems. IEEE Transactions on Software Engineering 39(11):1467–1493. doi:10.1109/TSE.2013.37

Falessi D, Cantone G, Becker M (2006) Documenting design decision rationale to improve individual and team design
decision making: an experimental evaluation. In: Travassos GH, Maldonado JC, Wohlin C (eds). 2006 International
Symposium on Empirical Software Engineering (ISESE 2006), September 21-22, 2006, Rio de Janeiro, Brazil. ACM, New
York, NY, USA. pp 134–143. doi:10.1145/1159733.1159755. http://doi.acm.org/10.1145/1159733.1159755

Fonseca CM, Fleming PJ (1996) On the performance assessment and comparison of stochastic multiobjective optimizers.
In: Voigt H, Ebeling W, Rechenberger I, Schwefel H (eds). Parallel Problem Solving from Nature - PPSN IV, International

http://dx.doi.org/10.1109/SASO.2013.42
http://dx.doi.org/10.1109/SBES.2014.17
http://dx.doi.org/10.1007/978-3-540-45051-1_14
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://doi.acm.org/10.1145/1137677.1137679
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://doi.acm.org/10.1145/1159733.1159755

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 26 of 27

Conference on Evolutionary Computation. The 4th International Conference on Parallel Problem Solving from Nature,
Berlin, Germany, September 22-26, 1996, Proceedings. Lecture Notes in Computer Science. Springer, New York, NY,
USA Vol. 1141. pp 584–593. doi:10.1007/3-540-61723-X_1022. http://dx.doi.org/10.1007/3-540-61723-X_1022

Georgas JC, Taylor RN (2008) Policy-based self-adaptive architectures: a feasibility study in the robotics domain. In: Cheng
BHC, de Lemos R, Garlan D, Giese H, Litoiu M, Magee J, Müller HA, Taylor RN (eds). 2008 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2008, Leipzig, Germany, May 12-13, 2008. ACM, New
York, NY, USA. pp 105–112. doi:10.1145/1370018.1370038. http://doi.acm.org/10.1145/1370018.1370038

Georgiadis I, Magee J, Kramer J (2002) Self-organising software architectures for distributed systems. In: Garlan D, Kramer
J, Wolf AL (eds). Proceedings of the First Workshop on Self-Healing Systems, WOSS 2002, Charleston, South Carolina,
USA, November 18-19, 2002. ACM, New York, NY, USA. pp 33–38. doi:10.1145/582128.582135

Gibbons JD, Chakraborti S (2003) Nonparametric Statistical Inference, Fourth Edition: Revised and Expanded. Statistics: A
Series of Textbooks and Monographs. Taylor & Francis, Florence, Kentucky, USA

Golden E, John BE, Bass L (2005) The value of a usability-supporting architectural pattern in software architecture design:
a controlled experiment. In: Roman G, Griswold WG, Nuseibeh B (eds). 27th International Conference on Software
Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. ACM, New York, NY, USA. pp 460–469.
doi:10.1145/1062455.1062538. http://doi.acm.org/10.1145/1062455.1062538

Good PI (2005) Permutation, Parametric and Bootstrap Tests of Hypotheses, Vol. 3. Springer, New York, NY, USA
Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: Trends, techniques and applications. ACM

Computing Surveys 45(1):11–11161. doi:10.1145/2379776.2379787
Harman M (2010) Why the virtual nature of software makes it ideal for search based optimization. In: Rosenblum DS,

Taentzer G (eds). Fundamental Approaches to Software Engineering, 13th International Conference, FASE 2010, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings. Lecture Notes in Computer Science. Springer, New York, NY, USA Vol. 6013. pp 1–12.
doi:10.1007/978-3-642-12029-9_1. http://dx.doi.org/10.1007/978-3-642-12029-9_1

Harman M, Burke EK, Clark JA, Yao X (2012) Dynamic adaptive search based software engineering. In: Runeson P, Höst M,
Mendes E, Andrews AA, Harrison R (eds). ACM-IEEE international symposium on Empirical software engineering and
measurement. ACM, New York, NY, USA. pp 1–8

Hayes M (2011) Schaums Outline of Digital Signal Processing, 2nd Edition, Schaum’s Outline Series. McGraw-Hill
Education, New York, NY, USA

Hebig R, Giese H, Becker B (2010) Making control loops explicit when architecting self-adaptive systems. In: SOAR 2010:
Proceedings of the Second International Workshop on Self-Organizing Architectures. ACM, Washington, DC, USA.
pp 21–28

Huebscher MC, McCann JA (2008) A survey of autonomic computing – degrees, models, and applications. ACM
Computing Surveys 40(3):7–1728. doi:10.1145/1380584.1380585

Jiang D, Ooi BC, Shi L, Wu S (2010) The performance of mapreduce: An in-depth study. Proceedings of the VLDB
Endowment 3(1):472–483

Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50. doi:10.1109/MC.2003.1160055
Křikava F, Collet P, France RB (2012) Actor-based runtime model of adaptable feedback control loops. In: Proceedings of

the 7th Workshop on Models@run.time, MRT 2012. ACM, New York, NY, USA. pp 39–44.
doi:10.1145/2422518.2422525. http://doi.acm.org/10.1145/2422518.2422525

Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive Control: Algorithms, Analysis and Applications,
Communications and Control Engineering. Springer, New York, NY, USA

Malek S, Edwards G, Brun Y, Tajalli H, Garcia J, Krka I, Medvidovic N, Mikic-Rakic M, Sukhatme GS (2010) An
architecture-driven software mobility framework. Journal of Systems and Software 83(6):972–989.
doi:10.1016/j.jss.2009.11.003

Müller H, Pezzè M, Shaw M (2008) Visibility of control in adaptive systems. In: Proceedings of the 2nd International
Workshop on Ultra-large-scale Software-intensive Systems. ULSSIS 2008. ACM, New York, NY, USA. pp 23–26.
doi:10.1145/1370700.1370707

Ogel F, Folliot B, Piumarta I (2003) On reflexive and dynamically adaptable environments for distributed computing. In:
23rd International Conference on Distributed Computing Systems Workshops (ICDCS 2003 Workshops), 19-22 May
2003, Providence, RI, USA. IEEE Computer Society, Washington, DC, USA. pp 112–117.
doi:10.1109/ICDCSW.2003.1203541

Parunak HVD, Brueckner SA (2011) Software engineering for self-organizing systems. In: Weyns D, Müller JP (eds). 12th
International Workshop on Agent-Oriented Software Engineering (AOSE 2011), AAMAS 2011, Taipei, Taiwan

Patikirikorala T, Colman AW, Han J, Wang L (2012) A systematic survey on the design of self-adaptive software systems
using control engineering approaches. In: 7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2012, Zurich, Switzerland, June 4-5, 2012. IEEE, Washington, DC, USA. pp 33–42.
doi:10.1109/SEAMS.2012.6224389

Räihä O (2010) A survey on search-based software design. Computer Science Review 4(4):203–249.
doi:10.1016/j.cosrev.2010.06.001

Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and research challenges. ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 4(2):14–11442. doi:10.1145/1516533.1516538

Slotine J-JE, Li W (1991) Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (N.J.) http://opac.inria.fr/record=
b1132812

Stevens SS (1946) On the Theory of Scales of Measurement. Science 103(2684):677–680. doi:10.2307/1671815
Tilbury DM, Parekh S, Diao Y, Hellerstein JL (2004) Feedback Control of Computing Systems, Wiley interscience

publication. Wiley IEEE press, Hoboken, NJ US. http://opac.inria.fr/record=b1119042
van Veldhuizen DA, Lamont GB (1999) Multiobjective evolutionary algorithm test suites. In: SAC. pp 351–357.

doi:10.1145/298151.298382
Van Veldhuizen DA, Lamont GB (2000) On measuring multiobjective evolutionary algorithm performance. In:

Evolutionary Computation, 2000. Proceedings of the 2000 Congress On. IEEE, Washington, DC, USA Vol. 1. pp 204–211

http://dx.doi.org/10.1007/3-540-61723-X_1022
http://doi.acm.org/10.1145/1370018.1370038
http://doi.acm.org/10.1145/1062455.1062538
http://dx.doi.org/10.1007/978-3-642-12029-9_1
http://doi.acm.org/10.1145/2422518.2422525
http://opac.inria.fr/record=b1132812
http://opac.inria.fr/record=b1132812
http://opac.inria.fr/record=b1119042

Andrade and Macêdo Journal of Software Engineering Research and Development (2015) 3:2 Page 27 of 27

Vogel T, Giese H (2012) A language for feedback loops in self-adaptive systems: Executable runtime megamodels. In: 7th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2012, Zurich,
Switzerland, June 4-5, 2012. IEEE, Washington, DC, USA. pp 129–138. doi:10.1109/SEAMS.2012.6224399. http://dx.doi.
org/10.1109/SEAMS.2012.6224399

Vokác M, Tichy WF, Sjøberg DIK, Arisholm E, Aldrin M (2004) A controlled experiment comparing the maintainability of
programs designed with and without design patterns – a replication in a real programming environment. Empirical
Software Engineering 9(3):149–195

Wang Q (2005) Handbook of PI and PID controller tuning rules, aidan o’dwyer, imperial college press, London, 375pp,
ISBN 1-86094-342-x, 2003. Automatica 41(2):355–356. doi:10.1016/j.automatica.2004.09.012

Weyns D, Iftikhar MU, Söderlund J (2013) Do external feedback loops improve the design of self-adaptive systems? a
controlled experiment. In: Litoiu M, Mylopoulos J (eds). Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS 2013, San Francisco, CA, USA, May 20-21, 2013.
IEEE/ACM, Washington, DC, USA. pp 3–12

Weyns D, Malek S, Andersson J (2012) FORMS: Unifying reference model for formal specification of distributed
self-adaptive systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 7(1):8

Weyns D, Schmerl BR, Grassi V, Malek S, Mirandola R, Prehofer C, Wuttke J, Andersson J, Giese H, Göschka KM, de Lemos R
(2010) On patterns for decentralized control in self-adaptive systems. In: Giese H, Müller HA, Shaw M (eds). Software
Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers. Lecture Notes in Computer Science. Springer, New York, NY, USA Vol. 7475.
pp 76–107. doi:10.1007/978-3-642-35813-5_4

White T (2009) Hadoop: the Definitive Guide: the Definitive Guide. O’Reilly Media, Inc., Sebastopol, CA, USA
Wijayasiriwardhane T, Lai R (2010) Component Point: A system-level size measure for component-based software

systems. J Syst Softw 83(12):2456–2470. doi:10.1016/j.jss.2010.07.008
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B (2012) Experimentation in Software Engineering. Springer, New

York, NY, USA. doi:10.1007/978-3-642-29044-2

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/SEAMS.2012.6224399
http://dx.doi.org/10.1109/SEAMS.2012.6224399

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	1 Background
	2 Self-adaptive systems and feedback control
	3 Searching for effective self-adaptive systems architectures
	4 Methods
	5 Experiment planning
	5.1 Design objects
	5.2 Variables selection
	5.2.1 Measuring effectiveness (Generational distance)
	5.2.2 Measuring complexity (Component Point)
	5.2.3 Measuring the acquisition of distilled design knowledge (post-experiment questionnaire)

	5.3 Hypotheses formulation
	5.4 Experiment design

	6 Results and discussion
	6.1 Analysis
	6.2 Discussion

	7 Threats to validity
	7.1 Threats to construct validity
	7.2 Threats to internal validity
	7.3 Threats to external validity
	7.4 Threats to conclusion validity

	8 Related work
	9 Conclusions
	Competing interests
	Authors' contributions
	References

