
Santos et al. Journal of Software Engineering Research and Development 2014, 2:11
www.jserd.com/content/2/1/11

RESEARCH Open Access

The problem of conceptualization in god class
detection: agreement, strategies and decision
drivers
José Amancio M Santos1*†, Manoel Gomes de Mendonça2,3†, Cleber Pereira dos Santos4†

and Renato Lima Novais4†

*Correspondence:
zeamancio@ecomp.uefs.br
†Equal contributors
1Department of Technology, State
University of Feira de Santana,
Transnordestina avenue S/N - Feira
de Santana - Bahia, Feira de
Santana, Brazil
Full list of author information is
available at the end of the article

Abstract

Background: The concept of code smells is widespread in Software Engineering.
Despite the empirical studies addressing the topic, the set of context-dependent issues
that impacts the human perception of what is a code smell has not been studied in
depth. We call this the code smell conceptualization problem. To discuss the problem,
empirical studies are necessary. In this work, we focused on conceptualization of god
class. God class is a code smell characterized by classes that tend to centralize the
intelligence of the system. It is one of the most studied smells in software engineering
literature.

Method: A controlled experiment that extends and builds upon a previous empirical
study about how humans detect god classes, their decision drivers, and agreement
rate. Our study delves into research questions of the previous study, adding
visualization to the smell detection process, and analyzing strategies of detection.

Result: Our findings show that agreement among participants is low, which
corroborates previous studies. We show that this is mainly related to agreeing on what
a god class is and which thresholds should be adopted, and not related to
comprehension of the programs. The use of visualization did not improve the
agreement among the participants. However, it did affect the choice of detection
drivers.

Conclusion: This study contributes to expand empirical evidences on the impact of
human perception on detecting code smells. It shows that studies about the human
role in smell detection are relevant and they should consider the conceptualization
problem of code smells.

Keywords: Code smell; God class; Controlled experiment; Code visualization

Background
Challenges in object-oriented (OO) software design have been historically addressed
from different perspectives. Riel (1996) wrote one of the first books on the subject in
1996. This book presents insights into OO design improvements and introduces the now
well-known term “design flaws”. In 1999, Fowler (1999) came upwith the concept of refac-
toring and coined the term “smell” to represent bad characteristics observable in the code.
In 2005, Lanza and Marinescu (2005) focused on OO metrics to characterize what they

© 2014 Santos et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: zeamancio@ecomp.uefs.br
http://creativecommons.org/licenses/by/2.0

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 2 of 33
www.jserd.com/content/2/1/11

called “disharmonies”. All these terms are used to define potential design problems. In
this paper, we adopt the term code smell, or simply smell, to refer to such design problems.
The works of (Riel 1996; Fowler 1999 and Lanza and Marinescu 2005) discuss code

smells from the principles of the OO paradigm, such as information hiding or polymor-
phism (Meyer 1988). However, there is a set of context-dependent issues that impacts how
one considers the concept of smell. These include: developers’ experience, the software
process, software domain, and others. The extensive number of context-dependent issues
make it difficult to express even simple tasks rigorously, such as smell detection. Fontana
et al. (2011) claim that smell detection “can provide uncertain and unsafe results”. This is
becausemost smells are subjectively defined and their identification is human-dependent.
Fowler (1999) does not define smell formally. He says that one needs to develop one’s

own sense of observation of attributes that could characterize pieces of code as a smell.
For example, one has to develop one’s own sense of how many lines of code define a long
method. This is because smell detection is a subjective task by nature. In contrast, Lanza
and Marinescu (2005) use a formal definition for smells based on metrics and thresholds.
However, Rapu et al. (2004) state that the thresholds are mainly chosen based on the
experience of the analysts. These indicate that smell detection remains an ill-defined task.
In addition, as cited by Parnin et al. (2008), “metrics produce voluminous and imprecise
results”. Given these pitfalls, alternatives have emerged to address smell detection. One of
them is the use of software visualization (Murphy-Hill and Black 2010; Parnin et al. 2008;
Simon et al. 2001; Van Emden and Moonen 2002). Software visualization tools combined
with metrics may help humans to identify design problems.
Understanding which, and how, subjective aspects affect smell detection demands

empirical evaluation. According to Mäntylä, “we need more empirical research aiming
at critically evaluating, validating and improving our understanding of subjective indica-
tors of design quality” (Mäntylä et al. 2004). Recent empirical studies carried out to better
understand this scenario, can be classified into three categories. The first type is corre-
lation studies. They evaluate the impact of smells based on data extracted from software
repositories (Li and Shatnawi 2007; Olbrich et al. 2009, 2010), establishing a correlation
between a smell and some attribute of the software, such as bugs or the number of mod-
ifications on classes. The second type is related to tool assessment, such as automatic
detection (Moha et al. 2010; Mäntylä and Lassenius 2006a; Schumacher et al. 2010) or
software visualization (Carneiro et al. 2010; Murphy-Hill and Black 2010; Parnin et al.
2008; Simon et al. 2001). Finally, the third type investigates the role of humans in smell
detection (Mäntylä 2005; Mäntylä and Lassenius 2006b; Santos et al. 2013; Schumacher
et al. 2010). Although the number of studies on this topic is increasing, they are con-
sidered insufficient (Schumacher et al. 2010; Sjøberg et al. 2013; Zhang et al. 2011). In
particular, the role of humans has not been studied in depth (Mäntylä and Lassenius
2006a).
The role of humans is one of the most important and one of the most open and broad

topics in this area. Several uncontrollable variables affect the smell conceptualization.
Examples include experience, personal differences in cognition, level of knowledge on
the subject, and the environment. In this context, this work aims to understand how
some aspects of the human conceptualization impact smells detection. In particular, this
exploratory study investigates how personal comprehension of the smell concept affects
the detection of god classes. God class is a term proposed by Riel (1996) to refer to classes

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 3 of 33
www.jserd.com/content/2/1/11

that tend to centralize the intelligence of the system. Fowler (1999) defined it as a class
that tries to do too much, and adopted the term large class. Lanza and Marinescu (2005)
proposed a heuristic based on metrics to identify god class. The definition of god class
has been addressed in several empirical studies (Abbes et al. 2011; Li and Shatnawi 2007;
Olbrich et al. 2010; Padilha et al. 2013).
Our exploratory study was based on a controlled experiment carried out in an in-vitro

setting. The experiment extended an empirical study presented by Schumacher et al. in
(Schumacher et al. 2010).While Schumacher et al. presented a wide discussion about both
human and automatic detection of god classes, our work focused on questions related to
the human perception. We considered two factors, the use or non use of software visu-
alization to achieve the study goal. The use of visualization made it possible to evaluate
the impact of the overall comprehension of the design on human aspects, increasing the
evidences of the relevance of conceptualization in the detection of god class. It is impor-
tant to note that we did not adopt a visualization tool to support smell detection, instead,
we adopted a tool focused on enhancing the comprehension of the code design. The
tool helps developers to perceive of coupling, size, complexity, and hierarchical relations
among classes from the use of visual resources. We evaluated the effect of these facili-
ties on human aspects, such as decision drivers, agreement and strategies adopted by the
participants detecting god classes. To the best of our knowledge, this is the first study
that analyses smell conceptualization using all of these variables. We have already fea-
tured this experiment partially (Santos et al. 2013), addressing effort, decision drivers, and
agreement on smell detection, but disregarding the use of visualization.
The structure of this paper is as follows. Section ‘Method’ presents the planning and

execution of the experiment. Section ‘Results’ and ‘Discussion’ present the results and a
discussion about them. Section ‘Threats to validity’ discusses the threats to the validity
of the study. Section ‘Context and related works’ summarizes prior empirical studies that
address aspects which are context-related to smells. Lastly, Section ‘Conclusions’ presents
our conclusions and proposes future works.

Method
In this section, we present the experimental planning and execution of the experiment.
In order to attend ethical issues on Empirical Software Engineering, we followed

principles proposed by (Vinson 2008).

Research question

Our work aims to investigate the impact of conceptualization on god class detection. The
research questions (RQ) are:

1. How well do humans agree on identifying god classes?
2. How well do humans and an oracle agree on identifying god classes?
3. Which strategies are used to identify god classes?
4. What issues in code lead humans to identify a class as a god class?

All questions help us to observe the differences in perception among the participants
during the detection of god classes. They were used to observe how conceptualization
affects the identification of god classes in our experiment. Research questions one and
four were first proposed by Schumacher et al. (2010). In this paper, we analyzed them

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 4 of 33
www.jserd.com/content/2/1/11

using a different approach: by the use of both code review and visualization. We have
introduced question two and three. Question two addresses agreement between par-
ticipants and an oracle, defined in a controlled process. Question three addresses the
strategies adopted by participants when detecting god classes.

Experimental units

The experiment involved 11 undergraduate Computer Science students from the Fed-
eral University of Bahia (UFBA), in Brazil. All students were enrolled in the Software
Quality course offered in the first semester of 2012. This is an optional subject of the
Computer Science program, in which design quality and smells are addressed. The course
was considered appropriate for the experiment, both because it was focused and was not
mandatory, which means that most students enrolled on it were interested in the subject.
Furthermore, participation in the experiment was a voluntary activity.

Experimental material

Tools

We adopted four software tools in the experimenta: (i) The Eclipse Indigo IDE; (ii) Usage
Data Collector (UDC), an Eclipse plug-in for collecting IDE usage data information (inter-
actions between participants and Eclipse can be accessed by the log of UDC). This tool
is embedded in the Eclipse Indigo IDE; (iii) Task Register plug-in, a tool we developed to
enable participants to indicate what task was being done at any given moment. This infor-
mation was also registered in the UDC log. All the participants had to do was to click
on a “Task Register” view on Eclipse (Figure 1-F) to indicate when they were starting or
finishing a task; and (iv) SourceMiner, an Eclipse plug-in that provides visual resources
to enhance software comprehension activities (Carneiro and Mendonça 2013; Carneiro
et al. 2010).
SourceMiner has five views, divided into two groups. The first group is made up of

three coupling views. These views show different types of dependencies among entities,
like direct access to attributes or method calling, for instance. Moreover, they show the

Figure 1 Eclipse IDE showing the Task Register (F) plug-in and SourceMiner views: hierarchical views
(A and C) and coupling views (B, D and E).

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 5 of 33
www.jserd.com/content/2/1/11

direction of the coupling. The coupling views are based on radial graphs (Figure 1-B),
matrix of relationships (Figure 1-D), and tabular view (Figure 1-E). The second group is
made up of two hierarchical views. These views associate the number of lines of code,
complexity and number of methods of classes to the area and colors of the rectangles.
The Treemap view (Figure 1-A) shows the hierarchy of package-class-method of the soft-
ware. A Treemap is a hierarchical 2D visualization that maps a tree structure into a
set of nested rectangles (Johnson and Shneiderman 1991). In SourceMiner, the nested
rectangles represent software entities, like packages, classes andmethods. Rectangles rep-
resenting methods of the same class are drawn together inside the rectangle of the class.
Likewise, the rectangles of the classes that belong to the same package are drawn together
inside the rectangle of the package. The Polimetric view (Figure 1-C) shows the hierarchy
between classes and interfaces. A polymetric view uses a forest of rectangles to represent
the inheritance trees formed by classes and interfaces in a software system (Lanza and
Ducasse 2003). Rectangles are linked by edges representing the inheritance relationship
between them. The length and width of the rectangles can be used to represent software
attributes such as the size and number of methods of a class.

Forms

We used five forms and two guides during the experiment. During the training, which
we will present thereafter, the participants filled in a Consent and a Participant Charac-
terization form, and received a SourceMiner exercise guide. During the experiment itself,
participants received a Support Question guide to steer them in search for god classes.
The questions are the same ones used by Schumacher et al. (2010):

• Does the class have more than one responsibility?
• Does the class have functionality that would fit better into other classes?

– By looking at the methods, could one ask: “Is this the class’ job?”

• Do you have problems summarizing the class’ responsibility in one sentence?
• Would splitting up the class improve the overall design?

Another document used during the experiment was the Step-by-Step guide used to
assure consistency during the data collection process. This document prompts the par-
ticipants to open and close the projects on Eclipse and to select the task under execution
in the Task Register view. It is important to note that this guide did not define how par-
ticipants should do the task of identifying god classes. It defined some activities that
participants had to do before and after the identification of god classes. Each participant
defined their own strategy to identify god classes.
The Answer form was one of the most important forms used during the experiment.

On this form, participants had to fill in: i) one or more candidate(s) god class(es), ii) their
level of certainty, i.e., fill in the “yes” or “maybe” option for each candidate class, iii) the
decision driver(s) which helped her/him to select the class, and iv) the start and end time
of the task, which we used to evaluate effort in (Santos et al. 2013) (this topic is out of the
scope of this paper).
We considered the items i) the candidate god classes and ii) level of certainty, which

is self-explanatory. Here, we will explain item iii) decision drivers: the form listed nine
drivers as predefined options for the participants, but it was also possible to write down a

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 6 of 33
www.jserd.com/content/2/1/11

new one. The drivers listed in the form are the ones identified by Schumacher et al. (2010)
during their think-aloud data collection. Some examples are “method is misplaced” and
“class is highly complex”.
The last form of FinG was the Feedback form. At the end of the experiment the partici-

pants filled in a Feedback form. On it, we asked the participants to classify the training and
the level of difficulty performing the task. It was also possible to write down suggestions
and observations about the experiment.

Software artifacts

Six programs were used in the experiment. All of them implement familiar applications or
games in Java e.g. Chess, Tic Tac Toe, Monopoly and Tetris. Solitaire-Freecell (Solitaire) is
a framework for card games with Solitaire and Freecell. Jackut implements a simple social
network application, such as Facebook and Orkut.
During our selection, we looked for familiar applications to minimize the effort of par-

ticipants during the task of identifying god classes. However, we also looked for programs
with different characteristics: some without god classes, others which perhaps had god
classes and others with, at least, one god class. An oracle was used to identify god classes
in each of the selected programs. This oracle is presented later. Table 1 characterizes the
programs we used in terms of the number of packages, number of classes and number of
lines of code (LOC).

Task

While Schumacher et al. (2010) designed a mini-process for participants to detect god
classes, we gave only support questions as a guide. Each participant was free to use her/his
own strategy to do the task. Furthermore, they could choose the order of the tasks. The
Step-by-Step guide only indicated the activities to be done before and after the god class
detection for each program, such as filling in the start and finish time on the answer form.

Design

The experiment was carried out in a laboratory at UFBA. Participants had 2 hours to carry
out the task. Each participant worked at a separate workstation. At each workstation,
we set up two Eclipses IDEs. One contained the SourceMiner plug-in, and the other did
not. Both Eclipses were fitted with a Task Register and UDC plug-ins. Each Eclipse had
three of the six programs in their workspace. The workstations were divided into two
groups. After analysis of the characterization form, participants were randomly allocated
to groups, because they had similar profiles: years of programming and knowledge on the
topic were used. There were six participants in group 1 and five participants in group 2.
We present the distribution of participants by group in Table 2. The ID of the participants
was formed by the position of the workstation in the lab where the task was performed.

Table 1 Software objects

Software Chess Jackut Tic Tac Toe Monopoly Solitaire Tetris

Packages 5 8 2 3 6 4

Classes 15 19 5 10 23 16

LOC 1426 978 616 2682 1758 993

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 7 of 33
www.jserd.com/content/2/1/11

Table 2 Set of Eclipses installations at the workstations and allocation of participants

Group With Without Participants’
SourceMiner SourceMiner ID

Chess, Monopoly, F14, F21,

1 Jackut and Tetris and F32, F35,

Solitaire Tic Tac Toe F42 and F44

Monopoly, Chess, F13, F15,

2 Tetris and Jackut and F25, F31 and

Tic Tac Toe Solitaire F41

Execution

The experiment took four days. Two days were allocated to training, one day for a pilot
and one day to perform the experiment. There were three small presentations on the
first day of training. As the experiment was a voluntary activity and students had little
experience with experimental software engineering, we decided to do a motivational pre-
sentation. In this presentation, we discussed the experimental software engineering scene,
tying it with discussions about smell effects. The second presentation focused on smells
and god class concepts. The third presentation showed the design of the experiment: we
just talked about the lab, the individual use of a workstation with two different set ups of
the IDE, and the time.
On the second day of training, we did an activity in the lab focusing on the SourceMiner

tool (explanation and exercise).
On the third day, we ran a pilot experiment with two students who were also enrolled in

the same course of the participants. These two students were out of the 11 we presented
in the Table 2. The pilot helped us to evaluate the use of the answer form in paper or
electronic format. In the pilot, we presented the Step-by-Step guide in paper format. We
did this because we thought that it would not be useful to use electronic format forms
because the experiment ran with two opened Eclipses installations. However, after the
pilot, we noted that paper forms were less convenient. Therefore, in the final experiment,
we kept only the answer sheet form and Support Questions in paper format. The pilot also
helped us to validate the inspection time. We confirmed that 1.5 - 2.0 hours was enough
time to analyze the six programs.
On the final day we ran the experiment. Table 3 shows the complete schedule. The

column Day gives an idea of the time between the activities. For example, the second
training (Day 8) was seven days after the first training (Day 1).

Table 3 Experiment schedule

Day Activity Presentation Local Time (Hour)

1 Training Motivational + Classroom 2,0

Concepts +

Experiment design

8 Training SourceMiner + Lab 2,0

Exercise Lab

18 Pilot - Lab 1,5

20 Experiment - Lab 2,0

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 8 of 33
www.jserd.com/content/2/1/11

Deviations

We ran the experiment with 17 students, but only 11 completed the experiment. Four
students missed at least one presentation and were excluded. Two students participated in
the pilot experiment. We also had an unexpected problem with the schedule. The original
schedule was changed and there was a holiday between the SourceMiner presentation
and experiment. Due to this, there were only 2 days between the pilot and the experiment.
Despite this, the pilot still helped us, as previously discussed.

Data

We collected and analyzed two types of data. The first was the answers on the answer
form, as explained in the Section ‘Forms’: i) the selected god class candidates; ii) the level
of certainty, i.e. “yes” or “maybe” option for each candidate class; and iii) decision drivers
that helped participants to indicate the candidate god classes.
The other type of data was the UDC Log. We used the UDC plug-in to log participants’

actions while the experiment was running. UDC is a framework for collecting usage data
on various aspects of the Eclipse workbench. It gathers information about the kinds of
activities that the user does in the IDE (i.e. activating views, editors, etc.). The Task Reg-
ister (Figure 1-F) was used to enrich the UDC log with the name of the program on which
the participant was performing the task. Figure 2 shows a clipping of the UDC log anno-
tated by the Task Register plug-in. The first column (“task”) does not exist in the original
UDC log. It was added by the Task Register. We highlighted columns that we were inter-
ested in. The first column (“task”) indicates the program for which the participant was
doing the god class detection task. Columns “what”, “kind” and “description” describe
the actions. For example, the first line represents: user activated the Package Explorer
view.
Each line represents one user action. As a result, we have sequences of actions for each

participant and for each program.

Results
This section presents the results of the experiment. We created one subsection to present
the results for each research question.

RQ1: Howwell do the participants agree on identifying god classes?

To evaluate this research question we considered the agreement on the candidate god
classes for both cases, with and without visualization. For the case without visualization,
there were six participants in group 1 (Monopoly, Tetris and Tic Tac Toe) and five in group
2 (Chess, Jackut and Solitaire). In the case of with visualization, there were six participants
in group 1 (Chess, Jackut and Solitaire) and five participants in group 2 (Monopoly, Tetris
and Tic Tac Toe). We tabulated god class candidates into the “yes” and “maybe” category

Figure 2 Clipping of the user UDC log.

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 9 of 33
www.jserd.com/content/2/1/11

for each participant. Table 4 summarizes the results for the Solitaire program. The F13
participant, for example, marked one class as a “yes” and one class as a “maybe” god class.
To analyze the results, we consider both to be god class candidates.
Out of all of the data sets, there were ten cases in which participants filled in the class

name and the drivers, but did not mark the option “yes” or “maybe”. In these cases, we
considered the weakest option, i.e., “maybe”. There were also two cases in which the par-
ticipants did not fill in the name of the class. In this case, we excluded the data entry from
the analysis.
We used two approaches to address the research question. The first considered the

percentage of candidate classes. The second was an agreement test.

The percentage of god class candidates

To analyze and compare cases with and without visualization, we generated bar chart
diagrams (Figure 3). The diagrams show the percentage of candidate god classes with
respect to the number of classes for each program. We show the number of classes for
each program under the name of the programs. Considering “yes” or “maybe” options,
the percentage of god class candidates tends to be higher for programs with a fewer
number of classes. In the case of without visualization, the blue bars, there is a small
difference for the Tetris program. However the tendency is the same: the percent-
age of god class candidates tends to be higher for programs with a fewer number of
classes. In the case of with visualization, the gray bars, the difference is for the Solitaire
program.
Considering only the “yes” option, the difference in the percentage of god class candi-

dates is very small among the programs. Despite this, in the case without visualization,
the percentage of god class candidates tends to be higher for programs with a fewer num-
ber of classes, once again. For the case with visualization, we noted that the values are
very similar, excepted for theMonopoly program, which had the lowest percentage of god
class candidates.

Finn agreement test

To evaluate the level of agreement among participants, we adopted the Finn coefficient
(Finn 1970) as opposed to the Kappa coefficient (Fleiss 1971), adopted by Schumacher
et al. (2010). We did this because of the problems identified in the Kappa coefficient by
other authors (Feinstein and Cicchetti 1990; Gwet 2002; Powers 2012; Whitehurst 1984).
The Kappa test is done in two phases. First an agreement rate is calculated, and, then this
value is used to calculate the coefficient. Feinstein (1990) shows that one can have high

Table 4 God classes for participants working on the Solitaire-Freecell program
(task carried out without visualization)

Solitaire-Freecell (23 classes)

God Class
Participant

F13 F15 F25 F31 F41

ControladorGlobal Yes Yes Maybe Yes

FrameFreecell Maybe Yes Yes Maybe

InterfacePaciencia Maybe Maybe Maybe

Estoque Maybe

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 10 of 33
www.jserd.com/content/2/1/11

Figure 3 Percentage of god class candidates.

agreement rate and low values of the Kappa coefficient, when the variance on values of
raters is low.We noted this situation in the work of Schumacher et al. The Finn coefficient
is recommended when variance between raters is low (Finn 1970). Whitehurst (1984)
proposes Finn as an alternative to problems with Kappa, and affirms that it is the most
reasonable index for agreement.
To make the comparison of agreement values for the cases with and without visual-

ization easier, we adopted classification levels. We used the same defined by Landis and
Koch (1977), such as Schumacher et al. (2010) had done. Landis and Koch proposed the
following classification: slight, for values between 0.00 and 0.20; fair (between 0.21 and
0.40); moderate (between 0.41 and 0.60); substantial (between 0.61 and 0.80); and almost
perfect (between 0.81 and 1.00) agreement.
Table 5 presents Finn values for the programs considering “yes” or “maybe” options.

On the left, we present values for the case of without visualization. On the right, we
present values for the case with visualization. There were two cases where the agreement
level was higher with visualization: Monopoly (from moderate to substantial) and Jackut
(from substantial to almost perfect). There was a reduction in agreement for Tic Tac
Toe (from moderate to slight), but it is the only change without significance (p-value =
0.283), therefore we did not consider it in the agreement analysis. Table 6 considers only
cases where participants were sure about the god classes. There were two cases where the
level of agreement was higher with visualization (Tic Tac Toe and Chess, changing from

Santos
etal.JournalofSoftw

are
Engineering

Research
and

D
evelopm

ent 2014,2:11
Page

11
of33

w
w
w
.jserd.com

/content/2/1/11

Table 5 Agreement among participants, considering “yes” or “maybe”marked

Without visualization With visualization
Program

Number of Raters Finn p-value Agreement Number of Raters Finn p-value Agreement
classes (participants) coefficient classes (participants) coefficient

Monopoly 10 6 0.507 0.000996 Moderate 10 4 0.7 7.37e-05 Substantial

Tetris 16 6 0.733 5.09e-12 Substantial 16 5 0.8 4.91e-13 Substantial

Tic Tac Toe 5 6 0.6 0.00335 Moderate 5 5 0.2 0.283 Slight

Chess 15 5 0.787 1.21e-11 Substantial 15 6 0.664 4.46e-08 Substantial

Jackut 19 4 0.772 1.73e-10 Substantial 19 6 0.881 1.33e-27 Almost perpect

Solitaire 23 5 0.843 4.38e-22 Almost perfect 23 5 0.843 4.38e-22 Almost perpect

Santos
etal.JournalofSoftw

are
Engineering

Research
and

D
evelopm

ent 2014,2:11
Page

12
of33

w
w
w
.jserd.com

/content/2/1/11

Table 6 Agreement among participants, considering only “yes” marked

Without visualization With visualization
Program

Number of Raters Finn p-value Agreement Number of Raters Finn p-value Agreement
classes (participants) coefficient classes (participants) coefficient

Monopoly 10 6 0.827 8.44e-12 Almost perpect 10 4 0.867 3.87e-09 Almost perpect

Tetris 16 6 0.892 5.34e-25 Almost perpect 16 5 0.675 5.89e-08 Substantial

Tic Tac Toe 5 6 0.653 0.00102 Substantial 5 5 0.84 7.14e-06 Almost perpect

Chess 15 5 0.787 1.21e-11 Substantial 15 6 0.84 5.26e-18 Almost perpect

Jackut 19 4 0.842 3.31e-14 Almost perfect 19 6 0.895 6.683-30 Almost perpect

Solitaire 23 5 0.896 3.62e-29 Almost perfect 23 5 0.843 4.38e-22 Almost perpect

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 13 of 33
www.jserd.com/content/2/1/11

substantial to almost perfect agreement). There was one case where the level of agreement
was lower with visualization (Tetris changing from almost perfect to substantial).

RQ2: Howwell do humans and an oracle agree on identifying god classes?

To deepen the analysis of the impact of conceptualization on god class identification, we
extended the human performance questions in Schumacher et al. (2010) using an oracle
and comparing the answers of the oracle and participants. The oracle was made up of two
experienced researchers in academia and industry. Each of the researchers did the task
independently and without any contact with the participants’ answers. We show their
answers in Table 7.
We used the Finn coefficient (1970), the same as the previous RQ, to test the agree-

ment. Table 8 shows the results. Tic Tac Toe, Tetris and Solitaire all had an agreement.
The Chess and Jackut programs had one disagreement. The Monopoly program had two
disagreements.
After these observations, the researchers met to discuss the differences and to define

the oracle. An interesting observation is that the researchers noted that they were very
strict in their analysis. Due to this, for some cases (two classes for Monopoly, one class
for Chess, one class for Solitaire and one class for Jackut), classes were deleted from the
list. We highlight the class FrameFreeFreecell in the Solitaire program. In this case, both
researchers found that the class was a candidate to be god class. However, during the
meeting, the researchers were more flexible about the size and the few methods out of
scope, because the class represents the graphical user interface of the program. After the
meeting, the oracles reached the agreement presented in Table 9.
Figure 4 shows the distribution of the Finn coefficient, comparing the agreement among

the participants and the oracle. Let us initially focus on Figure 4(A) and (B), confirmed and
possible god classes. It is possible to note that the average agreement with visualization

Table 7 Oracle answers

Oracle
Program God class

Or1 Or2

Ti Tac Toe (5 classes)

- - -

Monopoly (10 classes)

Jogo Yes Yes

Tabuleiro Maybe Yes

UserStoriesFacade - Maybe

Jogador - Maybe

Chess (15 classes)

Chess Yes Yes

BoardGUI - Yes

Tetris (16 classes)

Tetris Maybe Maybe

Jackut (19 classes)

Usuario - Maybe

Solitaire (23 classes)

FrameFreeFreecell Maybe Yes

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 14 of 33
www.jserd.com/content/2/1/11

Table 8 Finn coefficient among the researches considering “yes” marked and “yes” or
“maybe”

Finn coefficiente

Program Subjects (Nclasses) Raters (oracle) Yes or maybe Only yes

Ti Tac Toe (5 classes) 5 2 1 1

Monopoly 10 2 0.6 0.8

Chess 15 2 0.867 0.867

Tetris 16 2 1 1

Jakut 19 2 0.895 1

Solitaire 23 2 1 0.913

is higher only for the Monoploy program, is the same for Tic Tac Toe, and is lower
for the other four cases. Figure 4(C) and (D) focus on confirmed god classes. First, one
should notice that, as expected, the average is higher and the variances are smaller than in
Figure 4(A) and (B). Comparing Figure 4(C) and (D), the values are higher for cases with
visualization for three cases (Chess, Solitaire and Tic Tac Toe), and lower for the other
three cases (Jackut, Monopoly and Tetris).

RQ3: Which strategies are used to identify god classes?

We used the logged actions to investigate the strategy adopted by the participants to
detect god classes. We analyzed two aspects. The first one was the differences between
relevant actions for the cases, with and without visualization. The second were the prefer-
ences of the participants.We grouped participants with similar preferences and evaluated
if there was a “better” strategy.

Relevant actions

Table 10 shows the number of actions performed during the experiment by all par-
ticipants. We grouped the columns “what”, “kind” and “description” from the log and
shortened the terms presented in Figure 2. The first action represents the activation of
the Package Explorer view. The Package Explorer shows the Java element hierarchy of
Java projects. It is a tree view that shows Eclipse projects on the first level, folders on the

Table 9 Final oracle answers

Program God class Oracle

Ti Tac Toe (5 classes)

- -

Monopoly (10 classes)

Jogo Yes

Tabuleiro Maybe

Chess (15 classes)

Chess Yes

Tetris (16 classes)

Tetris Maybe

Jackut (19 classes)

- -

Solitaire (23 classes)

- -

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 15 of 33
www.jserd.com/content/2/1/11

Figure 4 The distribution of Finn agreement values between participants and oracle: cases without
visualization in (A) and (C); cases with visualization in (B) and (D).

second level, packages on the third level, classes on the fourth level, and methods and
attributes on the fifth level. It is used to navigate in the original Eclipse’s set up.
The second relevant action represents the activation of the Compilation Unit Editor,

which is commonly used for code reading/writing. The actions numbered three to seven
represent the activation of views of the visualization tool. For example, action three rep-
resents the activation of the Polimetric view, presented in Section ‘Tools’. Actions four

Table 10 Actions performedwith and without the visualization tool

Visualization
No Actions

With Without

1 activated_view_PackageExplorer 311 806

2 activated_editor_CompilationUniEditor 263 1240

3 activated_view_PolymetricView 135

4 activated_view_DependencyView 117

5 activated_view_TreeMapView 114

6 activated_view_CouplingMatrixView 70

7 activated_view_GridMatrixView 59

8 Others: 10 with SourceMiner and 23 without SourceMiner 47 71

Total 1116 2117

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 16 of 33
www.jserd.com/content/2/1/11

to seven represent the activation of the Dependency, Tree Map, Coupling Matrix and
Grid Coupling views. The other actions were not shown because they did not occur very
often.
It is possible to note the difference in the total. For the case with visualization, the

total number of actions was 1116. Without visualization the total number was 2117. The
views of the visualization tool were used frequently, when permitted: Polymetric (135),
Dependency (117), Tree Map (114), Coupling Matrix (70) and Grid Coupling (59).

Strategies of god class detection

To evaluate the strategies we only observed cases with visualization because, in the case
without visualization, the main action was related to activation of the Compilation Unit
Editor, i.e. reading source code, and Eclipse does not log its use in detail.
As discussed in Section ‘Data’, we defined a sequence as all actions performed by the

participant for a program.
In this experiment, there were three sequences of actions for each participant using

the visualization tool, one for each program. There were 11 participants, but we deleted
three of the sequences because we found problems in these sequences. The problems were
caused by misuse of the Task Register plug-in. Therefore, 30 sequences were evaluated.
Our first analysis was related to individual sequences. We searched for common pat-

terns. To do this, we used the LTL Checker of the ProMb, a support tool for techniques
of process mining (van der Aalst 2011). With the LTL Checker it is possible to check a
property of the set of sequences expressed in terms of Linear Temporal Logic (LTL).
Consider the following three sequences, as a simple example. The sequences one and

two have three actions, and the third sequence has two actions:

1. activate_view_Polimetric, activate_view_TreeMap, open_CompilationUnitEditor
2. activate_view_Polimetric, open_CompilationUnitEditor, activate_view_TreeMap
3. activate_view_Polimetric, activate_view_TreeMap

The LTL Checker allows checking, for example, that the action activate_view_ TreeMap
always occurs some time after activate_view_Polimetric. It is also possible to check that
the action open_CompilationUnitEditor occurs in two out three sequences. Or that the
action activate_view_TreeMap occurs next to activate_view_Polimetric in two out three
sequences. Table 11 shows the main results and interpretations for the sequences of the
experiment.
We also investigated preferences grouped by participants. Some participants read more

and used fewer views, whereas others did the opposite. To evaluate these aspects, we cal-
culated the ratio between the number of classes investigated for each program and the use
of views and readings. We counted the number of actions related to reading (activation of
Compilation Unit Editor), activation of hierarchical views (Polymetric or Tree Map), and
activation of coupling views (Dependency, GridCoupling or CouplingMatrix). For exam-
ple, there were 12, two and four (18 in total) ”activated_editor_CompilationUnitEditor”
for the sequences of the F13 participant, for the programs Monopoly, Tetris and Tic Tac
Toe, respectively. The total number of classes for these three programs is 31. We defined
the ratio of using the CompilationUnitEditor, for F13 participant, as 18/31. He/she acti-
vated Coupling views 31 times for the three programs. In this case, the ratio is 31/31. Note
that, if the participant activated the views more than the total number of classes of the

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 17 of 33
www.jserd.com/content/2/1/11

Table 11Main results of the evaluation of sequences with LTL checker

Formula Action (activity) Number of Interpretation
eventually_activity... Activitation of ... cases (in 30)

A Compilation Unit
Editor

20 There were 20 cases where the
participants read source code to
identify god classes

A, B, C, D and E Polimetric,
TreeMap,
Grid Coupling,
Coupling Matrix,
Dependency

11 Despite hierarchical views ad
coupling views show the same
attributes, there were 11 cases
where the participants adopted all
views of the visualization tool to
identity god classes

A and B Hierarchical views and
Coupling views

27 There were 27 cases where the
participants combine the use,
at least, one of the hierarchical
views and one of the coupling views
to identify god classes

A, B and C Hierarchical views
and Coupling views and
Compilation Unit
Editor

17 There were 17 cases where the
participants combined reading
source code with one of the
hierarchical (at least) and one of
the coupling views (at least)

investigated programs, the ratio will be greater than 1. The complete results are presented
in Figure 5.
From the figure, we identified six different profiles. We present them in Table 12. The

first profile is composed of participants F14, F21 and F42. They used very little or no
reading, and had a slight preference for coupling views. In profile 2, the two participants
(F31 and F41) also did little reading in comparison to the usage of coupling views. In
profile 3, participants F15 and F25 had preferences for coupling views, but they focused
on reading unlike the previous group. For the other cases we found only one participant.
To investigate the “quality” of profiles we evaluated the agreement between each par-

ticipant and the oracle. We plotted the Finn coefficient in Figure 6. From the graphs, it
can be seen that no participants strongly agreed with the oracle. For example, participant
F21 (Figure 6(A) and (C)) had the highest agreement for the program Chess and the worst
agreement for Jackut. This was the general pattern.

Figure 5 Ratio of using CompilationUnitEditor, hierarchical and coupling views.

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 18 of 33
www.jserd.com/content/2/1/11

Table 12 Profiles of participants related to the use of reading, hierarchical and coupling
views

No Profile Participants

1 No reading and slight preference by coupling views F14, F12 and F42

2 Few reading and strong preference by coupling views F31 and F41

3 Focus on reading and preference by coupling views F15 and F25

4 Preference by hierarchical views F35

5 Slight preference by hierarchical views F13

6 Similar using of all views and reading F44

7 None using the visualization tool F32

RQ4: What issues in code lead humans to identify a class as a god class?

To address this question we collected data related to drivers used by participants on the
identification of god classes. The answer form provided a multiple choice list of nine
drivers extracted from the work of Schumacher et al. (2010) (see Section ‘Forms’). It also
allowed the participants to write down new drivers.
For cases where visualization was not used, the participants wrote down 19 short

descriptions of new drivers. The coding process on these 19 new drivers’ descriptions was
simple. For example, some participants wrote down “class has many lines of code”, oth-
ers wrote down “class has big size”. In these cases, we defined “class has high LOC” as the
driver. After this process, we narrowed the descriptions down to six actually new drivers.
Table 13 shows all the drivers. The most common drivers were “class is highly complex”
(48 times) and “method is highly complex” (31 times). An intermediate group included
drivers like “class is special/framework” (12 times), “class represents a global function”
(8 times) and “lack of comments” (7 times). The other drivers had low marks (≤ 5 times).
We also analyzed the distribution of drivers by participants. The drivers “class is

highly complex” and “method is highly complex” were filled by all and almost all partic-
ipants, respectively. The other 13 drivers were used by no more than four participants,

Figure 6 The Finn agreement coefficient among participants and the oracle: Group 1 in (A) and (C);
and Group 2 in (B) and (D).

Santos
etal.JournalofSoftw

are
Engineering

Research
and

D
evelopm

ent 2014,2:11
Page

19
of33

w
w
w
.jserd.com

/content/2/1/11

Table 13 Drivers by participants (Schumacher et al. and new drivers) without visualization

Participant

Based on Schumacher et al. coding Coding on comments

Class Method Attribute Method/class Class Method

Not used Highly Misplaced Special/ Wrong High Misplaced Not used Lacks High Many Many Global Can be High
complex framework named complex comments LOC dependencies methods functions split LOC

F13 0 6 0 3 0 6 2 0 3 0 0 0 0 1 1

F14 0 3 0 0 1 1 1 0 0 1 0 0 0 0 0

F15 0 4 0 0 1 3 0 0 0 0 0 0 0 0 0

F21 0 4 0 4 0 0 0 1 0 0 0 0 0 0 0

F25 0 9 0 0 0 6 0 3 1 0 0 0 0 0 0

F31 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0

F32 0 4 0 0 0 0 0 0 0 0 0 0 7 0 0

F35 0 5 0 0 0 2 1 0 0 0 0 0 0 0 0

F41 0 5 0 2 0 7 0 1 0 3 0 2 0 0 2

F42 0 3 0 3 0 1 0 0 0 0 4 0 0 0 0

F44 0 4 1 0 0 4 0 0 3 0 0 0 0 0 0

Totais 0 48 1 12 2 31 4 5 7 4 4 2 8 1 3

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 20 of 33
www.jserd.com/content/2/1/11

even the drivers in the intermediate group. This indicates that drivers like “class is spe-
cial/framework” were consistently adopted by some, but this was not a consensus among
the participants.
For cases where visualization was used, the participants wrote down 27 short descrip-

tions of “new drivers”. Like before, these descriptions were reduced to a group of six
actually new drivers. This group was almost the same as before. As shown in Table 14, it
excludes/includes just one driver (“method can be split” is substituted by “problem with
hierarchy”). The most common drivers were “class is highly complex” (46 times), “method
is highly complex” (21 times) and “class has many dependencies” (20 times). The interme-
diate drivers were “class is special/framework” (11 times), “class/method lack comments”
(8 times) and “class has high LOC” (7 times). The others had low marks (≤ 3 times).
Like before, “class is highly complex” and “method is highly complex” were chosen by all

or almost all participants. “class has many dependencies” was also chosen by most (seven)
participants. “class is special/framework” was chosen by five. The other 11 drivers were
chosen by less than three participants, following the same pattern previously described.
Finally, we analyzed the differences by cases with and without visualization. The coding

we performed produced practically the same new drivers and the distribution of the total
marks was also quite similar. The most common drivers were the same: “class is highly
complex” and “method is highly complex”. The notable difference was the “class has many
dependencies” driver. It was common in the visualization-based analysis and uncommon
in the code-based analysis (without visualization).

Discussion
This section presents the discussion of the results of the experiment. Following the same
logic of the previous section, we created one subsection to present the discussion for each
question.

RQ1: Howwell do the participants agree on identifying god classes?

We addressed this question from two perspectives: i) number of candidate classes and ii)
agreement test.

Number of candidate god classes

Comparison with Schumacher et al. (2010)’s work. Schumacher et al. (2010) found a
very small number of god class candidates: only two in 52 inspected for one of the projects
and three in 51 for the other project (3.8% and 5.8%, respectively). The numbers were
much higher in our case: the average number of candidate classes were 34.8% and 35.8%
for cases with and without visualization, respectively. One possibility is that the difference
was related to the type of programs. Because the programs used in our experiment have
a smaller number of classes, one god class candidate represents a high percentage.
On the other hand, it is possible to conjecture about the difference on the number and

experience of the participants. In both studies, the number of participants is small: 11 in
our case, and only four in the Schumacher et al. work. Our participants were undergradu-
ates and Schumacher et al. ran the study with professionals. However, despite experience,
three of their participants were unfamiliar with the concept of smell and god class in the
experiment. The other participant had only heard about god classes before. Therefore, for
both studies the participants had little knowledge about the concepts. We consider this

Santos
etal.JournalofSoftw

are
Engineering

Research
and

D
evelopm

ent 2014,2:11
Page

21
of33

w
w
w
.jserd.com

/content/2/1/11

Table 14 Drivers by participants (Schumacher et al. and new drivers) with visualization

Subject

Based on Schumacher et al. coding Coding on comments

Class Method Attribute Method/class Class Method

Not used Highly Misplaced Special/ Wrong High Misplaced Not used Lacks High Many Many Global Hierarchy High
complex framework named complex comments LOC dependencies methods functions structure LOC

F13 0 4 0 1 0 4 0 0 2 3 4 1 0 0 1

F14 0 5 0 0 1 1 0 0 0 1 3 0 0 0 1

F15 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0

F21 0 4 0 5 0 0 0 1 0 0 0 0 0 0 0

F25 0 8 0 0 0 3 0 1 2 0 0 0 0 0 0

F31 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

F32 0 2 0 3 0 0 0 0 0 0 0 0 2 0 0

F35 0 6 0 0 0 3 2 0 0 0 0 0 0 0 0

F41 0 3 0 1 0 3 0 1 0 3 2 0 0 1 0

F42 0 6 0 1 0 3 0 0 0 0 5 0 0 0 0

F44 0 4 0 0 0 2 0 0 4 0 1 0 0 0 0

Totais 0 46 0 11 1 21 2 3 8 7 20 1 2 1 2

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 22 of 33
www.jserd.com/content/2/1/11

aspect empirical evidence that the knowledge related to reading or having heard about
the concept of smell or god class is weaker than the experience related to work in a devel-
opment environment. We usually believe in that, but we do not have much empirical
evidence. To us, this makes the importance of expanding the discussion on the context
of software engineering experiments evident. This problem has been rarely addressed in
Experimental Software Engineering (Dybå et al. 2012; Höst et al. 2000, 2005).

Comparison between cases with and without visualization. There was no significant
difference between the number of god class candidates with and without visualization
(Figure 3). Considering the “yes” or “maybe” marks, values for cases with visualization are
higher for the two programs, and lower for two other programs. Considering only “yes”
marks, values for cases with visualization are higher only for one program and lower for
two programs. The main finding is that the use of visualization does not impact the num-
ber of candidate god classes, i.e. people do not identify more or fewer god classes because
of a better comprehension of the design of the program (obtained via the visualization
tool). For us, this is evidence that people have their own conceptualization of what a god
class is, and the visualization tool does not affect this.
This finding appears to run contrary to the one presented by Murphy et al. 2010. In

this work, the first hypothesis is “Programmers identify more smells using the tool than
not using the tool”. However, their tool uses visual aids based on detection mechanisms.
These mechanisms use metrics to visually highlight certain smells related to attributes.
This contributes to harmonize (for better or worse) the conceptualization of what a
smell is.

Agreement test

Comparison with Schumacher et al. (2010)’s work. We could not compare both works
in terms of numbers because Schumacher et al. used Cohen’s Kappa and we adopted the
Finn coefficient. In Shcumacher’s et al. work, the agreement for the one project was -2%.
Based on Landis’s and Koch’s (1977) interpretation of Kappa, this indicates no agree-
ment among the two participants. In the other project, the calculated Kappa was 48%
(suggesting moderate agreement). Their conclusion was that there was not a high level
of agreement. The work of Mäntylä (2005), in a similar study about agreement, found a
similar result. For comparative purposes, we tested agreement with the Fleiss Kappa coef-
ficientc and Landis’s and Koch’s interpretation. Our results showed only a slightly higher
agreement than Schumacher’s et al. work.
The values of the Finn coefficient were significantly higher as we can see in Tables 5

and 6. However, it is important to note that the Finn and Kappa tests measure agreement
using both god and non-god classes. Consequently, we were cautious about finding high
levels of agreement (almost perfect), because many classes are clearly not god classes.
Participants were expected to agree on this. The same situation might have happened
in the Scumacher’s et al. work. We believe that their values were affected by the prob-
lem of the Kappa coefficient, which we discussed in the Subsection ‘Finn agreement test’.
Despite this, the results considering just the “yes” mark were convincing. Almost per-
fect agreement occurred for four of the six cases without visualization, and five of the six
cases with visualization. The results were not as convincing when some level of doubt
was allowed. For the “maybe” and “yes” marks, almost perfect agreement occurred in only

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 23 of 33
www.jserd.com/content/2/1/11

one of the six cases without visualization, and two of the six with visualization. Based on
these analyses, we consider our results aligned with previous studies: we did not find a
high level of agreement.
The main finding here is that the participants have different conceptualizations of what

makes a god class. This may happen in two dimensions. First, participants may have dif-
ferent classification thresholds in their evaluation of candidates. For example, participants
may have different perceptions of how many roles a class can assume before it becomes
a god class. Another possibility is that participants simply have different views of the god
class concept. We consider this to be the weaker possibility because they had the same
training and they had a similar level of knowledge before the experiment. Furthermore,
the difference in the classification threshold was observed first hand when the oracle was
being defined by more experienced professionals.

Comparison between cases with and without visualization. Another important
dimension is the impact of visualization. We can not affirm that the use of visualization
leads to “big” improvements. We can see in Tables 5 and 6 that there were four in 11 cases
where the level of agreement was higher and there was one case where the level of agree-
ment was lower with visualization. As a result, the agreement was slightly better for cases
with visualization. We use the next research question to further investigate the impact of
visualization.

RQ2: Howwell do humans and an oracle agree on identifying god classes?

We addressed this question from two perspectives: i) the oracle definition process; and ii)
the agreement between the oracle and participants.

The oracle definition process

An important aspect in the agreement analysis between participants and the oracle is that
we can not claim that the discrepancies between the participants and the oracle are errors,
but we can claim that the oracle definition process was more rigorous. During the ora-
cle meeting, both oracle researchers noted that the choice of a god class was associated
with their personal perception about “how many roles the class needs to be considered
god class” or “how much LOC the class needs to be considered a large class”, or other
subjective thresholds related to the characteristics of classes. This can be an explana-
tion for the lack of agreement found among the participants of our study, as well as in
(Mäntylä’s 2006a and Schumacher’s et al. 2010) studies.

The agreement between the oracle and participants

We analyzed this from two perspectives: level of certainty or doubts (“yes” or “maybe”
marks) , and the use of visualization (Figure 4).

Comparison between cases with and without doubts. From Figure 4, we can see that
when certainty – “yes” mark – is involved, the agreement between the participants and
the oracle is generally high, while the variation in these agreements – see the box sizes –
is usually small. These values are significantly reduced for the “yes or maybe” marks. The
agreement average and variation between the oracle and the participants are much lower.
If we consider the discussion on the high level values naturally produced by the Finn

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 24 of 33
www.jserd.com/content/2/1/11

coefficient, this reinforces the thesis that agreement is low when doubt is involved. This
also reinforces the evidence that participants have a personal conceptualization of what is
a god class. As discussed previously, the likely causes for this is the different classification
thresholds, or the different views of the god class concept. Like before, we consider the
former more probable.

Comparison between cases with and without visualization. Considering the averages
and the “yes or maybe” options in Figure 4(A) and (B), one can observe that there was
only one case where the visualization improved agreement. Considering only the “yes”
option (Figure 4(C) and (D)), there were three out of six cases where the visualization
improved agreement. We conclude that the visualization does not affect the agreement
values. This weakens the argument made in the discussion of RQ2, where we stated that
visualization slightly improves the agreement among the participants. It might be the case
that visualization slightly improves the precision among the participants, but it does not
improve the accuracy of their detection against an oracle reference.

RQ3: Which strategies are used to identify god classes?

Relevant actions

First we addressed differences in the amount of reading for the cases with and without
visualization. Comparing both cases, the reduction in the activation of the Compilation
Unit Editor, or the reading of source code, was significant: from 1240 (without visualiza-
tion) to 263 (with visualization). On the other hand, actions related to the activation of
the views of the visualization tool emerged. We concluded that participants exchanged
reading for the observation of views, i.e., they used visualization to search for attributes
that indicate god classes. Based on the use of the views and tacit knowledge, we suggest
that, to identify god classes, participants compared LOC, complexity or number of meth-
ods; observed coupling attributes and read code to understand the context of the class in
the program.

Strategies of god class detection

Evaluating sequences. We analyzed each case presented in Section ‘Strategies of god
class detection’. The first case was related to reading. It was found in 20 of the 30
sequences. We believe that it was adopted by the participants to comprehend the role of
the class in the program. Considering the concepts presented by (Fowler 1999 and Lanza
andMarinescu 2005), some reading is necessary. In the definition of a Large Class, Fowler
says that “...it often shows up as too many instance variables”. In the God Class and Brain
Class definitions, Lanza and Marinescu adopt metrics that involve a number of branches,
deep nesting and a number of variables. In the experiment, it was not possible to see
these characteristics with the visualization tool. However, despite the expected behavior,
10 sequences did not contain actions related to reading code. We analyze these aspects in
the evaluation of participants hereafter.
In the other formula, we detected that in 11 sequences participants activated all five

views of the visualization tool. As discussed in Section ‘Tools’, the two hierarchical views
present similar attributes, like the other three coupling views. This indicates that in some
cases participants worked more than necessary. Our conjecture is that they wanted to
increase their level of certainty. It is important to note that, for most sequences (19), the

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 25 of 33
www.jserd.com/content/2/1/11

participants did not use all the views, which we consider more efficient. Despite this, the
need to confirm ideas is a behavior that must be considered in the analysis.
Another analysis that we performed was related to the combination of views and

reading. The combination of hierarchical and coupling views occurred in 27 of the 30
sequences. This was the main strategy used to detect god classes.

Evaluating participants’ strategies. We identified three participants who combined
structural, coupling views, and used very little or no reading. It is profile 1 in Table 12. In
profile 2, the two participants also used little reading in comparison with their preference
for coupling views. From these two profiles, we suggest that the preference for coupling
indicates that this attribute is the strongest, and that reading source code was not consid-
ered so relevant in god class detection. Another interesting profile is the number 3. In this
case, the participants focused on reading and had a preference for coupling. In compari-
son with the other two profiles, this agrees with our previous discussion that participants
exchanged reading for observation of specific attributes in the views of the visualization
tool. In some cases, participants seem to be more confident reading than using the visual-
ization tool. The other profiles indicate different preferences. For example, profile 4 shows
a strong preference for structural views and profile 6 shows the similar use of all types of
views and reading.
An interesting observation is related to the absence of a “better” strategy, or even a

“better” participant, considering the agreement with the oracle (Figure 6). This reinforces
our idea that god class detection is strongly affected by personal conceptualizations. If this
was not true, a participant with a similar approach to the oracle would produce high levels
of agreement with it for most programs. This was not what happened in our experiment.

RQ4: What issues in code lead humans to identify a class as a god class?

Some drivers were chosen by participants, independent of visualization. “Class is highly
complex” (chosen by all participants) and “Method is highly complex” (chosen by nine
out eleven participants), two of the strongest drivers, are examples of that. The only, and
very interesting exception to the rule, is the “class has many dependencies” driver. Only
one participant chose this driver for the case without visualization, and seven participants
chose the driver for the case with visualization. While the visualization tool provides sev-
eral views which showed signs of dependency, the current IDEs and the source code do
not help in the identification of dependency. This case is evidence that the use of a visual-
ization tool can indeed help, because some detection drivers are poorly supported by the
current state of the practice. This, however, does not solve the conceptualization problem.
It is also worthwhile to observe that, although participants did not always use the

same drivers, they were very consistent in using their drivers of choice. For “Method
is highly complex”, for example, the two participants who did not choose the driver
are the same (F21 and F32) with and without visualization. Other cases where the
same participants chose the same drivers were: “attribute is not used”, “methods or
class lack comments”. For other cases, the difference between the choices of the par-
ticipants is very small; at most one participant. That suggests that in some cases the
choice of drivers is a personal issue. This idea reinforces our conjecture about the
importance of the community discussing the problem of conceptualization on smells in
depth.

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 26 of 33
www.jserd.com/content/2/1/11

Summary of findings and insights

In this work, we addressed the problem of conceptualization in the god class detec-
tion, from different perspectives. In this section, we gather the findings and present our
conclusions. We also present peripheral, but not less important findings:

• Agreement

– Related to the conceptualization problem: The low agreement rate showed us
that the problem exists. However, we consider the question related to
visualization more interesting, because it showed us where the problem is, or
at least where it is not. The problem of conceptualization is that it is not
related to the comprehension of design, as we had expected. We argue this
because visualization did not increase agreement. The finding is that the
problem is related to personal understanding of the smell concepts or of
personal thresholds adopted.

– Peripheral findings: We found evidence that experience affects the degree of
agreement. Our evidence was: i) the comparison of the number of candidate
god classes in our and Shumacher’s et al. work; and ii) low agreement among
the participants and our oracle (made up of more experienced researchers).
Another interesting peripheral finding is related to the using of the Kappa
coefficient for agreement analysis. We noted that, for the Kappa coefficient,
in some cases, the agreement value is high and the coefficient is low. Based on
our research, we suggest the adoption of the Finn coefficient (see discussion
in the Section ‘Finn agreement test’).

• Strategies

– Related to conceptualization problem: The absence of a “better” strategy
reinforced our finding that each participant has his/her own idea about how
and what he/she has to do to identify god classes.

– Peripheral findings: We proposed an approach to identify strategies: the
identification of used views from the logs. We grouped participants according
to their strategies. The main profile identified focused on coupling attributes,
and little reading.

• Decision drivers

– Related to the conceptualization problem: As mentioned under “strategies of
god class detection”, some decision drivers are also personal choices. In a
consistent way, participants had different preferences for characteristics they
used to identify god classes. This also reinforced our previous findings.

– Peripheral findings: The main decision driver was “class is highly complex”.

The results discussed here strengthen the idea that the problem in god class detection is
more related to conceptualization than to making the comprehension of the code design
easier by facilitating the (visual) observation of certain attributes of the code. Note that
this type of problem is not solved by using other observation approaches, such as propos-
ing a new metric. The key problem is to identify concrete “good” examples of smells, pro-
viding standard definitions of them, teaching people about their conceptualization, and

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 27 of 33
www.jserd.com/content/2/1/11

only then providing the tools and methods (using metrics, thresholds or visualizations) to
aid their identification.

Threats to validity
Our analysis of threats was based on Wohlin et al. (2012).
External validity. Our first threat fits in the “interaction of selection and treatment” sub-

category and is related to the fact that the participants in our experiment were undergrad-
uates and had little experience in a real software development environment. Moreover,
the experiment was run with 11 participants. Although the aspects related to the partici-
pants could be considered a problem for generalization, we have strong evidence that the
existence of the problem discussed in this work is intrinsic to smell detection and also
happens with experienced developers. The evidence is: i) smell concepts are presented
subjectively Fowler (1999) or are dependent on thresholds Lanza et al. (2005); ii) findings
show low agreement in other works withmore experienced participants Schumacher et al.
(2010); and iii) the initial lack of agreement among the experienced researchers who cre-
ated the oracle in this work. We believe that experience affects our results only in terms
of intensity, but the problem of conceptualization exists for all cases. We are planning to
replicate this experiment with more experienced participants to evaluate the impact of
experience.
Other threats to external validity fit in the “interaction of setting and treatment” sub-

category. In this case, the threat is the type of program. We adopted simple programs.
Another point is the domain: they are familiar software, and in most of the cases, games.
Software of a different domain might present different characteristics. However, we argue
that the same, previous reasoning is valid here, weakening the threat: the phenomenon
can be studied in any type of software. In fact, because we used simple and familiar soft-
ware, the problem should be minimized, which was not the case. Moreover, we did not
address the difficulty of god class identification, but how conceptualization affects smell
detection.
Internal validity. The study has threats in two subcategories related to internal validity.

The first one is “ambiguity about direction of causal influence”. We highlight the fact that
the training about god classes reflects the view of the experimenter. The view of the exper-
imenter could affect the participants’ conceptualization and their ideas about what they
had to look for to identify a god class. To minimize this effect, we limited the time of the
training in the god class concept and adopted the support questions from Schumacher’s
experiment to guide participants in god class detection during our experiment. These
actions also mitigate the same threat in the opposite way: participants could not have a
general idea of what to search for.We consider that the training and the support questions
steered the participants to search for classes that represent the god class concept adopted.
Another threat is the training in the visualization tool. In our feedback form, partic-

ipants indicated that the quality of training was good, in general. However, we can not
confirm that it was sufficient to prepare participants in the use of visualization. Another
subcategory of the internal validity is “maturation”. Participants could be affected because
they do the same task over six programs, so they may learn as they go and work faster. On
the other hand, they could be affected negatively because of boredom.We consider matu-
ration a weak threat because the experiment was performed in 1.5 hours, on average. We
consider this a reasonable period of time to do a task in a balanced way.

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 28 of 33
www.jserd.com/content/2/1/11

Conclusion validity. In the “reliability of measures” category, we should report that
the logged information represents the actions of the participants only indirectly. They
actions of the Eclipse IDE. For example, if a developer changes the perspective in
the Eclipse, some views are activated by the tool and these actions are registered
in the log. To mitigate this aspect, we investigated the logging to evaluate actions
in detail and eliminated lines clearly related to Eclipse actions. Moreover, these reg-
isters occurred for all participants and did not affect the general conclusion. In the
“reliability of treatment implementation”, we have to consider that a participant who
could have used visualization may have completely disregarded the views of the visu-
alization tool. However, we checked the UDC logging and only one participant did
not use the visualization resources. Because this occurred in one case, the results were
not affected. Lastly, due to the number of data points, some of our findings were
based on the analysis of graphs and tables, and inferential testing was done in a few
cases.

Context and related works
As the use of the concept of smells has become widespread, empirical studies have been
presented to help understand their effects. As discussed in Section ‘Background’, we iden-
tified three types of empirical work in the area. In this section we present them. We
provide more details of papers related to human aspects, which are closer to our work.
However, we present correlation studies because they provide evidence that the use of
code smells as an indicator of a problem in the design has been inconsistent, which
we believe might be caused by the problem of conceptualization. We also present some
works related to the use of support tools, because our work is focused on the use of a
visualization tool.

Correlation studies

This type of work usually focuses on analyzing software evolution and tries to link smells
with some characteristic of code. Normally, they investigate data in software repositories.
Olbrich et al. (2010), for example, investigated the influence of two smells (“God Class”
and “Brain Class”) on the frequency of defects. In order to do this, they analyzed his-
torical data from three open-source software systems. They found that, in specific cases,
the presence of these smells might be beneficial to a software system. In another study,
Olbrich et al. (2009) investigated the evolution of two other smells (“God Class” and
“Shotgun Surgery”) for these same systems. Li and Shatnawi (2007) studied the relation-
ship between smells and error probability. They investigated three error-severity levels in
an industrial-strength open source system. Their findings indicate that some bad smells
are positively associated with the probability of errors.
Sjoberg et al. (2013) presented a controlled study where six professionals were hired to

maintain four systems for 14 days. Their aim was to quantify the relationship between
code smells and maintenance effort. One of the main findings was that “the ... smells
appear to be superfluous for explaining maintenance effort”. Abbes et al. (2011) adopted
the concept of anti-pattern, which, like the concept of code smell, presents “poor” solu-
tions to recurring design problems. They performed an empirical study to investigate
whether the occurrence of anti-patterns does indeed affect the understandability of sys-
tems by developers during comprehension and maintenance tasks. They found that the

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 29 of 33
www.jserd.com/content/2/1/11

occurrence of one anti-pattern does not significantly decrease developers’ performance
while the combination of two anti-patterns significantly impedes developers.

Smells and support tools

Some works evaluated smell detection using automatic detection tools (Moha et al.
2010; Mäntylä and Lassenius 2006a; Schumacher et al. 2010). Other works addressed
smell detection with visualization tools (Carneiro et al. 2010; Murphy-Hill and Black
2010; Parnin et al. 2008; Simon et al. 2001). From the former, we discuss the first tool,
because it was developed to mitigate subjectiveness. The authors propose DECOR. It is a
method/tool “that embodies and defines all the steps necessary for the specification and
detection of code and design smells”. Despite the tool mitigating some subjectiveness, the
focus of the work was on the method, not on the aspect that affects (or does not affect)
the conceptualization.
Here, we also discuss here the two most recent tools related smell detection and soft-

ware visualization. In (Murphy-Hill and Black 2010), Murphy-Hill and Black presented
a visualization implemented as an Eclipse plug-in. The tool is composed of sectors in a
semicircle on the right-hand side of the editor pane, called petals: each petal corresponds
to a smell. They performed a controlled experiment with 12 participants (6 program-
mers and 6 students) to evaluate the tool. Their main findings were: i) programmers
identify more smells using the tool than not using the tool ii) smells are subjective and
iii) the tool helps in deciding. Carneiro et al. (2010) presented the SourceMiner tool;
a multi-perspective environment Eclipse based plug-in. SourceMiner has visualizations
that address inheritance and coupling characteristics of a program. The visualizations also
portray the previously mapped concerns of the analyzed software. The authors performed
an exploratory study with five developers, using a concern mapping multi-perspective
approach to identify code smells. Two main findings were presented. First, the con-
cern visualizations provided useful support to identify God Class and Divergent Change
smells. Second, strategies for smell detection supported by the multiple concern views
were revealed.

Smells and human aspects

Mäntylä (2005) presents results of two experiments addressing agreement in smell detec-
tion and factors to explain it. A small application in Java with nine classes and 1000 LOC
was created and used in both experiments. In the first experiment, there were three ques-
tions about “Long Method”, “Long parameter List” and “Feature Envy” smells, and one
question asked if the method should be refactored to remove the detected smells. In
the second experiment, participants were only asked if some specific methods should be
refactored. He found high rates of agreement for simple smells: long method and long
parameter list. He found weaker agreement levels, however, concerning the feature envy
smell and the decisions regarding refactoring. Mäntylä then tried to identify factors that
influenced agreement in smell detection. He investigated both the influence of software
metrics and demographic data as factors for smell detection agreement. His findings point
to the influence of metrics.
Mäntylä and Lassenius (2006a) investigated why and when people think a code needs

refactoring. They analyzed one of the experiments presented in (Mäntylä 2005) to inves-
tigate what drivers define the refactoring decisions. They applied a questionnaire to

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 30 of 33
www.jserd.com/content/2/1/11

understand refactoring decisions. A taxonomy was defined after a qualitative analysis
(coding process) of the textual answers. The authors also compared the results with an
automatic detection tool. The most important driver was the size of a method. One of
their important findings was that there was a conflict of opinions between the partici-
pants. The conflict was related to the assessed internal quality of the methods and the
need to refactor them. Regarding the automatic detection, they found that some drivers
are difficult or impossible to detect automatically, and some smells are better detected by
experienced participants than by automatic means.
Schumacher et al. (2010) build on and extend Mäntylä and Lassenius’s (2006a) work.

They investigated the way professional software developers detect god class smells, and
then compared these results to automatic classification. The study was done in a pro-
fessional environment, with two real projects and two participants in each project. The
research questions focused on “Evaluation of Human Performance” and “Evaluation of
Automatic Classifiers”. Participants were introduced to the god class smell in a short pre-
sentation and were asked to detect them in specific code pieces. During this task, they
received a list of questions to help with the identification of god classes (the support ques-
tions adopted by us in this work), questions such as: “Does the class have more than one
responsibility?”. A process was designed to ensure that all participants performed the
inspection of classes in a similar fashion. To evaluate the participant performance in the
task, they used a “think-aloud” protocol (recorded as audio) and data collection forms.
Coding was carried out to identify drivers and answers from the data collection form
were used to evaluate time and agreement. Their main findings were: (1) there was low
agreement among participants and (2) “misplaced method” was the strongest driver for
god class detection. Related to the evaluation of automatic detection, their main findings
were: (1) an automated metric-based pre-selection decreases the effort needed for man-
ual code inspections and (2) automatic detection followed by manual review increases the
overall confidence.
A study with aims similar to Schumacher’s was presented by (Mäntylä et al. in 2004 and

Mäntylä and Lassenius 2006b). Through a survey, they asked participants about 23 smells
and used a scale from 1 (lack) to 7 (large presence) to evaluate the presence of smells in a
piece of code. They received 12 completed questionnaires from 18 sent, all being sent to
developers in a small software company. In one of the findings the authors declare: “the
use of smells for code evaluation purposes is hard due to conflicting perceptions of different
evaluators”.
It is important to note that these studies focused on specific human aspects. Basically,

they investigated agreement and decision drivers adopted by participants. We built on
the discussions considering two important aspects: the strategies adopted and the impact
of visualization on each investigated aspect. Moreover, we proposed a discussion about
how each of these aspects reflects the problem of conceptualization. We consider this our
main contribution.

Conclusions
The purpose of this work was to find empirical evidence to evaluate the impact of per-
sonal conceptualization in god class detection. We were interested in understanding how
differences in the perception of the concept affect identification. To do this, we per-
formed a controlled experiment that extended another study focusing on investigating

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 31 of 33
www.jserd.com/content/2/1/11

how developers detect god classes. Our experiment deepened and detailed some research
questions previously presented and added new research questions. We addressed agree-
ment among participants, and also among participants and an oracle, decision drivers,
the impact of using a visualization tool, and strategies adopted by participants in god
class detection. Our analysis considered how these elements are more related to personal
choice than to the conceptual aspects in god class detection.
Our main finding is that the problem of god class detection is mainly related to concep-

tualization, i.e., agreeing on what a god class is, and which thresholds should be adopted.
We believe that this type of problem is not solved by using other observation approaches,
such as proposing a new metric or a new visual resource. We also believe this issue is
transversal to other code smells. The smell detection problem would be better addressed
if the community identifies concrete “good” examples of smells, providing standard def-
initions of them, teaching people about their conceptualization, and only then providing
tools and methods (using metrics, thresholds or visualizations) to aid in their identifica-
tion. Another important finding was that our work produced low agreement rates in code
smell detection among the experiment participants, which is in accordance with other
works.
To address the limitations of this study and to further develop it in this area, we are

planning to replicate the experiment with more experienced participants to evaluate
the impact of experience on the process. Other aspects that we may replicate as well
is the evaluation of other software and other smells. To support replication we provide
the experimental packaged. The package contains forms, data and software.

Endnotes
aEclipse IDE - http://www.eclipse.org/downloads/; Usage Data Collector (UDC)

plug-in - http://www.eclipse.org/epp/usagedata/; Task Register - private; SourceMiner -
visual support http://www.sourceminer.org/

bWeb address of ProM tool: www.processmining.org
cFleiss Kappa is a Cohen’s Kappa variation that permits test with more than two raters
dExperimental package: http://wiki.dcc.ufba.br/LES/FindingGdoClassExperiment2012

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JAMS and MGM planned, performed and analyzed the experiment and drafted the manuscript. CPS supported some
specific analysis. RLN also supported some analysis and drafted the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
We would like to thanks: Claudio Sant’Anna for allowing execution of the experiment in the Software Quality course;
Bruno Carneiro for valuable participation in definition of oracle; and to participants for their availability and effort.

Author details
1Department of Technology, State University of Feira de Santana, Transnordestina avenue S/N - Feira de Santana - Bahia,
Feira de Santana, Brazil. 2Mathematics Institute, Federal University of Bahia, Ademar de Barros Avenue, S/N,
Salvador - Bahia, Salvador, Brazil. 3Fraunhofer Project Center for Software & Systems Eng., Ademar de Barros Avenue, S/N,
Salvador - Bahia, Salvador, Brazil. 4Information Technology Department, Federal Institute of Bahia, Araujo Pinho Avenue,
39, Salvador - Bahia, Salvador, Brazil.

Received: 19 December 2013 Accepted: 31 August 2014

http://www.eclipse.org/downloads/
http://www.eclipse.org/epp/usagedata/
http://www.sourceminer.org/
www.processmining.org
http://wiki.dcc.ufba.br/LES/FindingGdoClassExperiment2012

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 32 of 33
www.jserd.com/content/2/1/11

References
Abbes M, Khomh F, Guéhéneuc Y-G, Antoniol G (2011) An empirical study of the impact of two antipatterns, blob and

spaghetti code, on program comprehension. In: Proc. of 15th European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, Oldenburg, Germany, pp 181–190

Carneiro GF, Mendonça MG (2013) Sourceminer: A multi-perspective software visualization environment. In: Proceedings
of 15th International Conference on Interprise Information Systems. ICEIS. SciTePress, Angers, France

Carneiro G, Silva M, Maia L, Figueiredo E, Sant‘Anna C, Garcia A, Mendonça M (2010) Identifying code smells with multiple
concern views. In: Proc. of 1th Brazilian Conference on Software: Theory and Practice, CBSOFT. IEEE, Salvador, Bahia,
Brazil

Dybå T, Sjøberg DIK, Cruzes DS (2012) What works for whom, where, when, and why?: On the role of context in empirical
software engineering. In: Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement. ESEM ’12. ACM, New York, NY, USA, pp 19–28

Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. the problems of two paradoxes. J Clin Epidemiol
43(6):543–549

Finn RH (1970) A note on estimating the reliability of categorical data. Educ Psychol Meas 30:71–76
Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378–382
Fowler M (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA
Fontana FA, Mariani E, Morniroli A, Sormani R, Tonello A (2011) An experience report on using code smells detection

tools. In: Proc. of 4th Software Testing, Verification and Validation Workshops, ICSTW. IEEE, Berlin, Germany
Gwet K (2002) Kappa statistic is not satisfactory for assessing the extent of agreement between raters. Stat Methods

Inter-rater Reliability Assess 1:1–5
Höst M, Regnell B, Wohlin C (2000) Using students as subjects— a comparative study of students and professionals in

lead-time impact assessment. Empirical Softw Eng 5(3):201–214
Höst M, Wohlin C, Thelin T (2005) Experimental context classification: incentives and experience of subjects. In: Software

Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference On. IEEE, St Louis, Missouri, USA,
pp 470–478

Johnson B, Shneiderman B (1991) Tree-maps: a space-filling approach to the visualization of hierarchical information
structures. In: Visualization, 1991. Visualization ’91, Proceedings., IEEE Conference On. IEEE, San Diego, CA, USA,
pp 284–291

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics
33(1):159–174

Lanza M, Ducasse S (2003) Polymetric views - a lightweight visual approach to reverse engineering. Softw Eng IEEE Trans
29(9):782–795

Lanza M, Marinescu R, Ducasse S (2005) Object-Oriented Metrics in Practice. Springer, Secaucus, NJ, USA
Li W, Shatnawi R (2007) An empirical study of the bad smells and class error probability in the post-release

object-oriented system evolution. J Syst Softw 80(7):1120–1128
Meyer B (1988) Object-Oriented Software Construction, 1st edn. Prentice-Hall, Inc., Upper Saddle River, NJ, USA
Moha N, Gueheneuc Y-G, Duchien L, Le Meur A-F (2010) Decor: A method for the specification and detection of code and

design smells. IEEE Trans Softw Eng 36(1):20–36
Murphy-Hill E, Black AP (2010) An interactive ambient visualization for code smells. In: Proc. of the 5th ACM Symposium

on Software Visualization, SOFTVIS. ACM, Salt Lake City, Utah, USA
Mäntylä M (2005) An experiment on subjective evolvability evaluation of object-oriented software: explaining factors

and interrater agreement. In: Proc. of the 4th International Syimposium on Empirical Software Engineering, ISESE.
IEEE, Noosa Heads, Australia

Mäntylä MV, Lassenius C (2006a) Drivers for software refactoring decisions. In: Proceedings of the International
Symposium on Empirical Software Engineering, ISESE. ACM, Rio de Janeiro, Brazil

Mäntylä M, Lassenius C (2006b) Subjective evaluation of software evolvability using code smells: An empirical study.
Empirical Softw Eng 11(3):395–431

Mäntylä M, Vanhanen J, Lassenius C (2004) Bad smells - humans as code critics. In: 20th IEEE International Conference on
Software MaintenanceICSM 2004, ICSM. IEEE, Chicago Illinois, USA

Olbrich S, Cruzes DS, Basili V, Zazworka N (2009) The evolution and impact of code smells: a case study of two open
source systems. In: Proc. of the 3rd International Symposium on Empirical Software Engineering and Measurement,
ESEM. IEEE, Lake Buena Vista, Florida, USA

Olbrich SM, Cruzes DS, Sjoberg DIK (2010) Are all code smells harmful? a study of god classes and brain classes in the
evolution of three open source systems. In: Proc. of the IEEE International Conference on Software Maintenance,
ICSM. IEEE, Timisoara, Romania

Padilha J, Figueiredo E, Sant’Anna C, Garcia A (2013) Detecting god methods with concern metrics: An exploratory study.
In: Proceedings of the 7th Latin-American Workshop on Aspect-Oriented Software Development(LA-WASP),
Co-allocated with CBSoft. IEEE, Brasília, Brazil

Parnin C, Görg C, Nnadi O (2008) A catalogue of lightweight visualizations to support code smell inspection. In: Proc. of
the 4th Software Visualization, SOFTVIS. ACM, Herrsching am Ammersee, Germany

Powers DMW (2012) The Problem with Kappa. In: Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, EACL ’12, Stroudsburg, PA, USA, pp 345–355

Rapu D, Ducasse S, Girba T, Marinescu R (2004) Using history information to improve design flaws detection.
In: Proc. of 8th European Conference on Software Maintenance and Reengineering, CSMR. IEEE, Tampere, Finland

Riel AJ (1996) Object-Oriented Design Heuristics, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA

Santos JA, Mendonça M, Silva C (2013) An exploratory study to investigate the impact of conceptualization in god class
detection. In: Proc of 17th International Conference on Evaluation and Assessment in Software Engineering, EASE.
ACM, Porto de Galinhas, Brazil

Santos et al. Journal of Software Engineering Research and Development 2014, 2:11 Page 33 of 33
www.jserd.com/content/2/1/11

Schumacher J, Zazworka N, Shull F, Seaman C, Shaw M (2010) Building empirical support for automated code smell
detection. In: Proc. of the International Symposium on Empirical Software Engineering and Measurement, ESEM.
ACM, Bolzano-Bozen, Italy

Simon F, Steinbruckner F, Lewerentz C (2001) Metrics based refactoring. In: Proc. of 5th European Conference on
Software Maintenance and Reengineering, CSMR. IEEE, Lisbon, Portugal

Sjøberg DIK, Yamashita A, Anda BCD, Mockus A, Dyba T (2013) Quantifying the effect of code smells on maintenance
effort. IEEE Trans Softw Eng 39(8):1144–1156

van der Aalst WMP (2011) Process mining: discovery, conformance and enhancement of business processes. 1st edn.,
p. 352. Springer, Berlin

Van Emden E, Moonen L (2002) Java quality assurance by detecting code smells. In: Proc. of the 9th Working Conference
on Reverse Engineering, WCRE. IEEE, Washington, DC, USA

Vinson NG, Singer Ja (2008) A practical guide to ethical research involving humans. In: Shull F, Singer J, Søberg DIK (eds)
Guide to Advanced Empirical Software Engineering. Springer, London, pp 229–256

Whitehurst GJ (1984) Interrater agreement for journal manuscript review. Am Psychol 39(1):22–28
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in Software Engineering. p 250
Zhang M, Hall T, Baddoo N (2011) Code bad smells: A review of current knowledge. J Softw Maint Evol 23(3):179–202

doi:10.1186/s40411-014-0011-9
Cite this article as: Santos et al.: The problem of conceptualization in god class detection: agreement, strategies and
decision drivers. Journal of Software Engineering Research and Development 2014 2:11.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Background
	Method
	Result
	Conclusion
	Keywords

	Background
	Method
	Research question
	Experimental units
	Experimental material
	Tools
	Forms
	Software artifacts

	Task
	Design
	Execution
	Deviations
	Data

	Results
	RQ1: How well do the participants agree on identifying god classes?
	The percentage of god class candidates
	Finn agreement test

	RQ2: How well do humans and an oracle agree on identifying god classes?
	RQ3: Which strategies are used to identify god classes?
	Relevant actions
	Strategies of god class detection

	RQ4: What issues in code lead humans to identify a class as a god class?

	Discussion
	RQ1: How well do the participants agree on identifying god classes?
	Number of candidate god classes
	Comparison with Schumacher et al. (schumacher10)'s work.
	Comparison between cases with and without visualization.

	Agreement test
	Comparison between cases with and without visualization.

	RQ2: How well do humans and an oracle agree on identifying god classes?
	The oracle definition process
	The agreement between the oracle and participants
	Comparison between cases with and without doubts.
	Comparison between cases with and without visualization.

	RQ3: Which strategies are used to identify god classes?
	Relevant actions
	Strategies of god class detection
	Evaluating sequences.
	Evaluating participants' strategies.

	RQ4: What issues in code lead humans to identify a class as a god class?
	Summary of findings and insights

	Threats to validity
	Context and related works
	Correlation studies
	Smells and support tools
	Smells and human aspects

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

