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Abstract

Background: Test case prioritization techniques aim at defining an order of test cases
that favor the achievement of a goal during test execution, such as revealing failures as
earlier as possible. A number of techniques have already been proposed and
investigated in the literature and experimental results have discussed whether a
technique is more successful than others. However, in the context of model-based
testing, only a few attempts have been made towards either proposing or
experimenting test case prioritization techniques. Moreover, a number of factors that
may influence on the results obtained still need to be investigated before more general
conclusions can be reached.

Methods: In order to evaluate factors that potentially affect the performance of test
case prioritization techniques, we perform three empirical studies, an exploratory one
and two experiments. The first study focus on expose the techniques to a common
and fair environment, since the investigated techniques have never been studied
together, and observe their behavior. The following two experiments aim at
observing the effects of two factors: the structure of the model and the profile of the
test cases that fail. We designed the experiments using the one-factor-at-a-time
strategy.

Results: The first study suggests that the investigated techniques performs differently,
however other factors, aside from the test suites and number of failures, affect the
techniques, motivating further investigation. As results from the two experiments,
on one hand, the model structure do not affect significantly the investigated
techniques. On the other hand, we are able to state that the profile of the test case
that fails may have a definite influence on the performance of the techniques
investigated.

Conclusions: Through these studies, we conclude that, a fair evaluation involving test
case prioritization techniques must take into account, in addition to the techniques
and the test suites, different characteristics of the test cases that fail as variable.
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1 Introduction
The artifacts produced and the modifications applied during software development and
evolution are usually validated by executing test cases. Often, the produced test suites
are also subject to extensions and modifications, making management a difficult task.
Moreover, their use may become increasingly less effective due to the difficulty to abstract
and obtain information from test execution. For instance, if test cases that fail are either
run too late or are difficult to locate due to the size and complexity of the suite.
To cope with this problem, a number of techniques have been proposed in the literature;

they may be classified as test case selection, test suite reduction and test case prioritiza-
tion. The general test case selection problem is concerned with selecting a subset of the
test cases according to a specific (stop) criterion, whereas test suite reduction techniques
focus on selecting a subset of the test cases, but the selected subset must provide the same
requirement coverage as the original suite (Harrold et al. 1993). While the goal of selec-
tion and reduction is to produce a more cost-effective test suite, studies presented in the
literature show that the techniques may not work effectively, since they discard test cases
and consequently, some failures may not be revealed (Jeffrey and Gupta 2007).
On the other hand, test case prioritization techniques have been investigated in order

to address the problem of defining an execution order of the test cases according with
a given testing goal, particularly, detecting failures as early as possible (Rothermel et al.
1999). These techniques are suitable for general development context or in amore specific
context, such as regression testing, depending on the information considered by the tech-
niques (Rothermel et al. 2001). Moreover, both code-based and specification-based test
suites may be handled, although, most techniques presented in the literature have been
defined and evaluated for code-based suites in the context of regression testing (Elbaum
et al. 2002) (Jiang et al. 2009).
Model-based Testing (MBT) is an approach to automate the design and generation of

black-box test cases from specification models with all oracle information needed (Utting
and Legeard 2007). MBT may operate with any model with different purposes and at
different testing levels. As usually, automatic generation produces a huge amount of test
cases that may also have a considerable degree of redundancy (Cartaxo et al. 2008, 2011).
Techniques for ordering the test cases may be required to support test case selection,

for instance, to address constrained costs of running and analyzing the complete test
suite and to improve the rate of failure detection. However, to the best of our knowledge,
there are only few attempts presented in the literature to define test case prioritization
techniques based on model information (Korel et al. 2008) (Gopinathan and Mohanty
2009). Generally, empirical studies are preliminary, making it difficult to assess current
limitations and applicability of the techniques in the MBT context.
To provide useful information for the development of prioritization techniques, empir-

ical studies must focus on controlling and/or observing factors that may determine the
success of a given technique. Considering the goals of prioritization in the context of
MBT, a number of factors can be determinant such as the size and the coverage of the
suite, the structure of the model (that may determine the size and structure of test cases),
the amount and distribution of failures and the degree of redundancy of test cases.
In this paper, we investigate the influence of two factors: the structure of the model and

the profile of the test cases that fail. For this, we conduct three empirical studies, where
real application models, as well as automatically generated ones, are considered. The
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focus is on general prioritization techniques suitable toMBT test suites. We represent the
system level behavior through Labeled Transition Systems - LTS.
The purpose of the first study is to acquire preliminary observations by considering real

application models. From this study, we conclude that a number of different factors might
influence on the performance of the techniques. Therefore, the purpose of the second
and third studies, the main contribution of this paper, is to investigate specific factors by
controlling them through synthetic models.
In the studies, we considered four prioritization techniques: Adaptive Random Testing

(ART) (Chen et al. 2004) with two different distance functions, producing two variant
techniques named ART_Jac (Jaccard distance) and ART_Man (Manhattan distance);
FixedWeights (Gopinathan andMohanty 2009) and STOOP (Gopinathan andMohanty
2009).
This paper is an extension of the work presented by Ouriques et al. (2013). We

extend it by: i) providing an example to illustrate the impacts of external factors over
the techniques; ii) considering two more techniques in the second and third performed
experiments (in the original paper, only ART_Jac and STOOP are considered); and iii)
replicating the second and the third experiments, using new samples, better explained in
the correspondent sections.
The conclusions of the replication of the experiments discussed in this paper, point to

the same direction of the results already presented in the previous work. Despite the fact
that the structure of the models may present or not certain constructions (for instance
the presence of loopsa), it is not possible to differentiate the performance of the tech-
niques when focusing on the presence of the construction investigated. On the other
hand, depending on the profile of the test cases that fail (longest, shortest, essential, and
so on), one technique may perform better than the other one, leading to some influence
of this factor.
The studies presented in this paper focus on system level models, represented as activ-

ity diagrams and/or LTS with inputs and outputs as transitions. We generate synthetic
models according to the strategy presented by Oliveira Neto et al. (2013). Test cases are
sequences of transitions extracted from amodel by a depth-search algorithm as presented
by Cartaxo et al. (2011) and Sapna and Mohanty (2009). Prioritization techniques receive
as input a test suite and produce as output an ordering for the test cases.
The paper presents the following structure. Section 2 exposes fundamental concepts,

along with a quick definition of the prioritization techniques considered in this paper
and discusses the related works. Section 3 presents a motivating example, showing the
performance of three test case prioritization strategies. Section 4.1 shows a preliminary
study where techniques are investigated in the context of two real applications, varying
the amount of failures. Sections 4.2 and 4.3 present the main empirical studies conducted:
the former reports a study with automatically generated models, in which we control
the presence of certain structural constructions, whereas the latter depicts a study that
we investigated different profiles of the test case that fails, also using synthetic models.
Section 6 presents concluding remarks about the results obtained and pointers for further
research. Details about the input models and data collected in the studies are available
at the project site (Ouriques et al. 2015). We defined and planned the empirical studies
according to the general framework proposed by Wohlin et al. (2000) and used the R tool
(Gentleman and Ihaka 2015) to support data analysis.
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2 Background
This section presents the test case prioritization concept (Subsection 2.1), details
about the techniques considered in this paper (Subsection 2.2) and the related work
(Subsection 2.3).

2.1 Test case prioritization

Test Case Prioritization (TCP) is a technique that orders test cases in an attempt to
maximize an objective function. Elbaum et al. (2000) formally define the problem as
follows:
Given: TS, a test suite; PTS, a set of permutations of TS; and, f , a function that maps PTS
to real numbers (f : PTS → R).
Problem: Find a TS′ ∈ PTS | ∀ TS′′ ∈ PTS with TS′′ �= TS′, f (TS′) ≥ f (TS′′)
In other words, a prioritization algorithmmust define the set of every permutation PTS

of the test cases in order to choose the element TS′ that maximizes f . The analysis of
every permutation is infeasible, mainly in a big test suite (de Lima 2009) with n test cases,
because the high number of elements in the permutation set, which are n! elements. The
prioritization problem might be represented as an instance of the Traveling Salesman
Problem and it is computationally NP-complete (Aho et al. 1974) (Cormen et al. 2009).
Therefore, the prioritized test case sequence is iteratively built, mainly through heuristics
and functions for test cases evaluation.
The objective function is defined according with the goal of the test case prioritization.

For instance, the manager may need to increase the rate of failure detection or cover-
age of requirements by scheduling execution of test cases in an order in which the first
test cases reveal as more failures as possible or cover as more requirements as possible.
Realize that failure detection capability and requirements coverage of the suite are not
affected because test cases are only reordered. Depending on the goal of the prioritiza-
tion, the required information is not available. One of the main goals considered in the
TCP research is the fault/failure detection, and it is the goal considered in this research.
The required information to prioritize the test cases with this goal is not available before
the execution of the test cases. Thus, the techniques propose surrogates to the desired
goal (Yoo et al. 2009).
When the goal is to increase failure detection, the Average Percentage of Fault Detection

(APFD) metric has been largely applied in order to evaluate prioritization techniques.
APFD is a weighted average of the percentage of faults detected, over the life of the test
suite (Elbaum et al. 2000). The APFD values range from 0 to 100 and the higher APFD
numbers, the faster fault detection rates. For a test suite T with n test cases, and TFi the
index of the first test case that detects the i − th fault, with i ≤ m:

APFD = 1 − TF1 + TF2 + . . . + TFm
nm

+ 1
2n

Test case prioritization is suitable for code-based and specification-based contexts,
but it has been more applied in the code-based context, moreover it is often related to
regression testing. Therefore, Rothermel et al. (2001) propose the following classification:

• General test case prioritization - test case prioritization is applied any time in the
software development process, even in the initial testing activities;
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• Regression testing prioritization - test case prioritization techniques execute after a
set of changes in the SUT. Therefore, test case prioritization can use information
gathered in previous runs of existing test cases to help the action of prioritize the test
cases for subsequent runs.

In this paper, we focus on general test case prioritization. Therefore, we are not con-
sidering that any other information is available, besides the behavioral model and the
application. Regression testing approaches may also consider test case execution history
and/or applied modifications.
Since the context is the specification-based, more specifically model-based testing, we

model the applications used in this work as Labeled Transition Systems (LTS). LTS is a
directed graph in which vertexes are states, and edges are transitions. Formally, it is a
4-tuple S = {Q,A,T , q0}, where (de Vries and Tretmans 2000):

• Q is a finite, nonempty set of states;
• A is a finite, nonempty set of labels;
• T is a subset of QxAxQ named transition relation;
• q0 is the initial state.

In our experiments, the LTS model represents the behavior of an application where the
transitions represent either input or output actions, triggered by actors or systems, and
test cases are able to be generated from them.

2.2 Techniques

Following the classification provided by Rothermel et al. (2001), this subsection presents
general test case prioritization techniques that we approach in this paper. Our choice
excludes regression testing techniques and includes the ones that may be applied to
system level models represented as activity diagrams and/or as labeled transition systems.
Optimal. Empirical evaluations frequently include this technique as upper bound on the
effectiveness of the other techniques. It presents the best result that a technique is able to
achieve. To obtain the best result, for example, for failure detection purposes, the failure
record must be available. Since the target information may not be available in practice,
the technique is not feasible. Thus, we can only use applications with known failures.
Therefore, we can determine the order of test cases that maximizes the rate of failure
detection of a test suite.
Random. This technique consists in defining the order of test cases by random choice.
Despite the fact that, random choices can lead to optimal results by chance, experiments
with test case prioritization techniques have applied it as a lower bound control technique
(Jiang et al. 2009).
Adaptive Random Testing (ART). This strategy distributes the selected test case as
spaced out as possible based on a distance function (Chen et al. 2004). To apply this
strategy, two sets of test cases are required: the prioritized sequence (the sequence of dis-
tinct test cases already in order) and the candidate set (the set of test cases randomly
selected without replacement). Initially, the prioritized sequence is empty and the algo-
rithm selects the first test case randomly from the input domain. Then, it selects the next
test case among the candidates and adds in the prioritized sequence. This selected test
case is the farthest away from all the already prioritized test cases. There are several ways
to implement the concept of farthest away. In this paper, we will consider:
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• Jaccard distance: Jiang et al. (2009) propose the use of this function in the
prioritization context. The function calculates the distance between two sets, taking
into account the size of intersection and union of their elements. In our context, we
consider a test case as an ordered set of edges (that represent transitions).
Considering p and c as test cases and B(p) and B(c) as a set of branches covered by
the test cases p and c respectively, the distance between them is defined as follows:

J(p, c) = 1 − |B(p) ∩ B(c)|
|B(p) ∪ B(c)|

• Manhattan distance: This function measures the distance between two sets based
on their elements. According to Zhou et al. (2010), consider two test cases a and b,
with a = (b11, b12, · · · , b1i) and b = (b21, b22, · · · , b2i) representing which branches
are covered by the two test cases respectively. The sequences a and b have the same
length i, which is the total number of branches in the application model. Moreover,
each bxy ∈ {0, 1}, where 1 indicates that the test case x covers the branch y, 0
indicates otherwise. Thus, the function is defined as follows:

Man(a, b) =
N∑
x=1

|b1x − b2x|

Fixed Weights. Sapna and Mohanty (2009) propose this prioritization technique based
on UML activity diagrams. It uses the activity diagram structures in order to prioritize the
test cases. First, the algorithm converts the activity diagram into a tree structure, where
each loop is traversed twice at most.
Then, it assigns weights to the structural elements of the activity diagram (3 for fork-

join nodes, 2 for branch-merge nodes, 1 for action/activity nodes). Lately, the algorithm
calculates the weight for each path (sum of the weights assigned to nodes and edges) and
sorts the test cases according to the weight sums obtained.
STOOP. Kundu et al. (2009) proposed this technique, which receives sequence diagrams
as input. The algorithm converts the input diagrams into a graph representation called as
Sequence Graph (SG) and then merges them into a single SG. After that, it generates the
test cases, traversing the SG that represent the system. Lastly, the test cases are sorted into
descending order taking into account the average weighted path length (AWPL) metric,
defined as:

AWPL(pk) =
∑m

i=1 eWeight(ei)
m

where pk = {e1, e2, . . . , em} is a test case and eWeight is the amount of test cases that
contains the edge ei.

2.3 Related work

Several test case prioritization techniques have been proposed and investigated in the
literature. Most of them focus on code-based test suites and the regression testing context
(Elbaum et al. 2004) (Korel et al. 2005). The experimental studies already presented have
discussed whether a technique is more effective than others, comparing them mainly by
the APFD metric. Moreover, so far, there is no experiment that presented general results.
This evidences the need for further investigation and empirical studies that can contribute
to advances in the state-of-the-art.
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Regarding code-based prioritization, Zhou et al. (2012) compare failure-detection capa-
bilities of the Jaccard-distance-based ART and Manhattan-distance-based ART. The
authors use branch coverage information and the results showed that, for code-based
test suites, Manhattan distance is more effective than Jaccard (2012). Jeffrey and Gupta
(2006) propose an algorithm that prioritizes test cases based on coverage of statements in
relevant slices and discuss insights from an experimental study that considers also total
coverage. Moreover, Do et al. (2010) present a series of controlled experiments evaluat-
ing the effects of time constraints and faultiness levels on the costs and benefits of test
case prioritization techniques. They define faultiness level as a variable that manipulates
the numbers of faults (mutants) randomly placed in applications. They consider three
faultiness levels: FL1 involves cases in which mutant groups contain from 1 to 5 faults;
the second level, FL2, involves cases in which mutant groups contain from 6 to 10 faults;
and FL3, involves cases in which mutant groups contain from 11 to 15 faults. The results
show that time constraints can significantly influence both the cost and effectiveness.
Moreover, when there are time constraints, the effects of increased faultiness are stronger.
Furthermore, Elbaum et al. (2002) compare the performance of 5 prioritization tech-

niques in terms of effectiveness, and show how the results of the comparison can be used
to select a technique (regression testing) (Elbaum et al. 2004). The compared techniques
consider the coverage of functions in the source code, modifications between two versions
and feedback of functions already covered as guide to prioritize test cases. They apply the
prioritization techniques to 8 programs and their characteristics (such as number of ver-
sions, KLOC, number and size of the test suites, and average number of faults) are taken
into account.
By considering the use of models in the regression testing context, Korel et al. (2007;

2008; 2005) present two model-based test prioritization methods: selective test pri-
oritization and model dependence-based test prioritization. Both techniques focus on
modifications made to the system and models. The inputs are the original EFSM system
model and the modified EFSM. On the other hand, our focus is on general prioritization
techniques, as defined by Rothermel et al. (2001), wheremodifications are not considered.
Generally, in the MBT context, we can find proposals to apply general test case prior-

itization from UML diagrams, such as: i) the technique proposed by Kundu et al. (2009)
where sequence diagrams are used as input; and ii) the technique proposed by Sapna
and Mohanty (2009) where activity diagrams are used as input. We investigate both
techniques in this paper.
In summary, the original contribution of this paper is to present empirical studies in the

context of MBT that consider different techniques and factors that may influence on their
performance such as the structure of the model and the profile of the test case that fails.

3 Motivating example
The effectiveness of a prioritized test suite is often evaluated by the ability of revealing
failures as fast as possible. Ideally, a technique for test case prioritization should put all test
cases that will unveil failures in the first positions of the prioritized test suite. However,
this may require key information that is not usually available such as historical data and
experts’ knowledge of what test cases will fail.
Disregarding whatever previous knowledge about failures of the system may be avail-

able, most of the prioritization techniques are based on structural aspects and also make
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some assumptions for ordering the test cases. For example, the longer, the more branches
it covers or the more different the test case is, the higher the probability of revealing
failures is.
Let us consider the model presented in Figure 1, and seven test cases obtained from that

model (Table 1) by performing a generation algorithm, instrumented with a coverage cri-
terion that traverses a loop twice at most. Moreover, consider that when the test cases are
executed, only the scenario that represents the successful login failed, in another words,
TC1 failed.
Suppose the application of three basic prioritization strategies: 1) greedy, choosing test

cases with higher number of branches, 2) greedy, choosing test cases with lower number
of branches and 3) random choice. By applying these strategies, the obtained orders are
available in Table 2. Note that Strategy 1 places the failure represented by TC1 near to the
end of the sequence – a poor result for a prioritization technique. Likewise, Strategy 3
places the failure in the middle of the sequence – another case that a prioritization tech-
nique must avoid. On the other hand, Strategy 2 places the failure in the first position – a
desirable behavior for a prioritization technique. TC1 has the fewest number of branches
along with TC7.
Despite the absolute results, in order to make these strategies applicable in practice, it

is important to understand why one strategy was more successful than the other. Why
did TC1 appear in the first position when running Strategy 2? Due to the low amount of
branches in the model? Or due to the amount of the branches in the test case that fails?
The conducted experiments reported in this paper address this question.
After performing experiments with different techniques (Ouriques et al. 2010), we have

identified some factors that probably impact on the performance of the techniques: i) the

Figure 1 An LTSmodel example. The LTS model representing the behavior of a login/password application.
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Table 1 Test cases generated from themodel in Figure 1

Label Steps

TC1 - Show the login/password screen - Fill the login field - Check if the login is valid - [valid login] - Fill
the password field - Check if the login and password match - [match] - Show the main screen of the
application

TC2 - Show the login/password screen - Fill the login field - Check if the login is valid - [valid login] - Fill
the password field - Check if the login and password match - [do not match] - Show error message:
“Login and password do not match” - Fill the login field - Check if the login is valid - [valid login] - Fill
the password field - Check if the login and password match - [match] - Show the main screen of the
application

TC3 - Show the login/password screen - Fill the login field - Check if the login is valid - [valid login] - Fill
the password field - Check if the login and password match - [do not match] - Show error message:
“Login and password do not match” - Fill the login field - Check if the login is valid - [valid login] - Fill
the password field - Check if the login and password match - [do not match] - Show error message:
“Login and password do not match”

TC4 - Show the login/password screen - Fill the login field - Check if the login is valid - [valid login] - Fill
the password field - Check if the login and password match - [do not match] - Show error message:
“Login and password do not match” - Fill the login field - Check if the login is valid - [invalid login] -
Show error message: “Login not found”

TC5 - Show the login/password screen - Fill the login field - Check if the login is valid - [invalid login] -
Show error message: “Login not found” - Fill the login field - Check if the login is valid - [valid login] -
Fill the password field - Check if the login and password match - [match] - Show the main screen of
the application

TC6 - Show the login/password screen - Fill the login field - Check if the login is valid - [invalid login] - Show
error message: “Login not found” - Fill the login field - Check if the login is valid - [valid login] - Fill the
password field - Check if the login and password match - [do not match] - Show error message: “Login
and password do not match”

TC7 - Show the login/password screen - Fill the login field - Check if the login is valid - [invalid login] - Show
error message: “Login not found” - Fill the login field - Check if the login is valid - [invalid login] - Show
error message: “Login not found”

number of test cases of the test suite that fail when executed, ii) the characteristics of a
test case (long, medium, short) and iii) the model structure (number of branches, joins
and loops). Aiming to investigate those factors, we performed three experimental studies
and discuss their details in the following sections.

4 Methods
In order to investigate the influence of the already mentioned factors, we performed three
empirical studies, an exploratory study (discussed in Section 4.1), an experiment evaluat-
ing the impact of the model structure on the performance of the investigated techniques
(reported in Section 4.2) and an experiment evaluating the impact of the characteristics
of the test cases that fail (detailed in Section 4.3).

4.1 Experiment 1: the number of test cases that fail in the test suite

The main goal of this study is to “analyze general prioritization techniques for the pur-
pose of comparing their performances, observing the impact of the number of test cases
that fail, with respect to their ability to reveal failures earlier, from the point of view of

Table 2 Prioritized test suites

Strategy Test cases sequence

Strategy 1 TC2, TC4, TC6, TC3, TC5, TC1, TC7

Strategy 2 TC1, TC7, TC4, TC7, TC3, TC6, TC2

Strategy 3 TC5, TC6, TC2, TC1, TC7, TC4, TC3

The sequence of test cases proposed by the strategies.
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the tester and in the context of MBT”. We worked with the following research hypothe-
sis: “The general test case prioritization techniques present different abilities of revealing
failures, considering different amount of failing test cases in the test suite”. In the next
subsections, we present the planning of the study and the data analysis.

4.1.1 Planning

We conducted this experiment in a research laboratory – a controlled environment. This
characteristic leads to an offline study. Moreover, all the techniques involved in the study
only require the set of test cases with the mapping between them and the branches that
they cover (satisfiability relation). Thus, no human intervention is required, eliminating
the “expertise” influence.
The objects of our experiments are LTS models. Despite the fact that the applications

are real ones, this experiment deals with a specific context.
In order to analyze the performance of the techniques, observing the influence of the

number of test cases that fail, we define the following variables:

Independent variables and factors

• General prioritization techniques: Techniques defined in Section 2. We will
consider the following short-names for the sake of simplicity:Optimal, Random,
ART_Jac (Adaptive Random Testing with Jaccard distance), ART_Man (Adaptive
Random Testing with Manhattan distance), Fixed_Weights, and Stoop;

• Number of test cases that fail: low (lower than 5% of the total), medium (between
5% and 15% of the total), high (higher than 15% of the total). This choice of levels is
related to the actual distribution of real failures detected when testing the
applications – these distribution allow us to examine different settings from few
failures from a single fault to more than one fault and more failures;

Dependent variable

• Average Percentage of Fault Detection - APFD

In this study, we use two LTS models representing two real-world applications: i)
Labeled Transition System-Based Tool – LTS-BT (Cartaxo et al. 2008) – a MBT activi-
ties supporting tool, developed in the context of our research group and ii) PDF Split and
Merge - PDFsam (Vacondio et al. 2015) – a tool for PDF files manipulation.
These two applications aremodeled throughUMLActivity Diagram, using the provided

use cases documents and the applications themselves. From this diagram a graph model
was obtained for each application, from which test cases were generated by using a depth
search-based algorithm proposed by Sapna and Mohanty (2009) where each loop is con-
sidered two times at most. The Table 3 shows some structural properties from the models
and the test cases that were generated from them to be used as input to the techniques.
All test cases for all techniques are obtained from the same model using a single algo-

rithm. In addition, even though the STOOP technique has been generally proposed to
be applied from sequence diagrams, the technique itself works on an internal model that
combines the diagrams. Therefore, it is reasonable to apply STOOP in the context of this
experiment.
We define the ‘number of test cases that fail’ variable considering real and known defects

in the models and allocated as shown in Table 4.
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Table 3 Structural properties of themodels in the experiment

Property LTS-BT PDFSam

Branching nodes 26 11

Loops 0 5

Join nodes 7 6

Test cases 53 87

Shortest test case 10 17

Longest test case 34 43

Defects 4 5

TC reveal failures 14 32

This table contains some properties of the models used in the Experiment 1.

For the applications considered in this study, we could observe that the relationship
between a defect (associated with a specific edge in the model) and a failure (a test case
that fails) is that when a test case exercises the edge, it reveals the failure. For each different
level, we consider a different set of defects of eachmodel, and in the high level, two defects
originate the failures. Moreover, these test cases do not reveal the two defects at the same
time for the two models.
By using the defined variables and detailing the informal hypothesis, we postulate eight

pairs of statistical hypotheses (null and alternative): three pairs evaluating the techniques
at each level of number of test cases that fail (e.g. H0 : APFD(low,i) = APFD(low,j) and
H1 : APFD(low,i) �= APFD(low,j), for techniques i and j, with i �= j) and five pairs eval-
uating the levels for each technique (e.g. H0 : APFD(Random,k) = APFD(Random,l) and
H1 : APFD(Random,k) �= APFD(Random,l), for levels k and l, with k �= l), excluding the
Optimal technique.
Based on the elements already detailed, the experimental design for this study is One-

factor-at-a-time (Wu and Hamada 2009). The data analysis for the hypotheses pairs is
based on 2-Way ANOVA (Montgomery and Runger 2003) (Jain 1991), after check the
assumptions of normality of residuals and equality of variances. Whether any assumption
is not satisfied, we must perform a non-parametric analysis.
We calculated the number of repetitions based on a pilot sample, using the following

formula proposed by Jain (1991). We obtained 815 as result, for a precision (r) of 2% of
the sample mean and significance (α) of 5%.

repli =
(100 · Z α

2
· s

r · x̄
)2

(1)

We performed the following steps in order to perform the experiment: 1) Instantiate
lists for data collection for each repetition needed; 2) Instantiate the failure models to
be considered; 3) Generate test cases; 4) Map branches to test cases; 5) Execute each
technique for each object (LTS model) considering the repetitions needed; 6) Collect data

Table 4 Failures of themodels in Experiment 1

Level Failures in LTS-BT Failures in PDFSam

Low 2 test cases → 3,77% 4 test cases → 4,59%

Medium 4 test cases → 7,54% 7 test cases → 8,04%

High 8 test cases → 15,09% 16 test cases → 18,39%

Definition of the Test Cases that Fail variable.
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and compute dependent variable; 7) Record and analyze results. All the techniques were
executed automatically.

4.1.2 Data analysis

When analyzing data collected, wemust verify the ANOVA assumptions. Figure 2 assures
that the residuals are not normally distributed, because the black solid line should be
near of the straight continuous line of the normal distribution. Thus, we proceed a non-
parametric analysis.
A confidence interval analysis, as seen in Table 5 of the 95% confidence intervals of

the pseudomediansb of APFD values collected might give a first insight about some null
hypotheses rejection.
The set of hypothesis defined for this experiment compares the techniques under two

points of view: i) the set of techniques at each single level, and ii) each technique isolated
in the different levels.
For the first set of hypothesis, considering the levels of number of test cases that fail

separately (set of two columns for each level), some confidence intervals do not overlap,
and therefore the null hypotheses of equality must be rejected. However, in the three
levels, there is an overlap between Random and ART_Man, and the p-values of Mann-
Whitney tests between the two techniques are 0.9516, 0.9399 and 0.4476 for low, medium
and high, respectively. These p-values are greater than the significance of 5%, thus the
performance of these techniques are statistically similar at this significance.

Figure 2 QQ-Plot of the residuals and the normal distribution. The QQ-plot is a visual test of the
normality consisting in compare quartiles of the residuals of the data and the normal distribution.
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Table 5 Confidence interval of the pseudomedians

– Low Medium High

Optimal 0.992 0.992 0.992 0.992 0.992 0.992

Random 0.807 0.829 0.864 0.876 0.834 0.847

ART_Jac 0.902 0.906 0.888 0.900 0.877 0.885

ART_Man 0.808 0.830 0.863 0.876 0.839 0.850

Fixed_Weights 0.540 0.543 0.436 0.439 0.679 0.679

Stoop 0.244 0.244 0.319 0.319 0.560 0.560

The low, medium and high values of the confidence intervals of the samples.

For the second set of hypothesis, by analyzing each technique separately (lines of
Table 5), every null hypothesis of equality must be rejected, since every technique
present no overlap between the confidence intervals at each level. This means that the
performance of the techniques may vary when more or less test cases fail.
As general observations, ART_Jac presents the best performance for the three levels.

Moreover, the techniques present slightly variations when considering the three levels
(by increasing or decreasing), except from Fixed_Weights and Stoop that increase more
than other techniques. These techniques that are mostly based on structural elements of
the test cases, may be more affected by the number of test cases that fail than the random
based ones.
Furthermore, by increasing the level of the number of test cases that fail, different

evolution patterns in the performance of the techniques arise, e.g. Stoop increases its per-
formance with the growth of the level, while Fixed_Weights decreases its performance
when the level goes from low to medium and increase when the level goes from medium
to high. These different patterns compose an evidence of influence of other factors over
the researched techniques that motivated the execution of the experiments presented in
Sections 4.2 and 4.3. It is also important to remark that, analyzing separately the results
for the systems leads to similar observations.

4.1.3 Threats to validity

As a controlled experiment with statistical analysis, we have taken rigorous measures to
address conclusion validity regarding data treatment and assumptions, number of repe-
titions and tests needed. For the internal validity of this experiment, it is often difficult
to represent a defect at a high abstract level since a code defect may refer to detailed con-
tents. Therefore, an abstract defect may correspond to one or more defects at code level
and so on. To mitigate this threat, we considered test cases that fail as measure instead
of counting defects (even though we had data on the real defects). This decision suits our
experiment perfectly, since the APFD metric focus on failure rather than defects.
The construct validity regarding the set of techniques and evaluation metric chosen to

compose the study was supported by a systematic review (Ouriques January 2012), which
reveals suitable techniques and evaluation metrics, representing properly the research
context. The low number of LTS models used in this experiment threatens its external
validity, since two models do not represent the whole universe of applications. However,
as preliminary study, we aims at a specific context observation only.

4.2 Experiment 2: the model structure

Motivated by the first study reported in this paper, this section contains a report of an
empirical study that aims at “analyzing general prioritization techniques for the purpose
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of observing the model structure influence over the studied techniques, with respect to
their ability to reveal failures earlier, from the point of view of the tester and in the con-
text ofModel-Based Testing”. Complementing the definition, we postulated the following
research hypothesis: “The general test case prioritization techniques present different
abilities to reveal failures, considering models with different structures”.

4.2.1 Planning

We also conduct this experiment in a controlled environment and the techniques involved
in the study require the same artifacts from the first experiment – the test suite generated
through aMBT test case generation algorithm.Moreover, the execution of the techniques
does not need human intervention, what eliminates the factor “experience level” from the
experiment.
We generate the synthetic models that originate the test suites processed in this exper-

iment using a parameterized graph generator, detailed in a subsequent section. For this,
we configure the generator with values obtained from the real applications investigated in
the first experiment (Section 4.1) so that the generated models would have a similar size
and complexity to real application models. Moreover, when the study requires the focus
on a specific structure, we fixed the correspondent argument to n in order to make sure
that all generated models present the structure n times. Therefore, the generated mod-
els considered in this experiment: i) resemble the structure of models of real applications;
ii) present a similar size and complexity; and iii) have a comparable structure with fixed
parameters when required.
For this study, we define the following variables:

Independent variables

• General prioritization techniques (factor): ART_Jac, ART_Man, Fixed_Weights
and Stoop;

• Number of branch constructions to be generated in the input models (factor):
10, 30, 80;

• Number of join constructions to be generate in the input models (factor): 10, 20,
50;

• Number of loop constructions to be generate in the input models (factor): 1, 3, 9;
• Maximum depth of the generated models (fixed value equals to 25);
• Rate of test cases that fail (fixed value equals to 10%);

Dependent variable

• Average Percentage of Fault Detection - APFD.

We define the values for the variables that shape the models based on the structural
properties from the models considered in the first experiment reported in this paper.
In this experiment, we do not desire to observe the effect of the failures location over

the techniques, thus we select failures randomly. To mitigate the effect of the number of
test cases that fail, we assign a constant rate of 10% of the test cases to reveal failure based
on the profile of the applications considered in the first experiment. Likewise, the fixed
value of depth of generated models is chosen according to the general depth of the models
of the first experiment.
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In order to evaluate the model structure, we define three different experimental designs
and according to Wu and Hamada (2009), each one is a one-factor-at-a-time. We
describe the designs in the next subsections.

Branches evaluation In order to evaluate the impact of the number of branches in the
capacity of revealing failures, we define three levels for this factor and fix the number
of joins and loops in zero. For each considered level of number of branches with the
other parameters fixed, we generated 31 models through the parameterized generator.
For each model, the techniques execute with 31 different random failure attributions and
we collected the APFD value of each execution.
We formulate seven pairs of statistical hypotheses: i) three of them analyzing

each level of the branches with the null hypothesis of equality between the tech-
niques and the alternative indicating they have a different performance (e.g. Consid-
ering T = {ART_Jac,ART_Man, Fixed_Weights, Stoop}, H0 : APFD(t1,10_branch) =
APFD(t2,10_branch),∀t1, t2 ∈ T andH1 : APFD(t1,10_branch) �= APFD(t2,10_branch), ∃t1, t2 ∈ T)
and ii) four pairs related to each technique isolatedly, comparing the performance in the
three levels with the null hypotheses of equality and alternative indicating some differ-
ence (e.g. ∀t1 ∈ T , H0 : APFD(t1,10_branch) = APFD(t1,30_branch) = APFD(t1,80_branch) and
H1 : APFD(t1,10_branch) �= APFD(t1,30_branch) �= APFD(t1,80_branch)).

Joins evaluation In the number of joins evaluation, we propose a similar design, but just
varying the number of joins and fixing the other variables. We fix the number of branches
in 50, loops in zero and every detail that were exposed in the branch evaluation are applied
for this design. The reason for allowing 50 branches is that branches may be part of a
join, therefore, we cannot consider zero branches. The corresponding set of hypotheses
follows the same structure of the branch evaluation, but considering the number of joins.

Loops evaluation In the number of loops evaluation, once again, we propose a similar
design, but varying only the number of loops and fixing the number of branches in 30 and
the joins in 15 (again, this structures are commonly part of a loop, so it is not reasonable
to consider zero branches and joins). We structure a similar set of hypotheses as in the
branch evaluation, but considering the three levels of the number of loops variable.
We executed the following steps to perform the experiment: 1) Generate test models

as described in the next section; 2) Instantiate lists for data collection for each repetition
needed; 3) Instantiate the failure models to be considered; 4) Generate test cases; 5) Map
branches to test cases; 6) Execute each technique for each object considering the repe-
titions needed; 7) Collect data and compute dependent variable; 8) Record and analyze
results.

4.2.2 Model generation

The considered objects for this study are the randomly generated models. The generator
receives five parameters:

1. Number of branch constructions;
2. Number of join constructions;
3. Number of loop constructions;
4. The maximum depth of the graphs;
5. The number of graphs to generate.
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The generator creates a graph by executing operations to include the constructions in
sequences of transitions (edges). The first step is to create an initial sequence using the
fourth parameter, e.g. let a maximum depth be equal to five, so a sequence with five edges
is created, as in Figure 3.
Over this initial configuration, the generator executes the operations. To increase the

probability of generating structurally different graphs, the generator executes operations
randomly, but respecting the amounts passed as parameters. Therefore, the generator
performs the operations of adding branches, joins, and loops (illustrated in Figure 4) as
follows:

• Branching: from a non-leaf random node x, create two more new nodes y and z and
create two new edges (x, y) and (x, z);

• Joining: from two non-leaf different random nodes x and y, create a new node z and
create two new edges (x, z) and (y, z));

• Looping: from two non-leaf different random nodes x and y, with
depth(x) > depth(y), create a new edge (x, y)).

The generator executes the same process as many times as the number of graphs to
generate parameter indicates.

4.2.3 Data analysis

Since we divide the whole experiment into three similar experimental designs, the data
analysis will respect this division and we follow the same chain of tests for the designs.
Firstly, we test the normality assumptions over the samples using the Anderson-Darling
and visual QQ-Plot tests and the equality of variances through Bartlett test. Depending
on the result of these tests, we choose the next one, which evaluate the equality of the
samples, Kruskal-Wallis or ANOVA. After evaluate the levels separately, we test the tech-
niques isolatedly through the three levels. We consider for every test the significance level
of 5%.
The objective in this work is to expose influences of the studied structural aspects of the

models on the performance of the techniques, thus if the p-value analysis in a hypothesis
testing suggests that the null hypothesis of equalitymay not be rejected, this is an evidence
that the variable considered alone does not affect the performance of the techniques. On
the other hand, if the null hypothesis must be rejected, it represents an evidence of some
influence.

Branches analysis The first activity for the analysis is the normality test and Table 6
summarizes this step. Among the samples, just the three with p-values in boldface have
their null hypotheses of normality not rejected, which implies that a minor part of the
samples was considered normal.

Figure 3 Initial configuration of a graph with maximum depth equals to 5. The parameterized graph
generator, as the first step of the generation process, create a chain of edges with the size of the given
maximum depth parameter.
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Branching

Joining

Looping

Figure 4 Branching, joining and looping operations. The operations that the parameterized graph
generator do according to the parameters.

Following the analysis, we perform three tests, as summarized in the Table 7. We select
the test according to the normality from the samples: for normal samples, we verify the
variances of the samples, and perform the Analysis of Variance (ANOVA) and for non-
normal samples, the Kruskal-Wallis test. All the p-values are greater than the defined
significance of 5%, so the null hypothesis of equality of the techniques cannot be rejected,
at the defined significance level, in other words, the four techniques presented similar
performance at each level separately.
The next step of the analysis is to evaluate each technique separately through the lev-

els and we proceed a non-parametric test of Kruskal-Wallis to test their correspondent
hypothesis. The tests calculate for ART_Jac, ART_Man, Fixed_Weights and Stoop the
p-values 0.2687, 0.848, 0.856 and 0.5289 respectively. Comparing them against the signif-
icance level of 5%, we cannot reject the null hypothesis of equality between the levels for
each technique, so the performance is similar, at this significance level.

Joins analysis Following the same approach from the first experimental design, we can
see on Table 8 the p-values of the normality tests. The bold face p-values indicate the
samples normally distributed, at the considered significance.

Table 6 Normality test of the branches variation

10 Branches 30 Branches 80 Branches

ART_Jaccard 1.638 · 10−15 0.02166 0.001239

ART_Manhattan 9.94 · 10−14 0.03604 0.3784

Fixed_Weights 1.087 · 10−12 0.02633 0.335

Stoop 7.473 · 10−11 0.07524 0.0002715

p-values for the Anderson-Darling normality tests with 5% of significance from the first experimental design samples.
Normal samples are in bold face.
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Table 7 p-values for tests in the branches variation

10 Branches 30 Branches 80 Branches

0.8658 0.4064 0.2217

p-values for the samples equality Kruskal-Wallis tests with 5% of significance from the first experimental design samples.

Based on these normality tests, we test the equality of the performance of the techniques
at each level and, according to Table 9, the techniques perform statistically in a similar
way at all levels.
The next step is to assess each technique separately. The samples for ART_Jac,

ART_Man, Fixed_Weights were considered normal, according Table 8, but presented
different variances, violating an ANOVA assumption. Therefore, we executed Kruskal-
Wallis tests comparing the three samples for ART_Jac, ART_Man, Fixed_Weights and
Stoop and the p-value obtained was 0.2235, 0.7611, 0.6441 and 0.3936, respectively. Com-
paring with the significance level considered of 5%, the null hypotheses of equality were
not rejected, what means the techniques behave similarly through the levels.

Loops analysis Following the same line of argumentation, the first step is to evaluate the
normality of the measured data and Table 10 summarizes these tests.
According to the results of the normality tests, we test the equality of the techniques at

each level of this experimental design. As we can see on Table 11, the null hypotheses for
1 Loop, 3 Loops and 9 loops cannot be rejected because they have p-value greater than
5%, thus the techniques present similar behavior for all levels of the factor.
Analyzing the four techniques separately through the levels, we performed the non-

parametric Kruskal-Wallis test, because the variances were not similar according to a
Bertlett-Test. The p-values of the Kruskal-Wallis tests are 0.883, 0.9255, 0.3834 and
0.05507 for ART_Jac, ART_Man, Fixed_Weights and Stoop, respectively. These p-
values, compared with the significance level of 5%, indicate that the null hypotheses of the
considered pairs cannot be rejected, in other words, the techniques perform statistically
similar through the different levels of the number of looping operations.

4.2.4 Threats to validity

About the validity of the experiment, we can point some threats. To the internal validity,
we define different designs to evaluate separately the factors, therefore, it is not possible
analyze the interaction between the number of joins and branches, for example. We do it
because some of the combinations between the three variables might be infeasible, e.g. a
model with many joins and without any branch.
Moreover, we do not calculate the number of repetitions in order to achieve a defined

precision, because the execution would be infeasible (conclusion validity). The executed

Table 8 Normality test of the joins variation

10 Joins 20 Joins 50 Joins

ART_Jaccard 0.1163 0.8237 0.5517

ART_Manhattan 0.5849 0.5674 0.5136

Fixed_Weights 0.7522 0.4447 0.9402

Stoop 0.1482 0.01024 0.7262

p-values for the Anderson-Darling normality tests with 5% of significance from the second experimental design samples.
Normal samples are in bold face.
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Table 9 p-values for tests in the joins variation

10 Joins 20 Joins 50 Joins

0.2269 0.6796 0.2409

p-values for the samples equality tests with 5% of significance from the second experimental design samples. For the 10
Joins and 50 Joins samples were performed an ANOVA and for the 20 Joins, Kruskal-Wallis test.

configuration took several days because some test suites were huge. To deal with this lim-
itation, we limit the generation to 31 graphs for each experimental design and 31 failure
attributions for each graph, keeping the balancing principle (Wohlin et al. 2000) and sam-
ples with size greater than, or equal to, 31 are wide enough to test for normality with
confidence (Jain 1991) (Montgomery and Runger 2003).
Furthermore, we generate synthetic application models to deal with the problem of lack

of applications, but, at the same time, this reduces the capability of representing the real-
ity, threatening the external validity. To deal with this, we used structural properties, e.g.
depth and number of branches, from existent models.

4.3 Experiment 3: the failure profile

This section contains a report of an experiment that aims at “analyzing general prioritiza-
tion techniques for the purpose of observing the failure profile influence over the studied
techniques, with respect to their ability to reveal failures earlier, from the point of view
of the tester and in the context ofModel-Based Testing”.
Complementing the definition, we postulate the following research hypothesis: “The

general test case prioritization techniques present different abilities to reveal failures, con-
sidering that the test cases that fail have different profiles”. We are considering profiles as
structural characteristics of the test cases that reveal failures.

4.3.1 Planning

We perform the current experiment in the same environment of the previous ones and
the application models used in this experiment are a subset of the used in the second
study. Since we do not aim at observing variations of model structure, we consider the 31
models that we generated in the second experiment, with 30 branches, 15 joins, 1 loop
and maximum depth 25.
For this experiment, we define these variables:

Independent variables

• General prioritization techniques (factor): ART_Jac, ART_Man, Fixed_Weights,
and Stoop;

Table 10 Normality test of the loops variation

1 Loop 3 Loops 9 Loops

ART_Jaccard 0.8769 0.4739 0.006094

ART_Manhattan 0.08255 0.8771 0.001863

Fixed_Weights 0.1785 0.7189 0.09979

Stoop 0.786 0.8434 0.1808

p-values for the Anderson-Darling normality tests with 5% of significance from the third experimental design samples.
Normal samples are in bold face.
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Table 11 p-values for tests in the loops variation

1 Loop 3 Loops 9 Loops

0.09984 0.9722 0.8342

p-values for the samples equality tests with 5% of significance from the third experimental design samples. The samples for
1 and 3 Loops we performed an ANOVA and the 9 Loops sample, the Kruskal-Wallis test.

• Failure profiles, i.e., characteristics of the test cases that fail (factor);

– Long test cases – with many steps (longTC);
– Short test cases – with few steps (shortTC);
– Test cases that contains many branches (manyBR);
– Test cases that contains few branches (fewBR);
– Test cases that contains many joins (manyJOIN);
– Test cases that contains few joins (fewJOIN);
– Essential test cases (ESSENTIAL) (the ones that uniquely covers a given edge

in the model);

• Number of test cases that fail: fixed value equals to 1;

Dependent variable

• Average Percentage of Fault Detection - APFD.

A special step is the failure assignment, according to the profile. As the first step, the
algorithm sorts the test cases according to the profile. For instance, for the longTC profile,
the test cases are sorted decreasingly by the length or number of steps. If there are more
than one with the biggest length (same profile), one of them is chosen randomly. For
example, if the maximum size of the test cases is 15, the algorithm selects randomly one
of the test cases with size equals to 15.
Considering the factors, this experiment is a one-factor-at-a-time, and we may pro-

ceed the analysis between the techniques at each failure profile and between the levels at
each technique. In the execution of the experiment, each one of the 31 models were exe-
cuted with 31 different and random failure assigned to each profile, with just one failure
at once (a total of 961 executions for each technique). This number of repetitions keeps
the design balanced and gives confidence for testing normality (Jain 1991).
Based on these variables and in the design, we define the correspondent pairs of

statistical hypotheses: i) to analyze each profile with the null hypothesis of equal-
ity between the techniques and the alternative indicating they have a different
performance (e.g. Considering T = {ART_Jac,ART_Man, Fixed_Weights, Stoop},
H0 : APFD(t1,longTC) = APFD(t2,longTC),∀t1, t2 ∈ T and H1 : APFD(t1,longTC) �=
APFD(t2,longTC), ∃t1, t2 ∈ T), and also ii) to analyze each technique with
the null hypothesis of equality between the profiles (e.g. Considering P =
{longTC, shortTC, manyBR, fewBR, manyJOIN , fewJOIN , ESSENTIAL},
H0 : APFD(ARTJac,p1) = APFD(ARTJac,p2),∀p1, p2 ∈ P and H1 : APFD(ARTJac,p1) �=
APFD(ARTJac,p2), ∃p1, p2 ∈ P). Whether the tests reject null hypotheses, we will consider
it as an evidence of the influence of the failure profile over the techniques.
The experiment execution follows the same steps defined to the model structure exper-

iment. However, as mentioned before, each technique runs by considering one failure
profile at a time.
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4.3.2 Data analysis

By analyzing the profiles separately to test the first set of hypotheses, it is possible to visu-
alize in the boxplots from Figures 5 and 6, significant differences among the techniques,
represented by some lack of overlap among the notches in the boxplots. The notches in
the boxplots are a graphical representation of a confidence interval calculated by the R
software. When these notches overlap, it suggests a better and deeper investigation of
the statistical similarity of the samples. Thereby, the boxplots in the figures already men-
tioned are enough to reject every null hypotheses of the first set, in another words, the
techniques perform different at each failure profile isolatedly.
For testing the second set of hypotheses, from a visual analysis of the boxplots of

the samples in Figure 7, we can see that there are profiles that do not overlap for each
technique, thus the null hypotheses of equality must be rejected. In other words, at 5%
of significance, ART_Jac, ART_Man, Fixed_Weights and Stoop perform statistically
different for every researched profile.
As a secondary analysis, by observing the profiles longTC andmanyBR, in Figure 5, they

incur in similar performances for the techniques, because frequently a test case among
the longest ones are also among the ones with the biggest number of branches. The same
happens with the profiles ShortTC and FewBR, by the same reason.
In summary, the rejection of every null hypothesis of equality is a strong evidence of

the influence of the failure profiles over the performance of the general prioritization

Figure 5 Boxplots with the samples from Long_TC, Short_TC, Many_BR and Few_BR. The boxplots of
the samples of the techniques associated with the Long_TC, Short_TC, Many_BR and Few_BR profiles.
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Figure 6 Boxplots with the samples fromMany_JOIN, Few_JOIN and ESSENTIAL. The boxplots of the
samples of the techniques associated with the Many_JOIN, Few_JOIN, and ESSENTIAL profiles.

techniques. Furthermore, data suggests that the techniques may present better and worse
performances with different failure profiles.

4.3.3 Threats to validity

Regarding conclusion validity, we do not calculate the number of repetitions needed to
achieve a defined precision, we limited the random failure attributions at each profile for
each graph in 31, keeping the balancing principle (Wohlin et al. 2000) and samples with
size greater than, or equal to, 31 are wide enough to test for normality with confidence
(Jain 1991) (Montgomery and Runger 2003).
Construct validity is threatened by the definition of the failure profiles. We choose

the profiles based on data and observations from previous studies, not necessarily the
specific results. Thus, we define them according to our experience and there might be
other profiles not investigated yet. This threat is reduced by the experiment’s objective,
which is just to expose the influence of different profiles on the prioritization techniques
performance, and not to show all possible profiles.

5 Results and Discussion
Analyzing the first study (refer to Section 4.1), even though we cannot expect to know
precisely the rate of failure of a system before test execution, it is worthy investigating
how techniques perform when more or less failures occur. It is often possible to predict
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Figure 7 Boxplots with the samples from the techniques. Boxplot summarizing the data collected from
the executions of all techniques.

failure rate by analyzing the application history or even similar applications. Based on
prediction, a tester can choose the technique that presents the best behavior.
By varying the number of test cases that fail, we can observe differences on the perfor-

mance of the techniques. However, we may not be confident to use only this information
when choosing a technique. On one hand, from the results of the motivational study,
techniques based on random choice have a best performance when the rate of fail-
ure is low, whereas Stoop increases performance as the rate of failures increase and
Fixed_Weights increases performance when the level goes from medium to high. On
the other hand, growth rates do not follow a pattern as well as they are not regular. Fur-
thermore, Stoop and Fixed Weights are mostly based on structural elements of the test
cases and their performance present different patterns. Thus, these results are consonant
with our research hypothesis, which stated that prioritization techniques present differ-
ent abilities of revealing failures, varying the amount test cases that fail in the test suite,
motivating the investigation of the influence of the structure of the model.
For the first experiment, considering models with different structures such as branches,

joins and loops (refer to Section 4.2), we expect that algorithms generate test cases with
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different lengths. For instance, cascade branches (or branches distributed at different lev-
els of the model structure) may lead to a variety of short to long test cases. Moreover, we
expect that test cases may be more or less redundant with respect to covering common
transitions, particularly the more branches, joins and loops the model has, more redun-
dancy the test cases have since they might cover common prefix of the branches and joins
as well as repetitive sequences of loops. Since the techniques investigated either focus on
the use of distance functions or on the presence of certain structures explicitly, we expect
that by focusing on certain structure patterns, we could observe related behavior from the
techniques.
Nevertheless, the configurations of structures we considered for each treatment of the

independent variables do not show statistical difference on the behavior of the studied
techniques, leading us to reject our initial research hypothesis, which stated that the pri-
oritization techniques present different performances considering models with specific
structures.
It is important to remark that each configuration considered may represent specific

kinds of applications. For example, at system level: i) more branches may indicate the
prevalence of alternate and exception flows that do not join with the main flow of the
application; ii) more joins may indicate the prevalence of alternate and exception flows
that join with the main flow; and iii) more loops may indicate the prevalence of repetitive
cycles of execution. In practice, the distribution of these structural elements in the model
depends on the system behavior as well as on the level of modeling. Overall, results show
that from a practical point of view, only based on the structure of themodel, we are unable
to define what is the most effective technique to execute.
By closely analyzing the model for each configuration, we realize that results are influ-

enced only if the test cases that fail cover the structure. This observation motivates the
execution of the experiment presented in Section 4.3.
However, in the second experiment (refer to Section 4.3), we already had some intuition

about techniques being more successful in determined situations, through less con-
trolled studies, but now we have evidence supporting it. These techniques are sensitive
to test cases that fail with different characteristics, as proposed by the data analysis, since
techniques may perform well with failures with a characteristic and bad with another
scenario.
As an example of how the profile of the test case that fail may influence on the per-

formance of the technique, consider one of the models from our study as presented in
Figure 8. From this model, consider a short test case T1 = (AW ).
For this test case, for example, the APFD values obtained in the first trial by the

ART_Jac and Stoop techniques are 0.8373 and 0.0060 respectively. This is because
ART_Jac selects, among the candidates, the test case with the highest minimum distance
to the already prioritized ones and, as soon as T1 appear in the candidate set, it is chosen.
On the other hand, the Stoop technique focus on test cases with more common steps
and, since T1 has just one step and it is unique, this test case is placed in the end of the
sequence.
Now, consider the following long test case: T2 = (A,B,C,D,E, F ,G,H , I, J ,K , L,M,N ,

O,P,Q,R, S,T ,U ,V ,W ,X,Y ). For this test case, the APFD values obtained in the eighth
trial for ART_Jac and Stoop techniques are 0.0662 and 0.1144 respectively. This is
because ART_Jac takes into account the number of branches in common in order to
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Figure 8 Examplemodel among the objects of the experiment. Amodel that composes the sample used
in the third experiment reported in this paper.

select the next test case, through the Jaccard function, and, since T2 has more chance to
have more branches in common with other already prioritized test case, it will appear
just in the end of the sequence. On the other hand, the Stoop technique quickly returns it
since it has many common steps with the other test cases.
After this study, the factor “failure profile” must be considered into any further eval-

uation of prioritization techniques, since it is an important factor for explaining the
performance of prioritization techniques. Its importance corroborates our initial research
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hypothesis, which stated that prioritization techniques present different abilities of reveal
failures, varying the characteristics of the test cases that fail.

6 Conclusions
This paper presents and discusses the results obtained from empirical studies about test
case prioritization techniques in the context of MBT. Furthermore, this paper is an exten-
sion of the study presented in (Ouriques et al. 2013) and gives more evidences favoring
the proposed results, since the conclusions are the same. It is widely accepted that a num-
ber of factors may influence on the performance of the techniques, particularly because
the techniques can be based on different aspects and strategies, including or not random
choice.
In this sense, the main contribution of this paper is to investigate the influence of two

factors: the structure of the model and the profile of the test case that fails. The intu-
ition behind this choice is that the structure of the model may determine the size of the
generated test suites and the redundancy degree among their test cases.
Therefore, this factor may affect all of the techniques involved in the experiment due to

either the use of distance functions or the fact that the techniques consider certain struc-
tures explicitly. On the other hand, depending on the selection strategy, the techniques
may favor the selection of given profiles of test cases despite others. Thereby, whether the
test cases that fail have a certain structural property may also determine the success of
a technique. To the best of our knowledge, there are no similar studies presented in the
literature.
In summary, in the first study, since we perform the experiment with real applica-

tions in a specific context, different growth patterns of APFD for the techniques compose
an evidence of influence of more factors in the performance of the general prioritiza-
tion techniques other than the number of test cases that fail. This result motivated the
execution of the other studies.
On one hand, the second study, which aims at investigating the influence of the num-

ber of occurrences of branches, joins, and loops over the performance of the techniques,
shows that there is no statistical difference on these performances, considering a signifi-
cance of 5%. On the other hand, in the third study, based on the profile of the test case that
fail, the fact that all of the null hypotheses must be rejected may indicate a high influence
of the failure profile on the performance of the general prioritization techniques.
Moreover, from the perspective of the techniques, this study exposed weaknesses asso-

ciated with the profiles. For instance,ART_Jac presented low performance when long test
cases (and/or with many branches) reveal failures and high when short test cases (and/or
with few branches) reveal failures. On the other hand, Stoop showed low performance
with almost all profiles.
Overall, the results may contribute the improvement of prioritization techniques by

addressing the weaknesses exposed. However, from a practitioner point of view, we do not
have enough data to provide guidelines to apply the techniques yet. Generally, the results
obtained point to a tendency that knowledge of which technique performs better for a
given profile can be worthy if the team have some assumption about the characteristics of
the test cases that fail. For example: if they have the assumption that test cases that cover
more branches are more likely to fail because they go through many conditions, then it
can be better to use FixedWeights.
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As future work, we will perform a more complex factorial experiment, calculating the
interaction between the factors analyzed separately in the experiments reported in this
paper. Moreover, we plan an extension of the third experiment to consider other profiles
of test cases that may be of interest. From the analysis of the results obtained, a new
(possibly hybrid) technique may emerge.

Endnotes
aA number of loops distributed in a model may lead to huge test suites with a certain

degree of redundancy between the test cases even if they are traversed only once for
each test case.

bThe pseudomedian is a non-parametric estimator for the median of a population
(Lehmann 1975).
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