
Kodhai and Kanmani Journal of Software Engineering Research
and Development 2014, 2:12
www.jserd.com/content/2/1/12
RESEARCH Open Access
Method-level code clone detection through LWH
(Light Weight Hybrid) approach
Egambaram Kodhai1* and Selvadurai Kanmani2
* Correspondence:
kodhaiej@yahoo.co.in
1Research Scholar, Department of
CSE, Pondicherry Engineering
College, Puducherry, India
Full list of author information is
available at the end of the article
©
A
m

Abstract

Background: Many researchers have investigated different techniques to automatically
detect duplicate code in programs exceeding thousand lines of code. These techniques
have limitations in finding either the structural or functional clones.

Methods: We propose a LWH (Light Weight Hybrid) approach combining textual
analysis and metrics for the detection of method-level syntactic and semantic clones in
C and Java projects. This approach has been experimenting for the detection of all four
types of clones by a specific set of metrics assessment and textual comparison. A tool
named CloneManager has been developed in Java to support the experiments carried
out and to validate the proposed approach.

Results: A benchmark dataset widely referred in the literature and medium to large
size open-source projects developed in C or Java. Java is used for the experiments.

Conclusions: The results show that the proposed approach is able to detect all four
types of clones accurately with the precision and recall values ranging from 88%
to 100%.

Keyword: Clone detection; Function clones; Source code metrics; String-matching
1 Introduction
Copying code fragments and then reusing them through the paste option with or with-

out minor modification or adaptation is called “Code Cloning” and the pasted code

fragment is called a “clone”. Most of the software systems comprise a substantial quan-

tity of code clones; typically 10–15% of the source code in large software systems are

part of single or more code clones (Kapser and Godfrey 2006).

In literature, (Bellon et al. 2007) has classified and defined four types of clones. A

number of techniques have been proposed for the detection of type-1, type-2, and

type-3 clones as per the definition of clone literature. However, for type-4 clones called

semantic clones, very few attempts were made with limitations to detect them (Marcus

and Maletic 2001; Komondoor and Horwitz 2001; Krinke 2001; Gabel et al. 2008; Liu

et al. 2006). So far, there is a lack of technique for the detection of all four types of

clones in literature.

Clones may be useful from different points of view (Kapser and Godfrey 2008).

Clones carry important domain knowledge and thus studying clones may assist in un-

derstanding it (Pate et al. 2011). Moreover, the software clone research has promoted

academic-industrial collaboration. Software Practitioners used to copy and modify the
2014 Kodhai and Kanmani; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly credited.

mailto:kodhaiej@yahoo.co.in
http://creativecommons.org/licenses/by/4.0

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 2 of 29
www.jserd.com/content/2/1/12
existing project’s clones frequently to meet the needs of the clients and users in their

new projects (Petersen 2012).

A number of clone detection techniques have been proposed in literature. Among

them, Text-based techniques are lightweight and are able to detect accurate clones with

higher recall values, where recall refers to the overall percentage of clones exist in the

source code that have been detected by the clone detector. However, it failed to detect

suitable syntactic units (Bellon et al. 2007). Token-based techniques are fast with high

recall, but failed in precision. Precision refers to the quality of clones returned by the

clone detector. Parser-based techniques are worthy in detecting syntactic clones. How-

ever, they give low recall values (Bellon et al. 2007). Metric-based techniques are able

to detect syntactic as well as semantic clones with high precision values. They are also

very fast in detecting both syntactic and semantic clones. However, they fail to detect

some of the actual clones (Bellon et al. 2007). PDG (Program Dependency Graph)

based techniques are able to find more semantic clones, where PDG is a directed graph

which represents the dependencies among program elements in a program. However,

sub-graph comparisons are very costly (Koschke et al. 2006). These limitations in exist-

ing methods provide a path to investigate hybrid or combinational techniques in order

to overcome them.

Although numerous techniques and tools have been proposed for code clone detec-

tion (Kamiya et al. 2002), only little has been known about, which detected code clones

are appropriate for refactoring and how to extract code clones for refactoring. A tech-

nique that helps to process the code clones is called Refactoring. Refactoring is defined

as “restructuring an existing body of code, altering its internal structure without chan-

ging its external behaviour” (Fowler 1999). By refactoring the clones detected, one can

potentially improve understandability, maintainability and extensibility and reduce the

complexity of the system (Fowler 1999).

The granularity of clones can be free with no syntactic boundaries or fixed within

predefined syntactic boundaries such as method or block (Roy and Cordy 2007). Clone

granularity is fixed at different levels, such as files, classes, functions/methods, begin-

end blocks, statements or sequences of source lines.

Clone detection techniques have been proposed with free granularity, mostly with

more than six lines of code (Kamiya et al. 2002; Koschke et al. 2006). On the analysis

of different clone detection techniques, most of the matches tend to be methods/func-

tions of 1-5 lines of code. Most of these methods are setter/getter functions which are

valid set of clones. Only limited detectors used function clones as granularity. Function/

Method clones are simply clones that are restricted to refer to entire function or

method. Function/Method clones appear to be the most promising points of refactoring

for all clone types. They are larger and tend to have a significant amount of code in

common.

The techniques that return only Function/Method level clones are suitable for archi-

tectural refactoring as they represent a meaningful code segment. It is not so in the

case of detecting clones with fixed number of lines in a continuous unsegmented file of

code. Tools have been proposed in the literature, which analyses these clones further to

extract meaningful codes for refactoring support (Kapser and Godfrey 2006; Ueda et al.

2002; Zibran and Roy 2013). Function/Method clones are the meaningful clones which

are also useful for software maintenance and evolution phases. Thus, it motivates

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 3 of 29
www.jserd.com/content/2/1/12
researchers to fix the granularity as function/method level (Mayland et al. 1996; Roy

and Cordy 2008).

In this paper, a LWH (Light Weight Hybrid) approach has been proposed with a

combination of textual comparison and metrics computation. As there is no need for

external parsing, this approach is of light weight. Moreover, a model has been arrived

to detect syntactic and semantic clones which will cover all four types of clones. For ex-

perimental validation, a tool has been developed using the proposed LWH approach to

detect method/function level clones for both C and Java projects. This tool has been

developed in Java and it has been named as CloneManager. Experimental results show

that, the proposed tool CloneManager is efficient and accurate in detecting all types of

clones.

This paper is presented in five major sections. Section 2 discusses the literature re-

view for clone detection. Section 3 introduces the basic definitions and background de-

tails of code clone detection. The detailed implementation of the proposed method as a

tool is elaborated in Section 4. Section 5 summarizes the experimental results. Section 6

concludes the paper.

2 Literature review
There has been more than a decade of research in the field of software clones. To

understand the growth and trends in different dimensions of cloning research, we car-

ried out a quantitative review of related publications. Clone detection research has

proved that software systems have 9%-17% of duplicated code (Zibran et al. 2011).

(Thummalapenta et al. 2009) indicated that in most of the cases, clones are changed

consistently and for the remaining inconsistently changed cases, clones undergo inde-

pendent evolution. Effective code clone detection will support perfective maintenance.

Up to the present, several code clone detection methods have been proposed (Petersen

2012; Al-Batran 2011; Leitner et al. 2013). Comparison and evaluation of code clone

detection techniques and tools have been carried out by (Bellon and Koschke 2014;

Bellon et al. 2007) and (Roy and Cordy 2007; Roy et al. 2009).

A clone detection process is usually done by converting the source code into another

form that is handled by an algorithm to detect the clones. A rough classification is then

carried out depending on the level of matches found. Token-based techniques (Li et al.

2006; Leitao 2004; Basit et al. 2007) use a similar sequence matching algorithm. How-

ever, its accuracy is not that adequate as the normalization, and also token conversion

process may bring false positive clones in result set. Many of the clone detection ap-

proaches have used Abstract Syntax Tree (AST) and suffix tree representation of a pro-

gram to find clones (Evans et al. 2009; Evans and Fraser 2005; Greenan 2005; Pate et al.

2011; Koschke 2012). Some of the clone detection techniques use an AST that is gener-

ated by a pre-existing parser. (Baker 1997) describes one of the earliest applications of

suffix trees for the clone detection process. An algorithm based on feature-vector com-

putation over AST was applied by Lee et al. (2010) to detect similar clones. However,

all of them use parsing, which results in heavy-weighted approach.

Lighter weight techniques were proposed in the literature without the use of parsing

namely text-based techniques and metrics-based techniques. Text-based techniques

(Wettel and Marinescu 2005; Ducasse et al. 1999) are investigated by comparing two

code fragments with each other to find longest common subsequences of same text/

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 4 of 29
www.jserd.com/content/2/1/12
strings to detect clones. Though these techniques detect clones they are not low in pre-

cision values. Metric-based techniques identify a set of suitable metrics to detect a par-

ticular type of clone. By a quantitative assessment of the metric values in the source

code, the clone detection is done. (Kapser and Godfrey 2004) chaos Cyclomatic com-

plexity as the corroboration metric. However, they have only proved that their tech-

nique works well to locate the clone segments across several versions of a software

system using a very small test set.

Hybrid techniques were also proposed in the literature. (Marco Funaro et al. 2010)

proposed a hybrid technique using Abstract Syntax Tree to identify clone candidates

and textual methods to discard false positives. (Leitao 2004) also proposed a hybrid ap-

proach with the combination AST and PDG. Both approaches use parsing which results

in heavy-weight. As text-based techniques preserve higher recall, metrics-based tech-

niques preserve higher precision and both of them are light-weight, a hybrid technique

with the combination of textual analysis and metrics, is experimenting in this paper for

the detection of all four types of clones.
3 Background
Clones may be compared on the basis of the program text that has been copied. A re-

lated definition of cloning was described by (Bellon et al. 2007), who defined the types

of code clones based on the degree and type of similarities.
Textual similarity

� Type-1 is an exact copy without modifications (except for whitespace and comments).

� Type-2 is a syntactically identical copy; except some changes in variable name, data

type, identifier name, etc.

� Type-3 is a copied fragment with further modifications. Statements can be changed,

added or removed in addition to variations in identifiers, literals, types, layout and

comments.
Functional similarity

� Type-4 Two or more code fragments that perform the same computation, but

implemented through different syntactic variants.

Table 1 illustrates the four types of clones. The clone pair (a, b) is of type-1 which

have exactly the same code except the alignment, space and comment. The clone pair

(a, c) is of type-2 which have minor differences in function names and parameters. The

clone pair (a, d) is of type-3 with additional statements in code, as they need not be
Table 1 Illustration of four types of clones

Source code(a) Type-1 clone(b) Type-2 clone(c) Type-3 clone(d) Type-4 clone(e)

int main()
{ int x = 1; int
y = x + 5; return y; }

int main()
{ int x = 1; int
y = x + 5; return
y;//output }

int func2()
{ int p = 1; int
q = p + 5; return q; }

int main()
{ int s = 1; int t = s + 5;
t = t/++s; return t; }

int func4()
{ int n = 5;
return ++n; }

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 5 of 29
www.jserd.com/content/2/1/12
functionally similar. The clone pair (a, e) is of type-4 clones with no similarity in code,

but the output of the functions are same.

The results of the code clone detection are presented as clone pairs and clone

clusters.

� Clone Pair (CP) or Code Fragment (CF): pair of code portions/fragments that are

identical or similar to each other.

� Clone Cluster (CC) or Clone Class or Clone Set (CS): the union of all clone pairs

that have code portions in common.

The quality of clone detection by any tool is assessed by two key parameters precision

and recall as defined in Figure 1.

Precision

Precision is the ratio of the number of correctly detected clones to the total number of

detecting clones by the proposed tool.

Recall

Recall is the ratio of the number of correctly detected clones by the proposed tool to

the total number of actual clones in the project by reference values.
4 Methods
This section describes the proposed LWH approach for automatic detection of function

clones in C or Java source code. A tool CloneManager has been developed in Java in

order to experiment the proposed approach. This tool accepts a C or Java source

project as the input and separates the functions/methods present in it. A built-in hand-

coded parser (Moonen 2001) is used to process these methods following an island-

driven parsing approach (Moonen 2001). Having identified the methods, different

source code metrics is computed for each method and stored in a database. With the

help of these metric values the near equal methods are extracted and are subjected to

textual comparison to detect potential clone pairs.
C-
Correctly
detected
clones

A- Actual clones D- Detected clones

* 100 * 100

False
Negatives

False
Positives

Figure 1 Illustration of precision and recall.

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 6 of 29
www.jserd.com/content/2/1/12
The overall process is carried out in three major stages: Pre-processing, detection

and post-processing. Figure 2 shows the overall system diagram of the proposed system.

The following subsections, explain the steps in each of the stages.

4.1 Pre-processing

This stage includes the process of comment, white space removal and source code con-

version or standardization (formatting). All files are scanned for filtering the uninterest-

ing statements such as comments and white spaces. The final step is re-structuring of

the code into a standard form which is needed for establishing clone fragments similar-

ity (Ducasse et al. 2006). This helps in the identification of the cloned methods, thus

yielding a significant gain in the Recall. Figures 3 and 4 illustrates the removal of com-

ments and white spaces and statement standardization.

4.2 Method detection

Another potentially useful analysis could be to extract the methods alone, as the granu-

larity is method-level. The standard form of source code scans for the detection of

methods of adopting an ‘island-driven parsing’ (Moonen 2001). In order to extract iso-

lated phrases or to detect certain features of a text island parser is used instead of a

full-fledged parser.

It is a grammar-based method for extracting parts of a program as required from un-

wanted parts which need not be precisely parsed. In the island driven parsing system
Figure 2 Schematic diagram of CloneManager.

Figure 3 Process of comment and white space removal in pre-processing.

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 7 of 29
www.jserd.com/content/2/1/12
(Moonen 2001), parsing does not start at the beginning of the word network, but rather

can start at confident regions within the network, at places known as islands. It pro-

vides a mechanism to find out the required elements to be compared.

Using this approach, the method definitions are extracted and collected by means of

a hand-coded parser and saved for further reference. An interesting fragment is the

piece of code that can be parsed and reduced to a nonterminal, method declaration.

This approach takes text files and returns the structured fragments containing methods.

For each method, it keeps track of the exact location within the file. An extracted method

consists of a list with three elements such as (i) the method name (ii) the file name and

the methods start and end positions (iii) the method content.
4.3 Template conversion

In addition to the standardization of source code, template conversion is exploited.

This converts the original source code into a new form, having a uniform pattern for
Figure 4 Statement standardization.

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 8 of 29
www.jserd.com/content/2/1/12
the permitted equivalent constructs between the clone pairs of the same type. An

equivalent constructs contain invariant and variant parts as defined below.

� The invariant is part of the source code construct which is not expected to change

between the clone versions.

� The variant is part of the source code constructs which are allowed to have

changes among clone versions.

In this tool, variant part has been employed for detection of type-2, type-3 and type-4

clones.
4.3.1 Template conversion for type-1 and type-2

For type-2, as per the definition of literature the function identifiers, variable names,

data-types, etc., are the only allowed differences in functions. Hence, to minimize the

differences between the code fragments we bring out a uniform intermediate represen-

tation of the source code.

In case of type-2 detection, clone methods may contain a difference in the identifiers,

literals, types, white space, layout and comments. To match all these differences, a

common template is arrived. For instance, to avoid name differences, the names of the

identifier are converted into common name as X and all the data-type declarations are

converted into common data-type namely DAT. Figure 5 shows the template conver-

sion for type-2 clones.
4.3.2 Template conversion for type-3 and type-4

In type-3 and type-4 clone detection, various constructs like iterations and branches

may also change between clone methods. A slightly different form of representation is

needed to be generated. Thus the following representations help in generalizing the

various deviations and constructs and in identifying the various types of cloned

methods.
4.3.2.1 Iterative equivalence The control looping structures are for, while and dowhile.

The three patterns present in looping are initialization, condition and increment/decre-

ment; these are separated and written, each in a separate line. The common template

form iteration helps in replacing the above three patterns. Both open braces and close

braces are neglected while writing due to the changes in the order of the statement

changes in order and nested statements in the source code. Table 2 shows the different

types of variants among the source code. Figure 6 shows the template conversion for

type-3 & type-4 clones.
4.3.2.2 Conditional equivalence The conditional structures are if, else and elseif. In

these statements, the conditions are separately written in new line following the tem-

plate form selection. The nested operations are split separately and rewritten in each

new line. In case of the ternary operator “?:” the condition and other statements are

separately printed in order to get the similar pattern.

Figure 5 Template conversion for type-2 clones.

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 9 of 29
www.jserd.com/content/2/1/12
4.3.2.3 Input equivalence The input statements such as scanf, system.in, input.read-

line. In these statements, the variable alone will follow the template form read. For the

multiple inputs, single input statements are separately written on each line as illus-

trated in Table 2.
4.3.2.4 Output equivalence The output statements such as printf, system.out. In

these statements, the output variables alone follow the template form write. The

print statements which are just printing any comments or statements are neglected.

Also the multiple outputs, single print statements are separately written on each

line.
4.3.2.5 Declaration equivalence The declaration statements start with keywords

such as char, int, long int, double, float, and string. In this case, multiple declarations

in a single statement are split and written, with each line as a single declaration

statement. Table 2 shows the conversion of multiple declarations into single

declaration.
4.3.2.6 Braces The braces are used in the programming languages for grouping the

statements of looping and nesting. Both the open and close braces are neglected while

writing due to the changes made in ordering.
4.4 Metrics computation

The previous method detection step produces a set of methods. In this step, we calcu-

late the metric values for each of these methods to extract the potential clone pairs. A

set of 12 count metrics has been proposed for the detection of these cloned methods.

Table 2 Types of variants among the source code patterns

S.No Equivalence category Possible constructs Proposed pattern

1 Iterative equivalence for iteration

while <initial>

do-while <condition>

<incre/decre>

2 Conditional equivalence if selection

else <condition>

else-if

?:

switch

3 Input equivalence scanf read <variable>

system.in

input.readline

4 Output equivalence printf write <variable>

system.out

5 Declaration equivalence int Multiple Declaration

char to Single line declaration

float

double Example

string int x

int y

Example int z

int x,y,z char c

char c,s char s

6 Braces { } Braces are removed in the code

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 10 of 29
www.jserd.com/content/2/1/12
Metrics, which are calculated using the simple counting formula are called as count

metrics. These count metrics have been proposed for each type of cloned methods

based on the necessity. Table 3 gives the list of metrics used for the detection of clones

and their descriptions are briefed as follows:

1. No. of Lines: This indicates the number of effective lines of code in each method

presents between the ‘{’ and ‘}’, indicating the start and end of the function

definition.

2. No. of Arguments: This indicates the total number of arguments passed to the

method irrespective of the data-types and the order of the arguments passed.

3. No. of Local Variables: The count value of the number of local variables declared

within the function definition is represented by this metric. The number of

variables used by the function or the number of global variables or the number of

times the variables are used is not considered.

4. No. of Function Calls: This value gives a picture of the number of function calls made

by the method. It is usually a measure of the flow of control in a source code and it

gives an overall view of the functionality of both the defined and the called methods.

Figure 6 Template conversion for type 3 & type 4 clones.

Ta

S.

1

1

1

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 11 of 29
www.jserd.com/content/2/1/12
5. No. of Conditional Statements: This includes the conditional statements in each

method like the number of ‘if ’, ‘else if ’ and ‘else’ statements, etc., defined in the

method. It is considered important as it determines the overall semantics of the

method.

6. No. of Iteration Statements: This gives a count of the iterative control structures

used within the method definition. Statements defining “while”, “do” and “for” are

considered in this metric. These are also important in identifying the pattern of

execution of the method.
ble 3 Metrics applied to methods

No Metrics

1 No. of Lines

2 No. of Arguments

3 No. of Local Variables

4 No. of function Calls

5 No. of conditional statements

6 No. of iteration statements

7 No. of Return Statements

8 No. of Input Statements

9 No. of Output Statements

0 No. of Assignments through Function Calls

1 No. of Selection Statements

2 No. of Assignment Statements

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 12 of 29
www.jserd.com/content/2/1/12
7. No. of Return Statements: It gives the number of return structures defined within

the method. It indicates the number of exits present within the method definition.

8. No. of Input Statements: The various types of input statements used in the method

to obtain the values of variables, the choice of the user, etc., are identified and

counted. These play a vital role in judging the similarities between various methods.

9. No. of Output Statements: Similar to the count of input statements, the output

statements also make a significant contribution to the analysis of the content of the

method. Simple output statements used for the purpose of formatting the output

and information texts are neglected while the valid values and results from the

method passed to the buffers, console, etc. are taken under consideration.

10. No. of Assignments through Function Calls: This metric count the number of

variables which gets the value by the assignment of a return value from a function

call. These give an exclusive classification for the variables and their values and

hence are taken into interest.

11. No. of Selection Statements: This metric is used for identifying selection

statements in each method which include conditional operators, cases, etc. These

statements along with the conditional statements produce branches and are hence

analyzed to find out the pattern of execution of the method.

12. No. of Assignment Statements: This metric gives the count of the number of

assignment statements in each method that modify the values of the various

variables used in the method. The statements may be simple assignments,

arithmetic expressions, unary operators, etc.

Apart from these 12 count metrics, four more metrics are also used. The features examined

for these metric computations are, Global and local variables defined or used, Functions called,

Files accessed, I/O operations and defined/used parameters passed by reference and by value.

Let S be a code fragment. The description of the four metrics which are additionally

used is given below. A detailed description is present in literature (Adamov 1987,

Fenton 1991, Moller 1993). Note that these metrics are computed compositionally from

statements, two functions (in C) and methods (in Java).

13. S COMPLEXITY(S) = FAN OUT(S)
where FAN OUT(S) is the number of individual function calls made within S.

14. D COMPLEXITY(S) = GLOBALS(S)/(FAN OUT(S) + 1)

where, GLOBALS(S) is the number of individual declarations of global variables used or up-

dated within S. A global variable is a variable which is not declared in the code fragment S.

15. MCCABE(S) = 1 + d, where d is the number of control decision statements in S.

16. ALBRECHT(S) = p1 � VARS USED AND SET Sð Þþ
p2 � GLOBAL VARS SET Sð Þ þ
p3 � USER INPUT Sð Þ þ
p4 � FILE INPUT Sð Þ

8>><
>>:
where,

VARS USED AND SET(S) is the number of data elements set and used in the statement S,

GLOBAL VARS SET(S) is the number of global data elements set in the statement S,

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 13 of 29
www.jserd.com/content/2/1/12
USER INPUT(S) is the number of read operations in statement S,

FILE INPUT(S) is the number of files accessed for reading in S.

The factors p1, .., p4, are weight factors. The values chosen are p1 = 5, p2 = 4, p3 = 4

and p4 = 7. These values are chosen according to the literature (Adamov 1987).

All 16 metrics are calculated for each method and stored for comparison and extrac-

tion processes. For type-1, type-2 and type-4, a constraint is posed that a cloned

method pair must have an identical set of metric values. Thus, the database records

containing identical metric values for method pairs are shortlisted for the type-1, type-

2 and type-4 clone detection. The metrics are computed for each of the methods and

are compared to be shortlisted by the formulas as indicated in Table 4.
4.5 Type-1 clone detection

With the shortlisted set of methods that are obtained, a textual comparison of the

method pairs in the formatted and normalized code is done to identify the exactness of

the extracted pairs. As per the definition, exact copy and paste of source code without

any modification is called as type-1 clones. Methods having an exact equality score,

which means, number of similar lines must be equal to the total number of lines in the

method, are declared as type-1 cloned methods. The methods with same computed

metric values and same as a textual comparison are declared as clone pairs. The detec-

tion criteria used for the identification of types of clones are tabulated in Table 4.
4.6 Type-2 clone detection

Type-2 cloned methods are syntactically identical code fragments except for variations

in identifiers, literals, types, white space, layout and comments. Hence the textual com-

parison is performed on the template code created by the tool. The methods with the

same computed metric values and same patterns for template comparison are short

listed as clone pairs. The comparison in the template identifies type-1 cloned method

along, with type-2 cloned methods. So they need to be removed separately. Further, for

this reason textual comparison with original source code is compared to identify the

differences in the parameters.
4.7 Type-3 clone detection

Copied code fragments with further modifications like statements can be changed,

added or removed are considered as type-3 clones. In this case Range values of the cal-

culated metrics are considered rather than the original values due to the wide variation

in the syntactical structure of the methods. Thus to identify the clones, two different

Range of metric values is identified which are suitable to detect type-3 clones. These
Table 4 Criteria for clone types detection

Clone
type

Standardized source code Template code

Metrics comparison Textual comparison Template comparison

Type-1 Same Same -

Type-2 Same Difference in Parameters Same

Type-3 Range1 >=90% - Range2 >=85%

Type-4 Same No match Same

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 14 of 29
www.jserd.com/content/2/1/12
Range values are calculated for the methods in pairs. Range1 is the ratio of the actual

metric value to the average metric value in the methods which are suspected to be clones.

Range1 ¼ Actual metric value of method � 100
Average metric value of methods

If any method is having more than 90% value for Range1, they are shortlisted under
the possibilities for type-3 method clones. Then Range2 is calculated as the ratio of

equal number of lines which are similar to the suspected method by the total number

of lines in a method in the template code.

Range2 ¼ No: similar lines in a method � 100
Total no: of lines in a method

The method pairs having more than 85% values of Range2 in template methods are
declared as type-3 clones. In the literature, there is no clear range specified for type-3

clones. The Range1 and Range2 values are equal for type-1, 2 and 4. Hence, for type-3

range has been explored with different values from 85% to 100%, and arrived this

threshold value as a range after so many trial rounds.

4.8 Type-4 clone detection

Type-4 clones are the results of semantic similarity between two or more code frag-

ments. In this type of clones, the cloned fragment is not necessarily copied from the

original. Two code fragments may be developed by two different programmers to im-

plement the same kind of logic, making the code fragments similar in their functional-

ity. Thus the semantics of the cloned fragments remain the same while the structural

and syntactical representation may show changes.

For type-4, first the two considered methods are taken and their computed metric

values are considered. If the computed metric values are same for these two methods,

then they are compared with the template methods. If they are also same, then the text-

ual comparison of the source code is checked. If they are completely different, then

they are categorized under type-4.

4.9 Post-processing

The output from the previous phase is in the form of clone pairs. The results of the

tool CloneManager are given as clone pairs and clone clusters. The identified clone

methods called as “potential clone pairs”, are then clustered separately for each type

and the clusters are uniquely numbered. Clustering is the process of grouping the clone

pairs into classes or clusters so that clone pairs within a cluster are highly similar to

one another, but are very dissimilar to clone pairs in other clusters. These clone pairs

and clusters of all four types of clones are stored each in a text file separately.

5 Results and discussion
To validate the proposed LWH approach, the performance of the tool CloneManager is

assessed for detecting the function clones in a number of open source systems. Based

on the literature, Bellon’s benchmark dataset (Bellon et al. 2007) has been chosen for

code clone data which provides the details of reference set for eight software systems.

For the remaining unclassified data, clone details are collected through manual

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 15 of 29
www.jserd.com/content/2/1/12
verification process. Moreover, the experiments are carried out and presented as guid-

ance provided by Wohlin et al. (2012).
5.1 Experimental setup

To evaluate the tool, source code of seven C projects and seven Java projects have been

used. The experimental analysis has been carried out with a medium sized C project

Weltab 11,000 lines to a large sized C project called Linux with 6,265,000 lines. Table 5

gives the size details of the projects, namely # files: number of files in the project,

KLOC: number of thousand lines of code in the project and #methods: number of

functions/methods in the project.

(Bellon and Koschke 2014; Bellon et al. 2007; Koschke et al. 2006) also measured

the precision (refer section 3) and recall (refer section 3) of clone detection tools.

Bellon created a benchmark set of clones by random sampling and evaluating a ran-

dom subset of the union of clones detected by all clone detection tools in the study.

This resulted in an oracled set of clones known to be true positives. Each reference

clone was classified into one of three types: exact clones (Type-1); parameterized

clones (Type-2); and clones with additional changes (Type-3). Six clone detection

tools were used in the study: Dup (token-based), CCFinder (token-based), CloneDr

(AST sub–tree), Duplix (PDG), CLAN (AST metrics), and Duploc (normalized lines

of code).

Bellon’s work produced the results for four C projects, namely Cook, Postgresql,

Snns, Weltab and four Java projects, namely Eclipse-ant, Java netbeans-javadoc,

Eclipse-jdtcore, J2sdk-swing. Finally, the precision and recall values in percentage

are measured for each project by all the tools. Moreover, in literature, some re-

searchers have used Bellon’s benchmark for evaluation of their technique (Koschke

et al. 2006; Selim et al. 2010; Hotta et al. 2014). Hence, in order to evaluate the

proposed tool CloneManager, Bellon’s benchmark has been adopted. For the

remaining six projects, manual validation is carried out for the purpose of

evaluation.
Table 5 Overview of the open source projects used by CloneManager

Language Project name #files KLOC # methods

C Cook 287 70 1362

Apache-httpd-2.2.8 496 275 4301

Postgresql 314 202 4669

Snns 138 94 2201

Weltab 39 11 123

Wget 23 17 219

Linux-2.6.24.2 9491 6265 154977

Java Eclipse-ant 161 35 1754

EIRC 54 11 588

Java Netbeans-Javadoc 97 14 972

Eclipse-jdtcore 582 148 7383

JHotDraw 5.4b1 233 40 2399

Spule 50 13 420

J2sdk-swing 414 204 10971

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 16 of 29
www.jserd.com/content/2/1/12
5.2 Results

The results of the experiments are summarized, in this section. It presents the numbers

of clone pairs and clone clusters detected for different categories of clone types by our

proposed tool CloneManager. In Table 6, the third column is the clone type-1 with the

number of detected clone pairs and the clone clusters. Columns 4, 5 and 6 hold the

same set of data for type-2, 3 and 4 respectively.

From the data presented in Table 6, the following observations were made.

� Linux with 6265,000 lines has only 39119 clone pairs in total. On the other hand,

J2sdk-swing with only 204,000 of lines has 27559 clone pairs in total. This shows

that, the number of lines in the projects is not directly proportional to the number

of clone pairs.

� The smallest size project in our observation was Weltab with 11,000 lines.

However, it had 333 clones in total.

� It is interesting to note, Wget has no type-1 matches, which means that they do

not have exact functions in the code. The size of Wget is 17,000 lines. Moreover,

they have the least number of clone pairs 17 in total.

On comparing the clone types obtained it has been observed that the no. of clones in

type-2 clones is higher than type-1 clones and less type-3 clones; all projects have the

least number of type-4 clones. This shows us that, the number of clones increases as

the type increases and falls down for the type-4. In other words, the number of clones

increases in textual similarity and decreases in functional similarity. These observations

lead to an interesting inference: programmers do not write code with different logic for

the same external behaviour.

On analysing the experimental results it has been observed that, on average, above 15%

of the methods in open source Java code is type-1 clones, whereas only above 2.5% of C
Table 6 CloneManager: number of detected clones pairs and clone clusters

S.No Project name Type-1 Type-2 Type-3 Type-4

Clone
pairs

Clone
clusters

Clone
pairs

Clone
clusters

Clone
pairs

Clone
clusters

Clone
pairs

Clone
clusters

1 Cook 18 5 157 30 280 98 7 3

2 Apache-httpd-2.2.8 183 107 242 143 711 276 10 4

3 Postgresql 28 4 240 42 530 203 7 3

4 Snns 109 63 160 86 495 191 9 4

5 Weltab 46 8 115 11 160 20 12 5

6 Wget 0 0 4 2 11 2 2 1

7 Linux-2.6.24.2 5953 1505 7386 2265 25767 7918 13 5

8 Eclipse-ant 363 92 372 96 426 119 10 4

9 EIRC 117 35 119 35 149 47 6 3

10 Java Netbeans-Javadoc 193 80 199 83 304 110 8 3

11 Eclipse-jdtcore 1427 323 5573 587 4378 660 15 7

12 JHotDraw 5.4b1 291 137 299 142 598 208 10 4

13 Spule 60 11 69 14 113 19 4 2

14 J2sdk-swing 8115 516 8205 558 11209 843 30 14

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 17 of 29
www.jserd.com/content/2/1/12
functions are type-1 clones. Thus it shows that function clones appear more in open

source Java code than C. After analysing the detected clones, it is observed that this

is due to the large number of ‘small getter and setter methods’ in Java programs

which are not present in C. From overall analysis, it has been observed that the level

of cloning is found to be less in C than Java projects. Also, it is found that C pro-

jects have very less type-1 clones, less than 10% in some and to a large extent inde-

pendently of the system size.

As a result of all these analysis, it could be inferred that,

� Most of the Java systems have significantly fewer clone clusters than clone pairs,

indicating the fact that there are many pairs of functions in the systems that are

similar to each other.

� Average number of clone pairs per clone cluster is more or less consistent for C

and Java systems for different clone types.

� C systems show a faster growing ratio for type-3 clones than the Java systems, indicating

the fact that there might be more type-3 clones in the C than the Java systems.

5.3 Procedure to determine reference data

The Bellon’s benchmark (Bellon and Koschke 2014) results are used for the tool evalu-

ation. Bellon’s benchmark has evaluated 8 projects for different tools (Cook, Postgresql,

Snns, Weltab, Eclipse-ant, Java netbeans-javadoc, eclipse-jdtcore and J2sdk-swing). He

has evaluated experimental result with the manually evaluated values as reference

values, which was only 2%. However, he produced his complete experimental results

for all projects. Thus the results are taken from his benchmark, assuming that they are

accurate. The complete results of Bellon’s tool experiment are available at http://www.

bauhaus-stuttgart.de/clones/. For the remaining six projects (Apache-httd-2.2.8, Wget,

Linux-2.6.24.2, EIRC, Jhotdraw 5.4b1 and Spule), which are not available in Bellon’s

benchmark, manual evaluation was carried out with the help of semi-automated tools.

Using the standardization tool named fscodeformat64, both C and Java codes are

standardized. Comments above the methods are examined carefully, which informs

the method description. This helps to analyse the methods, with similar semantic

methods, may be type-4 clones. These methods alone are extracted separately and by

checking external behaviour, type-4 clones are detected. All the methods are extracted

by removing the other codes by simple program developed in Java. The methods with

similar codes are detected using another simple program. They are counted as type-1

clones and extracted separately in a file. Then the manual process is carried out to de-

tect the type-2, 3 clones.

Two students in a batch are allocated for the manual detection of clones for 2 open

source projects. They took 15 days training from the faculty, before starting their work.

They took six months to complete this task. Two batches are allocated in parallel and

thus 14 students helped to evaluate this work manually and took 21 months to

complete this task. Moreover, one batch students' results are also verified by the other

batch, mutually. Finally, to cross check the accuracy of these manual processes, some

samples clones have been picked from the reference set of data and monitored whether

these clones have been detected by the students. To carry out this evaluation process,

misclassification is calculated as follows

http://www.bauhaus-stuttgart.de/clones/
http://www.bauhaus-stuttgart.de/clones/

Table 7 Misclassification report for sample clones

Project Actual
clones [A]

Detected
clones [D]

Correctly
detected
clones [C]

False
negatives
[N]

False
negatives
in %

False
positives
[P]

False
positives
in %

Cook 14 14 14 0 0 0 0

Apache-httpd-2.2.8 20 20 19 1 5 0 0

Postgresql 11 11 11 0 0 0 0

Snns 14 15 14 0 0 1 6

Weltab 10 10 10 0 0 0 0

Wget 8 8 8 0 0 0 0

Linux-2.6.24.2 20 20 20 0 0 0 0

Eclipse-ant 15 15 14 1 6 0 0

EIRC 13 13 13 0 0 0 0

Java Netbeans-Javadoc 10 10 10 0 0 0 0

Eclipse-jdtcore 16 16 16 0 0 0 0

JHotDraw 5.4b1 24 24 24 0 0 0 0

Spule 15 16 15 0 0 1 6

J2sdk-swing 21 21 21 0 0 0 0

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 18 of 29
www.jserd.com/content/2/1/12
1. False negative in % ¼ N½ �
A½ � � 100

2. False positive in % ¼ P½ �
D½ � � 100

Where False Negative [N] = Actual clones [A] – correctly detected clones[C] which

reports the number of clones failed to be detected.

False Positive [P] = Detected Clones [D] – correctly detected clones[C] which reports

the number of clones wrongly detected as clones.

Actual clones [A] are the reference clones.

The Table 7 shows the misclassification report for the sample clones considered.

From the Table 7, it is clear that the manual detection of clones is merely correct.
Table 8 CloneManager: precision and recall of type-1 clones

Project name Actual
clones (A)

Detected
clones (D)

Correctly detected
clones (C)

Precision % Recall %

Cook 18 18 18 100 100

Apache-httpd-2.2.8 203 192 183 95 90

Postgresql 28 29 28 96 100

Snns 118 110 109 97 92

Weltab 46 46 46 100 100

Wget 0 0 0 - -

Linux-2.6.24.2 6764 6470 5953 92 88

Eclipse-ant 382 374 363 97 95

EIRC 124 117 117 100 94

Java Netbeans-Javadoc 196 205 193 94 98

Eclipse-jdtcore 1603 1585 1427 90 89

JHotDraw 5.4b1 303 296 291 98 96

Spule 61 60 60 100 98

J2sdk-swing 8820 8196 8115 99 92

Table 9 CloneManager: precision and recall of type-2 clones

Project name Actual
clones (A)

Detected
clones (D)

Correctly
detected
clones (C)

Precision % Recall %

Cook 160 160 157 98 98

Apache-httpd-2.2.8 252 249 242 97 96

Postgresql 250 252 240 95 96

Snns 161 170 160 94 99

Weltab 115 115 115 100 100

Wget 4 4 4 100 100

Linux-2.6.24.2 7774 8116 7386 91 95

Eclipse-ant 379 422 372 88 98

EIRC 126 132 119 90 94

Java Netbeans-Javadoc 207 199 199 100 96

Eclipse-jdtcore 6057 5686 5573 98 92

JHotDraw 5.4b1 321 299 299 100 93

Spule 71 73 69 94 96

J2sdk-swing 8728 8918 8205 92 94

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 19 of 29
www.jserd.com/content/2/1/12
5.4 Evaluation of the tool CloneManager

From the standard benchmark results, a reference set is obtained for the evaluation of

the parameters precision and recall. These values have been evaluated for all four types

of clones and are given in Tables 8, 9, 10 and 11 respectively.

Table 8 shows the precision and recall values of type-1 clones for all the projects.

Column 2 holds the number of actual clones (A) from the reference set for all the projects.

Column 3 holds (D) the number of detected clones by our tool CloneManager. Column 5

holds (C) the number of correctly detected clones by our tool. Then, values for the two

parameters precision and recall are computed using the formula given in Figure 1.
Table 10 CloneManager: precision and recall of type-3 clones

Project name Actual
clones (A)

Detected
clones (D)

Correctly
detected
clones (C)

Precision % Recall %

Cook 291 291 280 96 96

Apache-httpd-2.2.8 807 756 711 94 88

Postgresql 576 552 530 96 92

Snns 526 505 495 98 94

Weltab 160 160 160 100 100

Wget 11 11 11 100 100

Linux-2.6.24.2 28007 27411 25767 94 92

Eclipse-ant 448 426 426 100 95

EIRC 161 152 149 98 92

Java Netbeans-Javadoc 304 330 304 92 100

Eclipse-jdtcore 4864 4378 4378 100 90

JHotDraw 5.4b1 643 629 598 95 93

Spule 126 113 113 100 89

J2sdk-swing 12052 12737 11209 88 93

Table 11 CloneManager: precision and recall of type-4 clones

Project name Actual
clones (A)

Detected
clones (D)

Correctly detected
clones (C)

Precision % Recall %

Cook 8 7 7 100 87

Apache-httpd-2.2.8 11 11 10 90 90

Postgresql 7 7 7 100 100

Snns 10 10 9 90 90

Weltab 13 13 12 92 92

Wget 2 2 2 100 100

Linux-2.6.24.2 14 14 13 92 92

Eclipse-ant 10 10 10 100 100

EIRC 6 6 6 100 100

Java Netbeans-Javadoc 9 8 8 100 88

Eclipse-jdtcore 17 17 15 88 88

JHotDraw 5.4b1 11 11 10 90 90

Spule 4 4 4 100 100

J2sdk-swing 31 32 30 92 95

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 20 of 29
www.jserd.com/content/2/1/12
From the data presented that has been given in Tables 8, 9, 10 and 11, it could be

seen that, CloneManager has resulted in higher values for precision and recall for all

the clone types. As precision and recall are the best parameters for the evaluation of

clone detection tools, it could be concluded that the proposed CloneManager is found

to be an effective tool for detecting all types of clones. Figures 7 and 8 shows the preci-

sion and recall values in graph for all the projects. Finally the result of the Linux pro-

ject shows that the tool CloneManager is able to detect clones even for larger systems

in size. This proves that the tool CloneManager is also scalable.
5.5 Comparison with existing tools

In literature, there are two approaches with method-level granularity: CLAN (Mayland

et al. 1996) and NICAD (Roy and Cordy 2008) which is closely comparable to our own.

In this section, the proposed tool has been compared with CLAN and NICAD. The

first tool considered for analysis is the CLAN clone detection with metrics based clone

detection technique and method-level granularity. CLAN gathered different metrics for

code fragments and compared these metric vectors instead of comparing the code
0
20
40
60
80

100
120

Type 1

Type 2

Type 3

Type 4

Figure 7 Precision in % of all the projects.

0
10
20
30
40
50
60
70
80
90

100

Type 1

Type 2

Type 3

Type 4

Figure 8 Recall in % for all the projects.

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 21 of 29
www.jserd.com/content/2/1/12
directly. An allowable distance (for instance, Euclidean distance) for these metric vec-

tors can be used as a hint for similar code.

The second is NICAD (Roy and Cordy 2008) a parser-based, language specific, light-

weight approach using simple text-line comparison which finds function clones with

the aid of TXL. TXL (Cordy et al. 2002) is a programming language specifically de-

signed for manipulating and experimenting with programming language notations and

features using source to source transformation.

Because of limited space, only one system presented here. We have chosen Weltab, be-

cause some of the earlier experimental tools have used it to evaluate their work. The tool

CloneManager ran successfully for all the projects in Table 5. The comparison of the results

of all the projects with these two existing tools is done in the same way as Weltab. 321

clone pairs for type-1, 2, 3 were obtained altogether using the proposed LWH approach,

while CLAN has obtained only 101 match clone pairs. Moreover, the CloneManager tool

further classified clones pairs as clone clusters. In addition, type-4 clones are also detected

by the tool CloneManager. The results obtained by these two existing tools are presented

in Table 12 along with the computed values for the proposed tool CloneManager.

NICAD reported 8 exact-match and 20 near-miss clone clusters which are nothing

but the type-1 and type-3 clone clusters found in Weltab. The implemented proposed

method, have obtained similar results. NICAD having claimed to have obtained 100%

when compared with Bellon’s benchmark results, which concludes that the proposed

method has also accomplished the same output.

Though NICAD has proved to effectively detect the function clones, the initial phases

employ an external parser. Whereas, the proposed method uses a hand-coded parser,
Table 12 Comparison of clone pairs and clone clusters for Weltab

TYPE CLAN NICAD CloneManger

Clone pairs Clone pairs Clone clusters Clone pairs Clone clusters

Type-1 46 46 8 46 8

Type-2 27 - - 115 11

Type-3 28 160 20 160 20

Type-4 - - - 12 5

Total 101 206 28 333 44

Table 13 Comparison of run-time with NICAD and proposed tool CloneManager

Projects NICAD in minutes CloneManager in minutes

Cook 5.13 5.01

Apache-httpd-2.2.8 18.21 16.12

Postgresql 9.59 8.48

Snns 5.23 5.09

Eclipse-ant 1.57 1.35

Java Netbeans-Javadoc 0.42 0.38

Eclipse-jdtcore 17.43 16.02

JHotDraw 5.4b1 2.48 2.05

J2sdk-swing 35.24 30.37

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 22 of 29
www.jserd.com/content/2/1/12
external lexers or parsers have not been deployed. Moreover, NICAD tool did not clas-

sify the clones types-1, 2 or 3 as specified in the literature. Instead of that, the tool fixed

some threshold value. If the threshold value is 0.0 then Roy called it as exact clones

(type-1). Then Roy matches with threshold value 0.10, 0.20, 0.30 and called it as 10%,

20%, 30% of dissimilarity in the clones respectively. It is able to detect near-missed

clones (type-3) but fails to detect type-2 and type-4 clones.

From the Table 13, shows the comparison of the run-time of the proposed tool

CloneManager with the NICAD tool. It is easier to notice from the Table that the time

taken by the proposed tool is lesser than NICAD. Thus the proposed tool proves to

have time complexity better than NICAD.

Table 14 shows the comparison of the Precision and Recall parameters of the tool

CLAN with the proposed tool CloneManager. In Table 14 T1, T2, T3 stands for type-1,

type-2, type-3 respectively. The projects which have Precision and Recall data are taken

from the standard Bellon’s benchmark. Moreover, the data were only available for type-1,

type-2 and type-3. From the Table it is observed that the proposed tool CloneManager is

very high in Precision and Recall.
5.6 Threats to validity

In this section, the various factors that threaten the validity of our results are summa-

rized. The common guidelines (Yin 2002) are followed for empirical studies.
Table 14 Comparison of the tool CLAN with the tool CloneManager

Projects CLAN CloneManager

Precision % Recall % Precision % Recall %

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Cook 33 10 3 4 16 12 100 98 96 100 98 96

Postgresql 9 2 0 0 19 11 95 95 96 100 96 92

Snns 8 11 4 11 6 2 96 94 98 92 99 94

Weltab 15 35 0 33 6 0 100 100 96 100 100 98

Eclipse-ant 11 9 0 5 20 0 97 88 100 95 98 95

Java Netbeans-Javadoc 7 6 6 33 9 13 94 100 92 98 96 100

Eclipse-jdtcore 4 4 0.8 4 53 12 90 98 100 89 92 90

J2sdk-swing 7 7 0.2 69 25 1 99 92 88 92 94 93

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 23 of 29
www.jserd.com/content/2/1/12
5.6.1 Internal validity

Threat of internal validity corresponds to the ability of our experiments to link the in-

dependent and dependent variables. The threat may be revealed through experimental

or human errors. Bellon’s benchmark was used as a reference set for the comparison of

detecting clone results. The Bellon reference corpus was manually built by Bellon using

only 2% of the clones suggested by the six clone detectors. For unbiased comparison, it

is necessary to rebuild the clone references by considering the results of all clone detec-

tors, which is beyond the scope of this paper.

We carried out manual analysis to verify the correctness of the clone detection using

semi-automated tools/manual. The manual assessment can be subject to human errors.

However, all the participants of this work are graduate students carrying out projects in

the area of software clones. Thus we trust that each one has agent expertise to keep the

plausible human errors to the minimum.

5.6.2 External validity

Threats to external validity are about how to generalize our results. We had done our

comparison with 14 open source projects of various size and application domains that

are written in two popular programming languages C and Java. However, this does not

declare that the findings can be held true for other programming languages. Moreover,

we planned to explore more systems written in various programming languages.

5.6.3 Construct validity

Construct validity threats are related to the relation between theory and observation. It

corresponds to the suitableness of our evaluation parameters. We mainly focused on

the precision, recall and run-time for the evaluation of our tool. These evaluation pa-

rameters measured high in precision & recall values and low in run-time values. How-

ever, the usage of the memory is slightly higher, as our approach uses the intermediate

results such as generating templates in two different methods. Moreover, it will not

affect so much as we can see the vast development of physical storage capacity and

speed of access growing rapidly day-by-day.
6 Conclusion
In this paper, we have proposed a LWH approach to detect method-level clones for

both textual similarity and functional similarity types with the computation of metrics

combined with simple textual analysis technique. We could improve the precision and

reduce the total comparison cost of avoiding the exponential rate of comparison by

using the metrics. Since the string matching/textual comparison is performed over the

shortlisted candidates, a higher amount of recall could be obtained. The early experi-

ments prove that this method can do atleast as well as the existing systems in finding

and classifying the function clones in C and Java.

As a future work, first we have planned to enhance the technique for Web Static

pages. Second, we have also planned to enhance the tool for clone removal by using

the refactoring technique. Third, if there are some simple modifications in the source

code, then the clone has to be detected in the whole software from the scratch. It surely

takes the same or more time to do the same process. This time can be reduced to a

considerable extent, by making it to retain the previous clone detection results with the

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 24 of 29
www.jserd.com/content/2/1/12
intermediate values and thus produce the results in a fraction of time for the next revi-

sions. Next we have planned to enhance our tool with this incremental process.
Appendix A
The details of the open source projects chosen for the experimentation and evaluation

of the clone detection tool CloneManager, is as follows

1. Cook is a tool for constructing files. It is given a set of files to create, and recipes

of how to create them.

2. Apache HTTP Server project develops and maintains an open source HTTP

(Hypertext Transfer Protocol) server for modern operating systems, including

UNIX and Windows NT (New Technology).

3. PostgreSQL (Database) runs on many different operating systems.

4. SNNS (Stuttgart Neural Network Simulator) is a neural network simulator

originally developed at the University of Stuttgart.

5. Weltab which is a Vote tabulation system.

6. Wget a free software package for retrieving files using HTTP, HTTPS and FTP,

the most widely-used Internet protocols.

7. Linux is the open source operating system.

8. Eclipse Ant is the premier build tool for Java developers, and Integrating Ant with

Eclipse provides a good solution for web development.

9. Eight IRC (EIRC) will be an Internet Relay Chat(IRC) client in windows that will

also be translated to Swedish hopefully.

10. JavaNetbeans- javadoc tool provides an easy way to write API documentation

for source code and software projects using the Java programming language.

11. Eclipse-jdtcore - The Java model is the set of classes that model the objects

associated with creating, editing, and building a Java program.

12. JHotDraw is a Java GUI framework for technical and structured Graphics.

13. Spule stands for "secure practical universal lecture evaluator". Spule is a program

to automatize the evaluation of lecture polls.

14. J2sdk-swing provides many enhancements to the existing graphics package.
Appendix B
The comparative results of the tool CloneManager with CLAN and NICAD tools for

all chosen open source projects, are presented in the following tables (Tables 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28).
Table 15 Clone pairs and clone clusters for cook

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 - 7 5 18 5

Type-2 200 - - 157 30

Type-3 249 280 98 280 98

Type-4 - - - 7 3

Total 449 287 103 462 136

Table 18 Clone pairs and clone clusters for Weltab

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 46 46 8 46 8

Type-2 27 - - 115 11

Type-3 28 160 20 160 20

Type-4 - - - 12 5

Total 101 206 28 333 44

Table 17 Clone pairs and clone clusters for Postgresql

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 200 7 7 28 4

Type-2 200 - - 240 42

Type-3 530 530 203 530 203

Type-4 - - - 7 3

Total 830 537 210 805 252

Table 16 Clone pairs and clone clusters for SNNS

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 100 109 63 109 63

Type-2 108 - - 160 86

Type-3 110 495 191 495 191

Type-4 - - - 9 4

Total 318 604 254 773 344

Table 19 Clone pairs and clone clusters for Eclipse-ant

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 10 363 92 363 92

Type-2 54 - - 372 96

Type-3 24 426 119 426 119

Type-4 - - - 10 4

Total 88 789 211 1171 311

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 25 of 29
www.jserd.com/content/2/1/12

Table 21 Clone pairs and clone clusters for Netbeans-javadoc

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 28 193 80 193 80

Type-2 28 - - 199 83

Type-3 29 304 110 304 110

Type-4 - - - 8 3

Total 85 497 190 704 276

Table 22 Clone pairs and clone clusters for J2sdk-swing

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 936 8115 516 8115 516

Type-2 936 - - 8205 558

Type-3 937 11209 843 11209 843

Type-4 - - - 30 14

Total 2809 19324 1359 27559 1931

Table 20 Clone pairs and clone clusters for Eclipse-jdtcore

TYPE CLAN NICAD CloneManager

CP CP CC CP CC

Type-1 1030 1427 323 1427 323

Type-2 6050 - - 5573 587

Type-3 3031 4378 660 4378 660

Type-4 - - - 15 7

Total 10111 5805 983 11393 1577

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 26 of 29
www.jserd.com/content/2/1/12
The following projects are compared to NICAD tool alone, as the data was not

available for CLAN tool.
Table 23 Clone pairs and clone clusters for Apache-httpd 2.2.8

TYPE NICAD CloneManager

CP CC CP CC

Type-1 183 107 183 107

Type-2 - - 242 143

Type-3 711 276 711 276

Type-4 - - 10 4

Total 894 383 1146 530

Table 28 Clone pairs and clone clusters for Spule

TYPE NICAD CloneManager

CP CC CP CC

Type-1 60 11 60 11

Type-2 - - 69 14

Type-3 113 19 113 19

Type-4 - - 4 2

Total 173 30 246 46

Table 26 Clone pairs and clone clusters for EIRC

TYPE NICAD CloneManager

CP CC CP CC

Type-1 117 35 117 35

Type-2 - - 119 35

Type-3 149 47 149 47

Type-4 - - 6 3

Total 266 82 391 120

Table 27 Clone pairs and clone clusters for JHotDraw

TYPE NICAD CloneManager

CP CC CP CC

Type-1 291 137 291 137

Type-2 - - 299 142

Type-3 598 208 598 208

Type-4 - - 10 4

Total 889 345 1198 491

Table 24 Clone pairs and clone clusters for wget

TYPE NICAD CloneManager

CP CC CP CC

Type-1 0 0 0 0

Type-2 - - 4 2

Type-3 11 2 11 2

Type-4 - - 2 1

Total 11 2 17 5

Table 25 Clone pairs and clone clusters for Linux

TYPE NICAD CloneManager

CP CC CP CC

Type-1 5953 1505 5953 1505

Type-2 - - 7386 2265

Type-3 25767 7918 25767 7918

Type-4 - - 13 5

Total 31720 9423 39119 11693

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 27 of 29
www.jserd.com/content/2/1/12

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 28 of 29
www.jserd.com/content/2/1/12
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KE carried out the systematic reviews, identified the issues in the existing work. KE and KS designed architecture and
implementation of the proposed algorithms. The dataset collection, experiments and result analysis are conducted by
both KE and KS. The format of the manuscript was decided by KE and KS. The manuscript was prepared by KE,
corrections and reviews are made by KS. Both authors read and approved the final manuscript.

Authors’ information
Mrs. Kodhai. E is currently working as Associate Professor in the Department of Information Technology at Sri
Manakula Vinayagar Engineering College affiliated to Pondicherry University, Puducherry, India. She has completed her
M.C.A from Cauvery College for women, Trichy affiliated to Bharathidasan University, Trichy and M.E. in Computer
Science and Engineering from Vinayaka Mission’s Kirupananda variyar Engineering College, Salem. She has more than
14 years of experience in teaching in various engineering colleges. She is currently pursuing her Ph.D in Software
Clones. Her Research interests include Software Maintenance and Evolution. She has published more than 30 papers in
international conference and journals.
Dr. Kanmani. S received her B.E (CSE) and M.E (CSE) from Bharathiar University, Coimbatore, India and Ph.D from Anna
University, Chennai, India. She is working as Professor in the Department of Information Technology at Pondicherry
Engineering College. She has published nearly 63 research papers. She is currently a supervisor guiding 8 Ph.D scholars. She
is an expert in Software Testing. Her areas of interests include Software Engineering, Genetic algorithms and Data Mining.

Acknowledgements
We appreciate the insightful comments from the three anonymous reviewers. Their comments were very helpful for
us to improve the paper. We also express our thanks to Pondicherry Engineering College for their support in
performing this research.

Author details
1Research Scholar, Department of CSE, Pondicherry Engineering College, Puducherry, India. 2Department of IT,
Pondicherry Engineering College, Puducherry, India.

Received: 14 November 2013 Accepted: 23 September 2014

References

Adamov R (1987) Literature review on software metrics. Institute of computer science, University of Zurich, Zurich
Al-Batran B, Sch¨atz B, Hummel B (2011) Semantic clone detection for model-based development of embedded systems.

Model Driven Eng. Languages and Syst. 6981:258–272
Baker BS (1997) Parameterized Duplication in Strings: Algorithms and an Application to Software Maintenance. SIAM J

on Computing 26(5):1343–1362
Bellon S, Koschke R (2014) Detection of Software Clones: Tool Comparison Experiment. URL: http://www.bauhaus-

stuttgart.de/clones/. Accessed 29 Jan 2014
Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and Evaluation of Clone Detection Tools.

IEEE Transactions on Software Engineering 33(9):577–591
Basit H, Pugliesi S, Smyth W, Turpin A, Jarzabek S (2007) Efficient Token Based Clone Detection with Flexible

Tokenization. In: European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’07). ACM, Croatia, pp 513–515

Cordy JR, Dean TR, Malton AJ, Schneider KA (2002) Source Transformation in Software Engineering using the TXL
Transformation System. J Information and Software Technology 44(13):827–837

Ducasse S, Nierstrasz O, Rieger M (2006) On the effectiveness of clone detection by string matching. J on Software
Maintenance and Evolution 18(1). doi:10.1002/smr.317, http://scg.unibe.ch/archive/papers/Duca06iDuplocJSMEPaper.pdf

Ducasse S, Rieger M, Demeyer S (1999) A Language Independent Approach for Detecting Duplicated Code. In: 15th

International Conference on Software Maintenance (ICSM’99). IEEE, Oxford, England, pp 109–118
Evans W, Fraser C (2005) Clone Detection via Structural Abstraction. Technical Report MSR-TR-2005-104. Microsoft

Research, Redmond, WA
Evans WS, Fraser CW, Ma F (2009) Clone Detection via Structural Abstraction. Software Quality Journal 17:309–330
Fenton E (1991) Software metrics: a rigorous approach. Chapman and Hall
Fowler M (1999) Refactoring: improving the design of existing code. Wesley, Addison
Funaro M, Braga D, Campi A, Ghezzi C (2010) A hybrid approach (syntactic and textual) to clone detection. In: 4th

International Workshop on Software Clones. ACM 2010 ISBN 978-1-60558-980-0, Cape Town, South Africa, pp 79–80
Gabel M, Jiang L, Su Z (2008) Scalable Detection of Semantic Clones. In: 30th International Conference on Software

Engineering. ICSE 2008, Leipzig, Germany, pp 321–330
Greenan K (2005) Method-Level Code Clone Detection on Transformed Abstract Syntax Trees using Sequence Matching

Algorithms. Student Report. University of California, Santa Cruz, Winter. available at http://users.soe.ucsc.edu/~ejw/
courses/290gw05/greenan-report.pdf

Hotta K, Yang J, Higo Y, Kusumoto S (2014) How Accurate Is Coarse-grained Clone Detection? Comparision with Fine-grained
Detectors. In: Eight International workshop on software clones. Electronic Communications of the EASST, Antwerp, Belgium

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: A Multi-Linguistic Token-based Code Clone Detection System for Large
Scale Source Code. IEEE Computer Society Transactions on Software Engineering 28(7):654–670

Kapser C, Godfrey M (2004) Aiding comprehension of cloning through categorization. In: International Workshop on
Principles of Software Evolution. IEEE Computer Society, Kyoto, Japan, pp 85–94

http://www.bauhaus-stuttgart.de/clones/
http://www.bauhaus-stuttgart.de/clones/
http://scg.unibe.ch/archive/papers/Duca06iDuplocJSMEPaper.pdf
http://users.soe.ucsc.edu/~ejw/courses/290gw05/greenan-report.pdf
http://users.soe.ucsc.edu/~ejw/courses/290gw05/greenan-report.pdf

Kodhai and Kanmani Journal of Software Engineering Research and Development 2014, 2:12 Page 29 of 29
www.jserd.com/content/2/1/12
Kapser CJ, Godfrey MW (2006) Supporting the analysis of clones in software systems: Research articles. J of Software
Maintenance: Research and Practice 18(2):61–82

Kapser C, Godfrey MW (2008) Cloning considered harmful: Patterns of cloning in software. Empirical Software
Engineering 13(6):645–692

Komondoor R, Horwitz S (2001) Using Slicing to Identify Duplication in Source Code. In: 8th International Symposium
on Static Analysis. SAS 2001, Paris, France, pp 40–56

Koschke R (2012) Large-Scale Inter-System Clone Detection Using Suffix Trees. In: European Conference on Software
Maintenance and Reengineering. IEEE Computer Society Press. University of Szeged Congress Centre (SZTE TIK),
Szeged, Hungary, pp 309–318

Koschke R, Falke R (2006) Frenzel P (2006) Clone detection using abstract syntax suffix trees. Working Conference on
Reverse Engineering, IEEE Computer Society Press, In

Krinke J (2001) Identifying Similar Code with Program Dependence Graphs. In: 8th Working Conference on Reverse
Engineering. WCRE 2001, Stuttgart, pp 301–309

Lee M, Roh J, Hwang S, Kim S (2010) Instant code clone search. In: Fundamental of Software Engineering, pp 167–176
Leitao A (2004) Detection of Redundant Code Using R2D2. Software Quality Journal 12(4):361–382
Leitner A, Ebner W, Kreiner C (2013) Mechanisms to Handle Structural Variability in MATLAB/Simulink Models. In: Favaro

J, Morisio M (ed), vol 7925. ICSR 2013, LNCS, Pisa, Italy, pp 17–31
Li Z, Lu S, Myagmar S, Zhou Y (2006) CP-Miner: Finding Copy-Paste and Related Bugs in Large-Scale Software Code.

IEEE Transactions on Software Engineering 32(3):176–192
Liu C, Chen C, Han J, Yu P (2006) GPLAG: Detection of Software Plagiarism by Program Dependence Graph Analysis. In:

12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 872–881
Marcus A, Maletic J (2001) Identification of High-level Concept Clones in Source Code. In: 16th IEEE International

Conference on Automated Software Engineering. ASE 2001, Coronado Island, San Diego, CA, USA, pp 107–114
Mayland J, Leblanc C, Merlo E (1996) Experiment on the Automatic Detection of Function Clones in a Software System

Using Metrics. In: International Conference on Software Engineering 96. IEEE and ACM, Berlin, Germany
Moller K (1993) Software metrics: a practitioner’s guide to improved product development. Hall, Chapman and
Moonen L (2001) Generating Robust Parsers using Island Grammars. In: 8th Working Conference on Reverse

Engineering (WCRE’01). IEEE Computer Society, Washington, DC, USA, p 13
Pate J, Tairas R, Kraft N (2011) Clone Evolution: a Systematic Review. J of Software Maintenance, Research and Practice
Petersen H (2012) Clone detection in Matlab Simulink models. Master’s thesis. Tech. Univ. Denmark
Roy CK, Cordy JR (2007) A survey on software clone detection research. Tech. Rep. 541. Queen’s University, Kingston, Canada
Roy CK, Cordy JR (2008) NICAD: Accurate Detection of Near-Miss Intentional Clones Using Flexible Pretty-Printing and

Code Normalization. In: 16th IEEE International Conference on Program Comprehension. IEEE Computer Society
2008, Amsterdam, The Netherlands, pp 172–181

Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming 74(7):470–495

Selim GMK, Foo KC, Zou Y (2010) (2010) Enhancing Source-Based Clone Detection Using Intermediate Representation.
Working Conference on Reverse Engineering, In

Thummalapenta S, Cerulo L, Aversano L, Penta MD (2009) An empirical study on the maintenance of source code
clones. Empirical Software Engineering 15(1):1–34

Ueda Y, Kamiya T, Kusumoto S, Inoue K (2002) Gemini: Maintenance Support Environment Based On Code Clone Analysis.
In: 8th IEEE Symposium on Software Metrics. IEEE Computer Society 2002 ISBN 0-7695-1339-5, Ottawa, Canada

Wettel R, Marinescu R (2005) Archeology of Code Duplication: Recovering Duplication Chains From Small Duplication
Fragments. In: 7th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’05). 115f, Timisoara, Romania

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in Software Engineering.
Springer Berlin, Heidelberg

Yin RK (2002) Design and methods. ICSM’00, 3rd edition. IEEE Computer Society 2002 ISBN 0-7695-1819-2, Montreal,
Quebec, Canada

Zibran M, Roy CK (2013) Conflict-aware Optimal Scheduling of Code Clone Refactoring. IET Software 7(3):167–186
Zibran M, Saha R, Asaduzzaman M, Roy C (2011) Analyzing and forecasting near-miss clones in evolving software: An

empirical study. In: International Conference on Engineering of Complex Computer Systems. IEEE Xplore Digital
Library, Las Vegas, USA, pp 295–304
doi:10.1186/s40411-014-0012-8
Cite this article as: Kodhai and Kanmani: Method-level code clone detection through LWH (Light Weight Hybrid)
approach. Journal of Software Engineering Research and Development 2014 2:12.

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Literature review
	Background
	Textual similarity
	Functional similarity
	Precision
	Recall

	Methods
	Pre-processing
	Method detection
	Template conversion
	Template conversion for type-1 and type-2
	Template conversion for type-3 and type-4

	Metrics computation
	Type-1 clone detection
	Type-2 clone detection
	Type-3 clone detection
	Type-4 clone detection
	Post-processing

	Results and discussion
	Experimental setup
	Results
	Procedure to determine reference data
	Evaluation of the tool CloneManager
	Comparison with existing tools
	Threats to validity
	Internal validity
	External validity
	Construct validity

	Conclusion
	Appendix A
	Appendix B
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

