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Abstract
Code review is a potential means of improving software quality. To be effective, it
depends on different factors, and many have been investigated in the literature to
identify the scenarios in which it adds quality to the final code. However, factors
associated with distributed software development, which is becoming increasingly
common, have been little explored. Geographic distance can impose additional
challenges to the reviewing process. We thus in this paper present the results of a
mixed-method study of the effectiveness of code review in distributed software
development. We investigate factors that can potentially influence the outcomes of
peer code review. The study involved an analysis of objective data collected from a
software project involving 201 members and a survey with 50 practitioners with
experience in code review. Our analysis of objective data led to the conclusion that a
high number of changed lines of code tends to increase the review duration with a
reduced number of messages, while the number of involved teams, locations, and
participant reviewers generally improve reviewer contributions, but with a severe
penalty to the duration. These results are consistent with those obtained in the survey
regarding the influence of factors over duration and participation. However,
participants’ opinion about the impact on contributions diverges from results obtained
from historical data, mainly with respect to distribution.
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1 Background
Code review is a common practice adopted in software development to improve software
quality based on static code analysis by peers. There are studies that provide evidence
that it reduces the number of defects detected after release, mainly when it has ade-
quate code coverage as well as engagement and participation of reviewers (McIntosh et al.
2014). Moreover, code review is a recognized way to foster knowledge sharing that bene-
fits authors and reviewers (Hundhausen et al. 2013). It also improves team collaboration
because it creates collective ownership of the source code, which results from collabo-
rative work rather than individual work (Bacchelli and Bird 2013; Thongtanunam et al.
2016b). Nowadays, code reviews are less formal than in earlier decades of software devel-
opment. In the past, it was typically in the form of code inspections (Fagan 1986), which
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required formal meetings and checklists (Kollanus and Koskinen 2009). Today, such a
practice is more informal, being referred to asModern Code Review (MCR) (Bacchelli and
Bird 2013). It is often assisted and enforced by tools, such as Gerrit (Google 2017a).
The effectiveness of code review depends on different factors and, when it cannot pro-

vide expected benefits, it becomes a costly and time-consuming task (Czerwonka et al.
2015; Thongtanunam et al. 2016a). For example, if there is a time gap between the comple-
tion of a change and its review by a peer, the author may have its work partially blocked,
possibly affecting the whole software release (Thongtanunam et al. 2015b). This lack of
dynamism in the code review activity increases the work in progress of teams, as new
tasks are started while waiting for the pending reviews. Furthermore, the context switch-
ing between coding tasks and reviews may also have a negative impact on developers’
work.
To understand the factors that positively and negatively affect the effectiveness of

code review, previous studies were performed, e.g. (Thongtanunam et al. 2015a; Baysal
et al. 2016; Yang 2014; Bosu et al. 2015). Examples of investigated factors are the patch
size, the nature of the change, or author’s company—that is, both technical and non-
technical factors have been investigated. Moreover, to evaluate effectiveness, different
criteria have been adopted, such as the review duration and the number of defects found
after code review. As a result, relevant conclusions regarding code review have been
reached. For instance, developers from other teams provide fewer but more useful feed-
back than those from the same team (Bosu et al. 2015). Despite all the significant results
obtained so far, code review has been investigated only to a limited extent in the con-
text of geographically distributed software development (Sengupta et al. 2006), which is
becoming increasingly common over the last decades. In the late 90s, researchers focused
on enabling formal code inspections, which involve meetings, in distributed scenarios
(Perpich et al. 1997; Stein et al. 1997). In modern code review, in contrast, tool sup-
port and asynchronous communication help deal with geographic distribution. However,
the effects of geographic distribution on the outcomes of code review (such as dura-
tion or reviewer engagement) have not been explored. Recent studies of code review in
distributed software development are limited to experience reports on code inspection
(Meyer 2008).
We thus in this paper focus on exploring how both technical and non-technical fac-

tors influence a set of metrics that are indicators of the effectiveness of code review in
the context of Distributed Software Development (DSD). We present the results of a
mixed-method study in which we investigated the relationship between four influence
factors—namely number of changed lines of code, involved teams, involved locations and
active reviewers—and the effectiveness of code review. As there is no single objectivemet-
ric that captures whether a review is effective, we measured and analyzed different review
outcomes that can be seen as an indication of the review effectiveness, such as reviewer
participation and number of comments. The study involved (1) an analysis of objective
data collected from a software project; and (2) a survey with 50 practitioners with experi-
ence in code review. This study is an extension of our previously presented work (Witter
dos Santos and Nunes 2017), which was complemented by the survey that allows us to
compare the results obtained with both research methods.
The first part of our study, referred to as repository mining, is based on a large amount

of data (8329 commits and 39,237 comments) extracted from the code review database
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of a project with 201 members during 72 weeks. The analysis of our results allowed us to
conclude that a high number of changed lines of code tends to increase the duration of the
review process with a reduced number of messages, while the number of involved teams,
locations and participant reviewers generally improve the contributions from reviewers,
but with a severe penalty to the duration. These results are consistent with those obtained
in the survey regarding the influence of factors over duration and participation. However,
participants’ opinion about the impact on contributions diverges from results obtained
from historical data, mainly with respect to distribution.
The remainder of this paper is organized as follows. We first discuss related work in

Section 2. We then provide details of our target project in Section 3, describing the code
review process of our target project. Next, we describe our study settings in Section 4.
The results of the first and second parts of our study are presented and analyzed in
Section 5. A discussion regarding obtained results is presented in Section 6, followed by
our conclusions, which are presented in Section 7.

2 Related work
Since the pioneering work of Fagan (1976) on formal code inspections, many researchers
proposed approaches to improve this well-structured and phased form of code review
(Parnas and Weiss 1985; Bisant and Lyle 1989; Martin and Tsai 1990). With the popular-
ity of DSD, other researchers investigated how to make code inspections feasible when
the involved people cannot physically meet in a particular location (Perpich et al. 1997;
Stein et al. 1997). Despite its popularity among researchers and practitioners, formal code
inspection and its variations have received less attention since the early 2000s (Kollanus
and Koskinen 2009).
More recently, much work focusing on modern code review has been done, ranging

from studies that investigate what leads to successful code review to approaches that
recommend suitable reviewers. For example, in Balachandran (2013)’s approach, recom-
mended reviewers are those that made the most recent changes in the portion of code
to be reviewed. His approach was improved by Thongtanunam et al. (2014), for projects
with specific characteristics, using the File Path Similarity (FPS), which takes into account
previous changes with similar paths or file names. These approaches were extended by
also considering similarity among past commit messages (Xia et al. 2015) and recent
activity of the possible reviewers (Zanjani et al. 2016). Viviani and Murphy (2016) took
another direction by prioritizing pending reviews for each reviewer instead of finding the
best candidate reviewers for a given change. This is motivated by the fact that several
projects have a high concentration of review requests in a small group of contributors
(Yang 2014).
Despite all these significant contributions to the field of code review, it is cru-

cial to understand the factors that influence the effectiveness of code review to,
for example, provide foundations to improvements while making reviewer recom-
mendations. Therefore, many studies focus on providing a deeper understanding
of code review, and its influence factors (e.g. number of changed lines of code
and experience of individuals) and outcomes (e.g. duration and discussion among
reviewers). Although such studies are similar to ours, they do not focus on DSD.
We next discuss technical and non-technical influence factors investigated in existing
studies.
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Investigation of technical factors Different correlations were studied involving techni-
cal factors. Thongtanunam et al. (2015a)’s study provided evidence that reviewers are less
rigorous and find fewer defects on files with a high incidence of defects in the past, focus-
ing on superficial aspects, such as coding standards rather than on functional aspects. In a
more recent study (Thongtanunam et al. 2016a), the same authors identified that bug fixes
typically receive the first feedback faster than implementations of new features. Moreover,
they reported that changes with detailed and explanatory commit messages have lower
stale rates, while those that are poorly described receive less attention of reviewers.
Focusing on the code review duration (in working days), a few influence factors were

investigated. Bosu et al. (2015) concluded that the patch size affects the duration in
most of the analyzed cases, while task priority in the release plan and the affected soft-
ware components have only occasionally influenced some of the projects analyzed by
Baysal et al. (2016).

Investigation of non-technical factors Non-technical factors also received attention
recently. As stated by Czerwonka et al. (2015), the social network that naturally emerges
inside the companies or projects should be considered as well as the specific reviewers’
skills and their availability and willingness to review. An analysis of the social network
of three open source projects (Yang 2014) revealed that the most active reviewers have
central roles in the social network of those projects and are frequently some of the most
important contributors. Bosu et al. (2015) observed, in a particular organization, that 75%
of the code review feedbacks come from members of the author’s team, but are slightly
less useful than those from other teams. Baysal et al. (2016), in turn, pointed out that when
multiple organizations contribute to the same project, the code review can take more
time to be completed and have higher rejection rates depending on which organization is
authoring or reviewing a patch, based on the analysis of several case studies.
The experience of authors of the code under review has also been pointed out as rele-

vant in code review. Senior members of the company and those with recognized expertise
usually receive more priority, faster and more detailed feedback, enabling a faster code
review with better results for the quality (Baysal et al. 2016; Rahman et al. 2016). The
experience of the reviewers is relevant as well, based on results of the investigation of a
large company (Bosu et al. 2015)—the quality of provided feedback increased during the
first year in the company and then stabilized in a plateau.
In a study involving three large open source projects, Thongtanunam et al. (2016a) also

investigated non-technical factors, focusing on how the code review was affected by prior
events on the files under review. Their conclusions are (1) files that received a slow initial
feedback in the past will also likely receive slow feedback in the future; (2) files with more
authors and reviewers in the past receive more attention; and (3) the number of changed
files, directories and the length of the commit message are also important.

Summary Given that many factors that influence code review have been investigated, we
summarize what each previous study analyzed in Table 1. Rows in this table consist of the
examined influence factors, while columns represent the analyzed outcomes associated
with code review. In cells, we list the studies that focused on the relationship between a
given influence factor and outcome.
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Some of these studies analyzed MCR targeting FLOSS (Free, Libre and Open Source
Software) projects, such as OpenStack, Qt, and LibreOffice, which present DSD charac-
teristics. However, we emphasize that most of these studies did not investigate the impact
of distribution: factors associated with distribution were random variables rather than
independent variables. For instance, Baysal et al. (2016) reported that some analyzed com-
panies had co-located groups, while others used DSD, without treating this issue as a
dependent variable. Similarly, Bosu et al. (2015) found that comments from other teams
are slightly more useful, but without considering co-location or the number of involved
teams.
As can be seen, different combinations of influence factor and outcome have been

analyzed. Differently from previous work, our study focuses on DSD and, therefore, we
focus on other influence factors, such as the number of involved cities and teams. Some
of our investigated factors, e.g. patch size (LOC), have already been studied, but not in a
DSD scenario. Moreover, we analyze four different outcomes of code review, which are
described in next section together with other details of our study settings.

3 Study subject
Our study is based on the analysis of data collected from a (commercial) software project
and developers from a single software development company. Due to the project size, we
were able to collect a large amount of information regarding its code review. We next
describe the code review process of the project, provide details about the collected data,
and characterize the participants of our survey. No further information can be given due
to a confidentiality agreement.

3.1 Code review process

We overview the code review process followed in the target project in Fig. 1. First, authors
send a piece of code to be reviewed. Anyone can, at any point in time, invite review-
ers or add itself as a reviewer, what would allow any (interested) developer to contribute.
Moreover, in our target project, Gerrit is configured with the reviewers-by-blame plugin
(Google 2017c), which automatically adds reviewers based on the last changes made on
the files to be reviewed, as proposed by Balachandran (2013). The code is then analyzed
by automated reviewers that check several quality criteria, such as compilation, cyclo-
matic complexity, lack of documentation, failed unit tests, among other static analysis and

Fig. 1 Overview of the Code Review Process
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runtime verifications. This automated verification usually takes less than 15 min to exe-
cute and rejects the change if any critical test fails, so that the author can fix the reported
issues. Human reviewers and authors can discuss, ask and provide suggestions for each
line of code. Moreover, each reviewer can vote to summarize its feedback using one of the
following values.

Veto The reviewer considers that the change cannot be integrated without fixing the
reported issues or answering questions made. This prevents the commit to be
merged.

Rejection The reviewer recommends fixes before the change is merged.
Neutral The reviewer typically asks easy questions to be answered.
Acceptance The reviewer considers that, though the change it adequate, it needs more

reviews from other developers.
Approval Only maintainers of the module associated with the commit have this kind

of vote, as they are responsible for the module quality. Maintainers can perform
technical reviews, but must also verify that relevant developers are not missing in
the list of invited reviewers and that the overall state of the code review is adequate.

It is important to note that all invited reviewers, but the maintainer, are not
obliged to provide feedback. Before approving the change, the maintainer of each
module should consider if the most important reviewers already reviewed the code.
In the end, the piece of reviewed code is submittable if all the following condi-
tions are satisfied: (i) there is no rejection from automated reviewers; (ii) there
is no veto; and (iii) the maintainer has approved the change. If all these con-
ditions hold, the maintainer is able to merge the change into the destination
branch.

3.2 Analyzed data

The target project of this study involves the development of an operating system
for embedded systems of routers and switches, using the C, C++, and Yang (Inter-
net Engineering Task Force (IETF) 2017) languages. This project has a total of
269 repositories, from which 63 are dedicated to test automation, using Python,
Vagrant, and Ansible. We consider that the operating system code and its tests
are part of the same project, as the developers implement both firmware and tests
for each task. All repositories are configured to reject the merges without code
review.
The mined data refers to a period of 72 weeks, starting in October 2014. In the

collected data, we had a total of 11,109 code reviews. After filtering these data (see
next section), we obtained 8329 code reviews associated with 39,237 comments (an
average of 4.7 comments by review). Such code reviews are associated with: (i) 201
experienced developers; (ii) 4 development locations in 4 different cities in the same
country and time zone; and (iii) 21 different teams. Members of a given team work on
the same location, i.e. there are no distributed teams. All teams are organized as fea-
ture teams and use Scrum with three-week sprints to release new software versions
every three months. A continuous integration pipeline is used to run functional tests
on several test environments that contain network topologies with real products and
emulators.
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3.3 Survey participants

Our goal by conducting a survey with software developers of the same company is to be
able to compare the perceptions of developers with concrete objective data. The survey
was conducted in January 2018, when we randomly invited 80 developers to partici-
pate. From them, 50 voluntarily provided a response within a week (response rate of
62.5%). However, 5 participants reported (very) low experience in code review (as author
or reviewer) and these were discarded because they could provide unreliable answers.
Because our survey involved other projects and a different time period of the first part of
the study, many participants were not developers of our target project during the period
in which we collected data. However, the projects of which participants are members use
Gerrit to implement and reinforce modern code review practices. Although there may be
divergences in the software development process as a whole, all these projects adopt the
code review workflow described in Fig. 1.
Table 2 provides detailed information about 45 participants, including age, educa-

tion and experience. Answers that indicate the participant experience—used solely for
the purpose of characterizing our sample—were self-reported based on the participant’s
subjective view. We can see that 97.8% of the participants reported medium to very
high experience with projects with multiple teams, whereas 93.3% reported medium to
very high experience with projects with multiple locations, suggesting that they have
experience in DSD.

4 Study settings
After discussing our target project, we now proceed to detailing our study. We first state
our goal and research questions, then describe collectedmetrics and finally the procedure
of the two parts of our study, namely repository mining and survey.

4.1 Goal and research questions

To design our study, we followed the goal-question-metric (GQM) paradigm (Basili et al.
1986). Therefore, we first specify our goal using the GQM template and derived research
questions. Our goal is detailed next.
To understand the factors that influence code review in distributed software development,
characterize and evaluate the relationship between different influence factors and code
review effectiveness from the perspective of the researcher as code review is performed by
software developers in a single project study.
Based on this goal, we derived a set of research questions, each associated with one of

the influence factors investigated in our study. There are both technical and non-technical
factors. As said, although some have been investigated in the past, it is our goal to analyze
them in the context of DSD. For short, we refer to our investigated scenario as distributed
code review. Our research questions are listed as follows.

RQ-1: Does the number lines of code to be reviewed influence the effectiveness of
distributed code review?

RQ-2: Does the number of involved teams influence the effectiveness of distributed code
review?

RQ-3: Does the number of involved development locations influence the effectiveness of
distributed code review?
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Table 2 Demographic data of survey participants (N = 45)

Characteristic Answer # %

Age 20-29 years 11.0 20.0

30-39 years 25.0 54.6

> 39 years 9.0 24.4

Gender Male 44.0 97.8

Female 0.0 0.0

Not informed 1.0 2.2

Education Graduation 35.0 77.8

Master (incomplete) 2.0 4.8

Master 7.0 15.6

PhD 1.0 2.2

Professional experience in software development 2-5 years 4.0 8.9

5-10 years 17.0 37.8

> 10 years 24.0 53.3

Experience as reviewer Very low (1) - -

Low (2) - -

Medium (3) 14.0 31.1

High (4) 26.0 57.8

Very high (5) 5.0 11.1

Experience as author Very low (1) - -

Low (2) - -

Medium (3) 13.0 28.9

High (4) 28.0 62.2

Very high (5) 4.0 8.9

Experience in projects with multiple teams Very low (1) 0.0 0.0

Low (2) 1.0 2.2

Medium (3) 12.0 26.7

High (4) 22.0 48.9

Very high (5) 10.0 22.2

Experience in projects with multiple locations Very low (1) 0.0 0.0

Low (2) 3.0 6.7

Medium (3) 12.0 26.7

High (4) 21.0 46.7

Very high (5) 9.0 20.0

Participants that reported (very) low experience as author or reviewer were discarded

RQ-4: Does the number of active reviewers influence the effectiveness of distributed code
review?

We investigate the number of teams and locations separately because the former
captures distribution among teams, allowing us to analyze the impact of involving review-
ers that have different project priorities and goals (possibly conflicting) and limited
interaction, while the latter additionally captures the impact of geographic distribution.

4.2 Influence factors and outcomes

Each research question is associated with an influence factor to be investigated, with
respect to their impact on the effectiveness of distributed code review. However, there
is no unique metric to measure review effectiveness. Therefore, we consider a set of
outcomes of code review, which are measured. They can be used as indicators of the
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review effectiveness. Before detailing these outcomes, we next further specify our influ-
ence factors—which are listed following the order of our research questions—detailing
how they are measured.

Patch Size (LOC) The patch size (LOC) is used to refer to the number of lines of code
added or modified in a commit and thus need to be reviewed. This lines of code
considered are those present in the final version of the code, after going through the
reviewing process.

Teams Teams refer to the number of distinct teams associated with the author and
invited reviewers. If the author and all reviewers belong to the same team, the value
associated with this influence factor is 1.

Locations Locations refer to the number of distinct geographically distributed devel-
opment sites associated with the author and invited reviewers. If the author and
all reviewers work in the same development site, the value associated with this
influence factor is 1.

Active Reviewers Actives reviewers are those that actually participate in the reviewing
process—with comments or votes—from those invited. Although this can be seen
as an outcome of the review, given that there is no control of how many of the
invited reviewers will actually participate, we aim to explore if the number of active
reviewers influence other outcomes, such as duration. Therefore, active reviewers
are investigated as an influence factor, consisting of the number of reviewers that
contributed to the review.

Nowwe focus on describing the analyzed code review outcomes that indicate the review
effectiveness. Code review is effective when it achieves its goals, which can be untimely to
identify defects in the code, issues related with code maintainability and legibility, or even
to disseminate knowledge. However, these goals might include constraints regarding the
impact in the development process and invested effort.
It is not trivial to evaluated whether these goals are achieved. For example, Bosu et al.

(2015) created a model to evaluate whether the comments of a code review are useful
based on the text of the given comments. Thismeasurement, however, may not be precise.
In our work, we focus on measurements that are more objective.
We thus selected four objective outcomes, described as follows. The first is related to

project time constraints, while the remaining three are related to the input from other
developers (reviewers) leading to possibly less failures, code quality improvement and
knowledge dissemination.

Duration (DUR) Duration counts how many days the code review process lasted, from
the day that the source code is available to be reviewed to the day that it received
the last approval of a reviewer.

Participation (PART) Participation consists of the fraction of invited reviewers that
are active, ranging from 0% (no invited reviewer participates) to 100% (all invited
reviewers participate). Automated reviewers are not taken into account.

Comment Density (CDG) Instead of simply counting the number of review comments,
we take into account the amount of code to be reviewed. Therefore, comment
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density refers to the number of review comments divided by the number of groups
of 100 LOC under review, thus giving the average number of review comments for
each 100 LOC. Review comments can be any form of interaction, e.g. approval,
rejection, question, idea or other types of comments made by any reviewer—votes
count as comments because they are a form of input and have a particular meaning.
A multiplying factor of 100 is used to avoid small fractioned numbers, which are
harder to compare and less intuitive. Comments from automated reviewers are
ignored, as this type of feedback is a constant, regardless of human interactions.

Comment Density by Reviewer (CDR) It is expected that the higher the number of
reviewers or teams, the higher the number of comments. Therefore, CDG alone can
lead to the wrong conclusion that discussions were productive whenmany reviewers
are involved. We thus also analyze comment density by reviewer, given by the divi-
sion of the comment density by the number of active reviews (without taking into
account automated reviewers).

As we are interested in the effectiveness of code review, we next describe what we
consider an effective code review based on the outcomes considered in the study.

Too short or too long code review. There are studies (Kemerer and Paulk 2009;
Ferreira et al. 2010) that suggest time constraints for code review activities, limita-
tion on the number of lines reviewed per hour and also the total amount of hours
spent doing code review in a single day. Such limitations are imposed because the
code review may become error-prone or even consume more time and resources to be
finished due to tiredness. Moreover, if the review takes too long (i.e. high duration) to be
completed, developers may be prevented to continue their work and also work does not
get done. Therefore, shorter code reviews are preferred. However, if such review is too
short, it may also mean that reviewers have not properly analyzed the change.

Low reviewer participation. When reviewers are invited to participate in the review, it
is expected that they contribute. However, not all participate. Therefore, the higher the
participation of reviewers, the better. Nevertheless, we do not expect that participation
is 100%, given that there are developers that are invited automatically and may not be
relevant reviewers anymore.

Few contributions from reviewers. Reviewers may contribute in different ways, rang-
ing from a simple vote to long discussions. We assume that the higher the number of
commentsmade by reviewers, themore fruitful the discussion and consequently themore
effective the review. However, as explained, we do not consider the absolute number of
comments, but its density considering the amount of code to be reviewed. Moreover, we
consider the amount of contribution generally (CRG) and by reviewer (CRR). For both,
the higher, the better.
Although in some situations a low number of comments (either generally or by

reviewer) is enough—for example, when a low number of comments helped to improve
the code, or the change to be reviewed is minor—note that these might be not the usual
case. Because we analyze a high number of code reviews, these exceptional cases do not
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significantly impact the results. Moreover, votes count as comments; consequently, even if
there is no need for long discussions, it is important to have at least the acknowledgement
of the reviewer in the form of a vote, i.e. a comment. Finally, we also analyze duration and
participation, which complement the analysis of the effectiveness of code review.

4.3 Procedure: repository mining

In short, the procedure of the first part of our study consists of the extraction of infor-
mation from a code review database and analyses of the relationship between influence
factors and outcomes. In this section, we detail how we operationalized this.
Our data is extracted fromGerrit1, a tool that provides themanagement of Git reposito-

ries with fine-grained control over the permissions for users and groups. It also provides a
mechanism to implement code review, with its associated approvals, allowing votes, com-
ments, and edition of the source code. Every interaction among authors and reviewers
is recorded, including the comments and votes of the review bots, which are automated
reviews. It also provides a sophisticated query mechanism to get information about all
open and closed reviews. We next describe the steps taken to obtain, process and filter
the data for this study using Gerrit.

Getting raw data from the code review database First, we fixed a time frame in the past
so we can get data completed code reviews. Gerrit provides a query mechanism (Google
2017b) that can be used to get structured information about code reviews in JSON format.
One query for each week had to be made due to the limitation of obtaining at most 500
results per query.

Parsing and filtering code review information The retrieved JSON files provided part
of our required data. The remaining data had to be computed from the raw data obtained
from the internal Gerrit database model. The resulting data was filtered, discarding some
reviews of some types of modules, described next.

1 Documentation. Some repositories are used exclusively for internal documentation
of the project (processes and products), and have a different workflow and time
constraints.

2 Third-party software. Some repositories are maintained by open source
communities or component vendors. Local internal copies of these repositories
exist due to traceability and to avoid downloading them multiple times. Reviewers
do not review code in these repositories.

3 Binary artifacts. Some repositories contain binary files, e.g. images and libraries.
These files are not reviewed and, if considered, would (incorrectly) increase the
patch size.

Representing and analyzing data Given that we have four research questions with four
associated influence factors as well as four outcomes, there is a large amount of data
to be analyzed. Our data consists essentially of continuous or discrete positive num-
bers, with different scales and ranges. For example, there are only four involved locations
while the patch size can be up to approximately 4 KLOC. To deal with these discrepan-
cies, we adopted an approach similar to that of Baysal et al. (2016). We clustered data in
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groups, representing the variance of outcomes in each group using box plots. Additionally,
we performed statistical tests to identify groups that are significantly different from
each other.

4.4 Procedure: survey

Our survey collected anonymous data from participants. The questionnaire they were
given includes four main parts: (i) presentation of the study and consent to participate; (ii)
demographic data of participants; (iii) participant background and experience; and (iv)
questions about how outcomes of code review are affected by influence factors.
In the first part of the questionnaire, we briefly introduced modern code review and

stated the goal of our survey. We explicitly declared that the participation was voluntary
and informed participants that any information that could reveal the their identity would
be kept confidential. Next, we presented the adopted terminology to ensure that terms
used in the questions would be correctly understood. The introduced terms are: teams,
locations, authors, reviewers and active reviewers. Next, participants were asked about
their demographic information as well as background and expertise, as shown in Table 2.
Finally, we asked participants to assess how they evaluate the relationship between

influence factors and review outcomes. The considered influence factors are the same as
above. However, as outcomes, we considered duration, participant and number of com-
ments. The reason to not distinguish total comments and comments by reviewer is due
to our assumption that it is hard for a participant, without data, to assess these separately.
Questions associated with each outcome followed the prototype presented in Table 3,
replacing X by the name of the outcome.
For each influence factor, we used a 5-point Likert scale, so participants could provide

one of six possible answers: (1) much worse, (2) worse, (3) no influence, (4) better, (5)
much better, or “I am unable to inform.” Our questions assumed that there is a directly
or inversely proportional relationship between influence factors and outcomes. If partici-
pants believe it was not the case, they were asked to state that they were unable to inform
and describe their opinion in an open-ended question. Our questionnaire was validated
with a pilot study.

5 Results
Having described our study settings, we proceed to the presentation of obtained results.
They are presented according to our research questions, and in each of them, we discuss
results associated with each of our investigated outcomes.

5.1 Repository mining

In this section, we present the results of the part of our study that is based on objective
data, which was obtained by mining the software repositories of the analyzed project.

Table 3 Prototype of the main questions of the survey

For higher values of
Outcome X is...

Much worse Worse No influence Better Much better

Patch size (LOC)

Teams

Locations

Active reviewers
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5.2 RQ-1: patch size (LOC)

The first influence factor we analyze is the patch size in terms of LOC. We split our data
into 13 groups according to this factor, listed in the first column of Table 4. This table
shows our obtained results regarding this influence factor—mean (M) and standard devi-
ation (SD)—for each group, considering each review outcome. We also show the number
of code reviews in each group as well as values associated with all reviews, in order to be
able to compare overall values with values of each group. For better visualizing the results,
they are also presented in Fig. 2.
We analyze the influence of patch size in review outcomes by comparing the means

across the different groups. Given that our data does not have a normal distribution, we
use the Kruskal-Wallis test (nonparametric) to verify whether there is a statistically signif-
icant difference among the means. This is also the case for the other analyzed influence
factors and outcomes. When there are significant differences, we use Dunn’s test for post
hoc tests, because the compared groups have different sizes.
Our results show that there are significant differences across the different groups

(H = 1761.32, p < 0.05). More specifically, larger patches take longer to have their
review completed—which is expected. Kemerer and Paulk (2009) and Ferreira et al. (2010)
pointed out that there must be a limit of LOC reviewed per hour by a single reviewer and
a maximum number of hours of code review per day, in order to achieve good coverage
and final quality. However, the relationship between patch size and duration is nonlin-
ear; a linear least-squares regression model produced an r-squared value of 2.9%, which
means that a linear model has low explanatory power for the data. For example, the aver-
age time to review patches of 601–800 LOC is two times greater than the time to review
patches of 61–80 LOC, which are ten times smaller. Among some groups, e.g. 21–40 LOC
and 41–60 LOC, there is no statistically significant difference. Due to space restrictions,
we do not report all significant differences among groups. They can be seen elsewhere
together with more information of our results, such as medians2.
Considering participation, we observed that the proportion of invited reviewers that

actually provide feedback during the review process decreases when the patch size
increases. The difference among the patch size groups is also statistically significant

Table 4 Outcomes by patch size (LOC)

LOC #Rev DUR PART CDG CDR

M SD M SD M SD M SD

0–20 3836 1.8 6.6 86.1 22.3 99.3 139.6 47.3 60.6

21–40 716 3.9 13.0 81.7 22.7 15.3 15.4 5.7 4.1

41–60 475 4.4 10.2 78.4 24.0 9.4 8.4 3.5 2.2

61–80 342 5.0 10.3 79.5 22.4 7.8 6.8 2.7 1.6

81–100 273 5.8 16.0 74.9 24.0 5.4 4.3 2.0 1.2

101–200 762 6.0 12.9 75.2 23.8 4.3 3.7 1.5 0.9

201–400 688 8.0 16.8 73.7 23.7 2.6 2.5 0.9 0.7

401–600 371 9.4 16.0 71.9 22.3 1.5 1.5 0.5 0.3

601–800 203 10.4 16.7 71.2 23.1 1.3 1.5 0.4 0.3

801–1000 158 10.0 15.7 69.4 24.6 1.0 0.9 0.3 0.2

1001–2000 282 13.4 19.1 66.9 23.2 0.8 0.8 0.2 0.2

2001–3000 78 15.1 18.9 62.0 24.7 0.4 0.3 0.1 0.1

> 3000 145 12.7 17.0 67.1 24.5 0.2 0.2 0.1 0.1

Total 8329 4.7 12.1 80.1 23.8 48.8 105.8 22.9 46.9
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Fig. 2 Influence of the Patch Size (LOC) over Duration (days), Participation (%), Comment Density (comments
per 100 LOC) and Comment Density by Reviewer (comments per 100 LOC per active reviewer). The y-axes
representing Comment Density and Comment Density by Reviewer are in a logarithmic scale

(H = 709.58, p < 0.05), mainly due to differences between groups with 600 LOC or less
and larger groups. A possible explanation to this is that larger patches likely require more
effort from reviewers, discouraging engagement in the process.
When reviewers participate in the code review, the amount of contribution is mea-

sured by the overall comment density and comment density per reviewer. Our data shows
that in both cases the larger the patch, the lower the comment density. Regarding over-
all comment density, there are statistically significant differences (H = 709.58, p < 0.05).
According to the post hoc tests, this is due only to smaller groups. There is a significant
difference only among few groups with more than 601 LOC, but among groups with less
LOC, there are significant differences in most cases. Similarly, the comment density by
reviewer decreases as patches are larger (H = 3579.57, p < 0.05), showing similar results
in post hoc tests. This indicates that the amount of contribution is highly affected as the
patch size increases up to a certain point. Then, the amount of contribution is limited but
does not decrease after the patch reaches a certain size (> 601 LOC in our study).
One possible explanation for the results regarding patch size is that the patch size has an

intimidating effect on invited reviewers, because the time required to provide significant
contributions increases. This invested time, in our target project, is not explicitly recorded
and is not associated with deliverables considered more relevant, such as produced code.
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Conclusions of RQ-1: The patch size negatively affects all outcomes of code review
that we consider as an indication of effectiveness. Reviewers are less engaged and provide
less feedback. Moreover, the duration is not linearly proportional to the patch size, which
may affect the quality of code review.
As discussed in the related work section, other studies investigated the impact of the

patch size in code review. Bosu et al. (2015) showed that for some projects the propor-
tion of relevant comments decreased by 10%, when they compared changes in 40 files
with changes in a single file, while Baysal et al. (2016) showed that changes with more
LOC need more iterations to be concluded, but without considering the time interval.
Each iteration is typically the result of an accepted feedback or comment. This indi-
cates that results with respect to patch size in non-distributed scenarios also hold for our
investigated scenario.

5.3 RQ-2: teams

Each code review has a list of involved people, authors, and reviewers, and each one works
in a single team. Consequently, every code review has also a list of involved teams based
on the list of involved people. The results regarding the number of involved teams vs.
review outcomes are shown in Table 5 and Fig. 3. With respect to the groups with 6 and
7 involved teams, we have only two occurrences of code reviews associated with each of
them. We thus omitted them from Fig. 3, for legibility.
According to our results, the duration of code review is considerably higher if more

teams are involved, with highermean and also standard deviation values. The lattermeans
more dispersion, as can be seen in the corresponding box plots, having more durations
that are outliers. This can be partially explained by the working dynamics of teams, which
have different goals, tasks, and managers.
Furthermore, technical divergences are often extensively discussed. When only one

team is involved, issues are addressed faster, usually mediated or decided by a senior
teammember or even by the teammanager. However, when more teams are involved, the
implicit hierarchy among reviewers becomes flattened and reaching a consensus becomes
harder. In this case, divergences usually reach managers and are resolved after meetings,
conferences or e-mail discussions, what slows down the review. In our results, there is
a statistically significant difference across the different groups of numbers of involved
teams (H = 586.72, p < 0.05). Comparing groups in a post hoc analysis, we observed that
this is due to the differences among groups with five or less involved teams, except the
difference between code reviews involving 4 and 5 teams.

Table 5 Outcomes by number of teams

Teams #Rev DUR PART CDG CDR

M SD M SD M SD M SD

1 4934 3.0 8.3 82.7 24.1 42.2 92.0 22.1 45.1

2 2440 5.8 13.5 76.8 24.0 55.1 112.1 25.5 51.1

3 766 9.4 19.3 75.5 20.1 66.4 140.5 22.1 46.3

4 152 12.4 19.0 73.5 17.7 77.3 177.8 17.8 39.7

5 33 24.1 39.1 73.5 15.8 50.5 79.8 8.9 14.0

6 2 21.5 20.5 63.0 8.4 8.1 7.1 1.6 1.4

7 2 19.0 16.0 58.5 21.5 5.2 0.9 0.6 0.0

Total 8329 4.7 12.1 80.1 23.8 48.8 105.8 22.9 46.9
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Fig. 3 Influence of the number of Teams over Duration (days), Participation (%), Comment Density
(comments per 100 LOC) and Comment Density by Reviewer (comments per 100 LOC per active reviewer)

Similarly, there are also statistically relevant differences with respect to participation
(H = 226.72, p < 0.05) and the post hoc analysis showed that the difference is only
significant among reviews with four or fewer teams. However, the results indicate only a
small negative influence on this review outcome.
Considering the effect on contributions, differences are also significant (H =

184.71, p < 0.05). Post hoc tests showed that this is due to the difference between reviews
involving one team and the others. Although Fig. 3 indicates that the overall comment
density increases together with the number of involved teams (except in the case of 5
involved teams), we can see in Table 5 that the standard deviation is high, indicating that
results vary a lot, justifying the not significant differences. This can be explained by the
specific teams involved, whether they are in the same location or not (an issue that is
investigated in RQ-3). In our target project, there is an internal team rotation over the
years, as new teams are created, merged or split, with knowledge sharing when teams
change, reducing the diversity of skills between author and reviewers and affecting the
number of questions, doubts or different opinions. Surprisingly, the comment density by
reviewer is higher when two teams are involved, followed by reviews involving one or
three teams. The differences among teams are indeed significant (H = 91.94, p < 0.05),
with post hoc tests showing that if more than three teams are involved, it actually makes
no difference.
Conclusions of RQ-2: We found evidence that code review with more involved teams

have lower effectiveness considering duration and participation, but higher effectiveness
with respect to the overall comment density. Comment density by reviewer is slightly
higher when two teams are involved when compared to reviews involving one or three
teams.

5.4 RQ-3: locations

People involved in the code review are not only associated with a single team, but also
with a single working site. We now investigate the influence of the number of involved
locations on review outcomes. Results associated with this influence factor are shown in
Table 6 and Fig. 4.
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Table 6 Outcomes by number of locations

Locations #Rev DUR PART CDG CDR

M SD M SD M SD M SD

1 7219 4.1 10.8 80.8 24.1 45.5 98.4 22.5 46.8

2 1076 8.0 17.4 75.2 21.6 68.7 140.2 25.1 47.7

3 34 22.2 31.7 75.9 15.3 132.8 206.6 35.4 52.1

Total 8329 4.7 12.1 80.1 23.8 48.8 105.8 22.9 46.9

As can be seen, the duration of code review is considerably higher if more locations
are involved. With a further analysis of our data, we observed that with two involved
locations, reviews that started in the second half of the sprint sometimes were not fin-
ished on time, causing a performance penalty to the author’s team—as said, code review
is mandatory. This can be explained by the natural isolation of people working in differ-
ent places, which requires daily effort to synchronize priorities and state the importance
of every patch under review. Within the same team and location, this communication
happens on a daily basis in the Scrum dailymeetings or other activities that promote inter-
action. There is a statistically significant difference among the groups (H = 158.0, p <

0.05), in fact, among all groups, as shown in the post hoc analysis.
There is also a positive influence on comment density (H = 134.05, p < 0.05) and com-

ment density by reviewer (H = 56.12, p < 0.05). However, there is a negative impact on
participation (H = 86.69, p < 0.05). Post hoc tests show that for these outcomes the dif-
ferences actually exist only between code reviews with one and two locations, probably
because there are few occurrences involving three locations. One possible interpreta-
tion of these results, in addition to the geographical distance barrier, is that code reviews
with more involved locations have more diversity of technical skills, which is plausible
because teams are organized based on groups of related features and technologies. More-
over, there are few rotations of team members among different locations, creating some
form of local technical specialization on each location. This diversity promotes feedback,
questions, and comments, but requires more time to complete the review process. Con-
sequently, reviewers from other locations should be invited if there is a good technical
reason to do so. Otherwise, the higher duration is not compensated by a higher level of
contributions.

Fig. 4 Influence of the number of Locations over Duration (days), Participation (%), Comment Density
(comments per 100 LOC) and Comment Density by Reviewer (comments per 100 LOC per active reviewers)
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We also observed that the results with respect to comment density by reviewer have
large differences when compared to those discussed in the previous sections. Results show
that: (i) the average review duration in the same location is 32% greater than in the same
team; (ii) the average duration with two locations is 38% greater than with two teams; and
(iii) the average density of review comments with two locations is 24% higher than with
two teams.
Conclusions of RQ-3: We found evidence that code reviews with more involved loca-

tions have lower effectiveness with respect to duration and participation, but higher
effectiveness considering contributions. The overall comment density and comment den-
sity by reviewer are considerably higher with more involved locations. The participation
is slightly lower with multiple involved locations.

5.5 RQ-4: active reviewers

As explained in Section 3, in the code review process, the only mandatory reviewer
is the maintainer of the module. Other reviewers are invited, but their contribution is
optional. Moreover, anyone can invite reviewers. Those that actually contribute are the
active reviewers. The number of active reviewers might influence how other reviewers
engage in the discussion, and this is what we investigate in RQ-4. Obtained results regard-
ing the relationship between active reviewers and review outcomes are shown in Table 7
and Fig. 5—the group with 10–12 active reviewers are omitted in this figure because they
have only one review occurrence each.
Considering duration, we intuitively expect higher values because more reviewers pro-

vide more feedback and comments and need more time to reach a consensus. This is in
fact confirmed by a statistical test (H = 1652.94, p < 0.05), with post hoc tests showing
that in most cases reviews with less than ten reviewers take more time to complete than
with more active reviewers.
We highlight that there are reviews, more specifically 1313, involving one active

reviewer. This occurs when the author is the module’s maintainer, and thus is the only
mandatory reviewer. Consequently, the duration is low in these cases, lasting 1.3 days on
average. Exceptional cases occur when the code being reviewed is related to hardware

Table 7 Outcomes by number of active reviewers

Active #Rev DUR PART CDG CDR

Reviewers M SD M SD M SD M SD

1 2431 1.3 4.5 84.3 27.4 26.6 54.4 26.6 54.4

2 2502 3.2 7.6 78.6 24.8 54.5 100.5 27.2 50.2

3 1940 6.0 11.9 78.7 21.2 57.1 116.3 19.0 38.8

4 840 7.9 12.6 77.6 18.5 68.8 155.8 17.2 39.0

5 372 14.0 26.4 76.5 15.9 61.5 151.1 12.3 30.2

6 149 18.7 33.4 78.9 14.5 59.4 116.9 9.9 19.5

7 60 18.9 29.3 78.7 13.7 44.0 73.6 6.3 10.5

8 21 17.2 19.5 77.9 12.7 31.4 48.7 3.9 6.1

9 11 33.2 30.1 81.8 15.3 192.1 321.8 21.3 35.8

10 1 35.0 0.0 37.0 0.0 6.2 0.0 0.6 0.0

11 1 15.0 0.0 84.6 0.0 262.5 0.0 23.9 0.0

12 1 20.0 0.0 85.7 0.0 5.0 0.0 0.4 0.0

Total 8329 4.7 12.1 80.1 23.8 48.8 105.8 22.9 46.9
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Fig. 5 Influence of the number of Active Reviewers over Duration (days), Participation (%), Comment Density
(comments per 100 LOC) and Comment Density by Reviewer (comments per 100 LOC per active reviewers)

platforms and their infrastructure modules, where typically one or two developers work
on for several months.
Reviewer participation is almost the same with more active reviewers. Although there

are statistically significant differences among groups (H = 268.49, p < 0.05), the post
hoc tests show that this is due to a few groups that have nearly no significant differences,
indicating that the more invitees, the more active reviewers.
Considering the overall comment density, there is a statistically significant difference

(H = 660.89, p < 0.05) when reviewers contribute. However, the post hoc tests show
that the presence of more than two active reviewers does not significantly improve the
comment density. Moreover, the comment density by reviewer is actually lower with three
or more active reviewers (H = 275.55, p < 0.05). This suggests that a number of two
active reviewers seems to be the optimal case considering a trade-off between duration
and contributions from reviewers.
Conclusions of RQ-4: We found evidence that code review with more active review-

ers has lower effectiveness considering the duration. The participation is slightly lower
with more active reviewers. Moreover, having more than two active reviewers does not
improve the overall comment density and negatively affects the comment density by
reviewer.
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6 Results and analysis: survey
Given that we presented the results of the part of our study that is based on objective
data, now we focus on subjective data collected from our survey. This allows us to under-
stand developers’ perceptions of the relationship between influence factors and outcomes
as well as contrast results obtained from objective and subjective data. As above, each
influence factor is analyzed individually, with the aim to answer our research questions.
Before we focus on our first influence factor, namely Patch Size (LOC), we present an

overview of the answers provided by participants in Fig. 6. Each box shows the proportion
of the different answers provided by participants with respect to each pair of influence
factor and outcome. Boxes that are concentrated on the left-hand side of the chart indicate
that participants consider that there is an inversely proportional relationship between the
influence factor and outcome. Boxes concentrated on the right-hand side, in contrast,
indicate a directly proportional relationship among them.
In next sessions, we present for each research question a table with statistics about

participants’ responses, presenting minimum, maximum, median, average and stan-
dard deviation values. As Likert scales provide ordinal data, researchers have divergent
opinions (Jamieson et al. 2004; Norman 2010) about the use of average and standard
deviation values to summarize these data, but we present them as a complementary

Fig. 6 Evaluation by participants of the relationship between influence factors and outcomes
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description of data. Moreover, median and average values are similar considering our
data, supporting the use of average to describe our data.

6.1 RQ-1: patch size (LOC)

The first three rows of Fig. 6 show that 96% of the participants believe that duration is
negatively affected by patches with a higher number of LOC. Similar results are associated
with participation, as 80% of participants stated that it becomes (much) worse. However,
only 29% of the participants believe that the number of comments decreases for patches
with more LOC, while 49% have a different opinion, indicating that more comments are
provided.
Table 8 provides complementary details of the responses, including the number of

participants that were unable to evaluate the influence in certain outcomes. For both
duration and participation, average and median values are close to worse (2), with a high
concentration of responses around this value. The number of comments, in contrast,
has average and median values closer to no influence (3), but the standard deviation is
higher, with a wider range of values. This suggests that some of the code review out-
comes aremore affected than others. To analyze differences among the effects on different
outcomes, we conducted a Friedman’s test, a non-parametric test as the distribution of
values is not normal. The test revealed a statistically significant difference among groups
(χ̃2 = 54.47, p < 0.05). We then used Nemenyi’s test for post hoc tests, which indicated
a significant difference among all groups. Consequently, we conclude that duration is the
most affected outcome in the opinion of the participants, while the number of comments
is the least affected.

6.2 RQ-2: Teams

Similarly to the results above, duration is negatively affected by an increased number
of teams, as shown in Fig. 6. However, with respect to participation and number of
comments, participants have divergent opinions. For participation, their opinions are
divided between negative influence and no influence, while for number of comments
there is a similar number of answers for all possible relationships (negative, positive or no
influence).
These divergences among opinions can also be seen in Table 9, which shows the num-

ber of participants who answered each alternative. While duration have both average
and median values close to worse (2), participation and number of comments have these
values closer to no influence (3).
To verify if there is a code review outcome that is the most affected, we conducted

similar statistical tests as above. A Friedman’s test revealed a significant difference among
groups (χ̃2 = 47.73, p < 0.05), with the post hoc tests showing differences among all

Table 8 Answers of participants evaluating the influence of patch size (LOC) on review outcomes

Outcome Much
worse
(1.0)

Worse

(2.0)

No
Infl.
(3.0)

Better

(4.0)

Much
better
(5.0)

Unable
to
Resp.

Min Max Med M SD

Duration 20 23 2 0 0 0 1.0 3.0 2.0 1.6 0.6

Participation 9 26 6 3 0 1 1.0 4.0 2.0 2.1 0.8

Comments 3 11 9 21 0 1 1.0 4.0 3.0 3.1 1.0
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Table 9 Answers of participants evaluating the influence of teams on review outcomes

Outcome Much
worse
(1.0)

Worse

(2.0)

No
Infl.
(3.0)

Better

(4.0)

Much
better
(5.0)

Unable
to
Resp.

Min Max Med M SD

Duration 14 25 5 0 0 1 1.0 3.0 2.0 1.8 0.6

Participation 6 14 19 4 0 2 1.0 4.0 3.0 2.5 0.9

Comments 3 8 16 14 1 3 1.0 5.0 3.0 3.0 1.0

outcomes. This suggests that the duration is, once again, the most affected outcome in
the opinion of the participants.

6.3 RQ-3: Locations

By comparing rows 4–6 to rows 7–9 in Fig. 6, it is possible to observe that results regard-
ing the influence of teams and locations present the same pattern of answers. Table 10, in
fact, shows that the number of answers for each alternative as well as average and median
values are similar to those presented in Table 9. Consequently, in summary, participants
also believe that a higher number of involved locations has a negative influence on dura-
tion, but have divergent opinions regarding the other two influence factors. Statistical
tests also indicated the same results. A Friedman’s test (χ̃2 = 43.29, p < 0.05) revealed a
significant difference among groups, with the post hoc tests also pointing out duration as
the most affected outcome.

6.4 RQ-4: active reviewers

Finally, the results associated with active reviews suggest that the higher the number of
active reviewers, the worse the duration and participation, being the average associated
with the latter closer to no influence. This can be seen in Fig. 6. Differently from the
previous analyzed influence factors, participants believe that the number active reviewers
have a positive influence on the number of comments (Table 11).
By conducting the same statistical tests used to identify significant differences among

outcomes, we concluded that there is a significant difference among groups (χ̃2 =
37.21, p < 0.05). Moreover, as it is the case of patch size, this is due to differences across
all groups. Consequently, duration is the most negatively affected outcome, while the
number of comments is positively affected.

7 Discussion
In this section, we present insights and lessons learned from both studies and compare
them. Finally, we discuss the threats to validity.

Table 10 Answers of participants evaluating the influence of locations on review outcomes

Outcome Much
worse
(1.0)

Worse

(2.0)

No
Infl.
(3.0)

Better

(4.0)

Much
better
(5.0)

Unable
to
Resp.

Min Max Med M SD

Duration 15 22 6 0 0 2 1.0 3.0 2.0 1.8 0.7

Participation 6 14 17 3 1 4 1.0 5.0 3.0 2.5 0.9

Comments 2 8 17 12 2 4 1.0 5.0 3.0 3.1 0.9
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Table 11 Answers of participants evaluating the influence of active reviews on review outcomes

Outcome Much
worse
(1.0)

Worse
(2.0)

No
Infl.
(3.0)

Better

(4.0)

Much
better
(5.0)

Unable
to
Resp.

Min Max Med M SD

Duration 8 26 9 0 2 0 1.0 4.0 2.0 2.1 0.7

Participation 1 21 16 4 0 3 1.0 4.0 2.0 2.5 0.7

Comments 3 3 8 25 5 1 1.0 5.0 4.0 3.6 1.0

7.1 Lessons learned and comparison of results

Our study involves two parts (repository mining and survey) that aimed to answer the
same research questions. The goal of performing the two analyses is to have two sources of
evidence (one objetive and other subjective) to answer our research questions. Moreover,
the contrast between the opinion of developers and our conclusions from the reposi-
tory mining might reveal that developers may be unaware of the consequences of inviting
reviewers from another team or location.
Before we start our discussion, we summarize in Table 12 the derived conclusions

regarding how our investigated factors influence review outcomes, considering our
investigated scenario in both studies. We highlight conflicting results.

7.1.1 Patch size

As can be seen, the amount of LOC to be reviewed affects all considered outcomes based
on both sources of data. Considering the analysis of duration based on our objective data,
we found that it is not linearly proportional to the patch size, as depicted in Fig. 7, which
uses a scatter plot and a heat map to illustrate the concentration of data. This suggests that
the rate of 200 LOC/hour proposed by Kemerer and Paulk (2009) is not followed, poten-
tially making code review less effective and more error prone. A lower review coverage is
another possible explanation to justify these results, which may lead to more post release
defects (Shimagaki et al. 2016; McIntosh et al. 2014).
The results of the two parts of our study are consistent, because they both indicated neg-

ative effects of LOC on patch size on duration and participation. However, the perceived
effect on the number of comments is close to neutral. This diverges from our conclusions
from the repository mining, which indicated that fewer comments are provided for larger
patches, so participants underestimate the possible harmful effects of larger patches in
the discussion. Interestingly, one of the participants pointed out that after a certain num-
ber of LOC, the duration would likely decrease, causing reduced review quality. This was
actually observed in our objective data for patches with more than 3 KLOC.
This suggests that large patches should be avoided and that further investigation is nec-

essary to determine which kinds of tasks are likely to produce larger patches, and possibly

Table 12 Comparison of results based on objective (Obj.) and subjective (Subj.) data

Influence Duration Participation Comments

Factor Obj. Subj. Obj. Subj. Obj. (CDG) Subj. Obj. (CDR)

Patch Size (LOC) ↑ ↑ ↓ ↓ ↓ 	 ↓
Teams ↑ ↑ ↓ ↓ 	 	 ↓
Locations ↑ ↑ ↓ ↓ ↑ 	 ↑
Active reviewers ↑ ↑ ↓ ↓ 	 ↑ 	
Differences are highlighted. CDR has no corresponding subjective measurement
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Fig. 7 Distribution of data considering Duration (days) and Patch Size (LOC)

use other forms of code review, like pair programming, to reduce the severe penalty over
the duration.

7.1.2 Teams and locations

Regarding the effects of the number of involved teams, both objective and subjective data
indicate an agreement of the negative effects on duration. This agreement also holds for
participation. Nevertheless, the average perception (i.e. no influence) of the effect over the
number of comments is different from that obtained with the repository mining, which
suggested that more comments are provided when more teams are involved.
The effects of the number of locations, considering both parts of the study, on dura-

tion and participation are also negative. However, concerning the number of comments,
a higher number of comments is expected when more locations are involved, according
to the study based on repository mining, as opposed to no influence reported by partici-
pants of the survey. When comparing the effects of teams and locations, the study based
on repository mining suggested that discussions are more fruitful with multiple locations
involved, while the results of our survey suggest that there is no influence of teams and
location on the number of comments.
The consistent effects of teams and locations over duration and participation might

be associated with the lack of awareness of other teams’ priorities, dependencies and
schedules. The definition of collocation adopted by Olson and Olson (2000) is that teams
are collocated if its members can reach each other with a short walk of 30meters, suggest-
ing that even people working in the same building or on the same floor are subject to the
same issues. This shows that developers should carefully consider who from other teams
and locations they invite as reviewers, and that they should put extra effort to ensure that
external reviewers are available to do their job in reasonable time; collaboration readiness
was in fact reported as a major factor on DSD (Olson et al. 2008; Olson and Olson 2013;
Bjørn et al. 2014).
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7.1.3 Active reviewers

The results obtained based on the mined project data give evidence that code review with
more involved (active) reviewers are less effective, with very significant drawbacks on the
average duration and density of review comments per reviewer. Results obtained based on
our survey are consistent with this finding considering duration and participation. How-
ever, the results of our survey showed that participants often overestimate the positive
effects of active reviewers to the total number of comments when more active reviewers
are present, as 68% participants reported that the number of comments is (much) higher
when more reviewers are active, while the study based on repository mining suggested
that having more than two reviewers does not improve discussion. This suggests, again,
the importance of choosing adequate reviewers and calls for sophisticated code reviewer
recommenders.

7.2 Contributions

On the contributions of this paper, considering the related work on modern code
review that we presented in Table 1, this work analyzed the influence of different influ-
ence factors, such as the number of teams, locations and active reviewers. The same
holds for the code review outcomes, as these studies did not analyze the participation
and comment density. Moreover, our mixed-method study evidentiated the dissonance
between participants’ perception and metrics extracted from code review databases in
some situations. By collecting the opinion of participants using a form that is sym-
metric with the research questions, our study presented a significant degree novelty
when compared to related work, as only Bosu et al. (2015) used insights obtained
from interviews with developers create a definition for the usefulness of code review
comments.
Code review practitioners can benefit from the discussion section, which was based on

the analysis of results from both parts of this study and should foster critical thinking on
simple, daily decisions inside the teams. Although some of the suggestions are relatively
simple to adopt, the existence of the problem itself is not always evident. For instance,
having more invited reviewers does not mean that the code will be reviewed faster or
that more comments will be provided, so authors should carefully select reviewers. When
reviewers from other teams or locations are involved, the likelihood of having extra delays
is something that the teams should be aware of, and eventually adopt countermeasures
instead of just assuming that review is in progress. Similarly, delivering smaller patches
improves the code review process, so smaller tasks are preferable.

7.3 Threats to validity

Construct validity As mentioned in Section 3, our target project involves many pro-
gramming languages, including Yang, which is a way to represent data. When counting
and analyzing lines of code, code written in all these languages are treated equally.
Reviewing the same amount of code in one language may require more time than in
another. However, considering the developers’ expertise, they do not state more diffi-
culty in reviewing code in particular languages, and also the involved languages are not
largely different with respect to verbosity. Furthermore, many medium and large software
projects use many programming languages. Therefore, the amount of code in different
languages is considered a random variable rather than a confounding variable of the study.
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Considering our survey, we adopted a single variable, total number of comments,
instead of the complementary metrics of the first part of the study, namely Comment
Density per 100 LOC and Comment Density per 100 LOC by Reviewer. Although
complex metrics help the analysis of influence of factors on comments, we assumed
that a single variable would be more adequate for developers to evaluate in the survey.
The adequacy of this choice was confirmed by our pilot study. However, this may cause
the comparison between the results of the repository mining and the survey to be less
accurate.

Internal validity We identified five internal threats. First, given that we analyzed an
extensive period of our target project, its developers changed over time. However, as
the number of developers and analyzed reviews is large, individual developers’ behav-
ior and expertise have a low impact on the obtained results. Moreover, this change in
development teams is expected in any software project.
Second, in most of the cases, authors and reviewers communicate using Gerrit to pro-

vide feedback, even when they are on the same team or location. However, there is no
explicit obligation in the target project to record in Gerrit feedback given by means of
other forms of communication, such as telephone or informal meetings. Nevertheless,
this is very unusual for this project—developers tend to use the available tools to ensure
that relevant questions will not be forgotten by the authors. Isolated occurrences thus do
not significantly affect the results.
Third, the participation outcome may have been affected due to the automatic addition

of reviewers by Gerrit’s reviewers-by-blame plugin. The plugin may add, as reviewers,
developers that no longer work in the same team or even in the company. Consequently,
their participation was not expected. As what matters is the relative comparison of partic-
ipation for groups of each outcome, this likely has not affected the results. The probability
of having reviewers that fall into this category is the same for the different reviews.
Fourth, our survey was conducted after the publication of the shorter version of this

work (Witter dos Santos and Nunes 2017). If participants had access to this work before
taking part of the survey, theymay have been influenced by our previous results. Although
we cannot completely confirm that no participant became aware of the work, no results
were intentionally disclosed within the company in which the participants work. More-
over, the time gap between the earlier version of this work and the collection of survey
data is only of three months.
Finally, our survey was conducted with participants from the same company on which

we collected data for the objective study, but from potentially different projects. More-
over, participants of the survey did not necessarily participate of the project that had its
data analyzed. However, all participants use the same code review process and the same
tools, including the automated reviewers.

External validity Generalizing the results of empirical studies is always an issue, because
the collected and analyzed data may not generally represent software projects. Although
we focused on a single project, our results are based on a large amount of data of a large
project. Therefore, we were able to identify trends and statistically significant results.
However, we emphasize that our results are potentially generalizable only for distributed
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development environments similar to that of our target project. Although geographi-
cally distributed, development locations occur in the same country and mostly involve
developers of the same nationality. Therefore, further studies should investigate whether
our results hold to globally distributed development environments, which may impose
additional barriers to MCR, such as different time zones, communication languages, and
culture.

8 Conclusion
Code review is an important static verification technique for improving software quality
as well as promotes knowledge sharing within a software project. To identify the scenarios
in which code review in fact succeeds, many studies investigated the relationship between
different factors and the review outcomes. However, there is limited investigation of the
situations in which modern code review is effective in the context of distributed soft-
ware development when developers and reviewers are spread into geographically distant
development locations.
In this paper, we presented the results of a mixed-method study, composed of two parts.

In the first part, repository mining, we extracted a large amount of code review informa-
tion from a software project whose aim is to develop an operating system for embedded
systems. This project involves 201 developers, spread into 21 teams located in 4 differ-
ent cities. We investigated how the patch size (in terms of lines of code), the number of
teams, the number of locations and the number of active reviewers influence the duration,
reviewer participation and comment density (general and by reviewer) of the review. We
found evidence that the duration of the code review is highly affected by all investigated
factors—the higher they are, the longer the review process. Similarly, the participation of
reviewers is negatively affected in all cases, but mainly by the number of lines of code to
be reviewed. The density of review comments is higher when a relatively small patch size
is reviewed by other reviewers of teams or locations other than that of the author. The
density of review comments per reviewer is positively affected by the number of involved
locations and negatively affected by the other factors.
In the second part of the study, we conducted a survey to collect data about the

perceived effects of the four investigated influence factors over code review outcomes
(duration, participation and total number of comments). We obtained 50 responses from
software developers with relevant professional experience in DSD projects with modern
code review practices. We found evidence that higher values of the influence factors have
similar effects on the analyzed code review outcomes. Duration and participation are neg-
atively affected; the total number of comments is negatively affected by patch size, teams
and locations, but is positively affected by the number of active reviewers.
Due to the large amount of data investigated in our study, we could not identify par-

ticular occurrences of code review that could help us to make other analyses and further
explain our data. Even if this was possible, given that we used data from the past to
have complete reviews, developers would potentially not remember specific cases. Our
study had, however, gave us insights for future investigations. First, we aim to perform an
observational study involving developers and managers that will allow us to verify if our
conclusions based on the present study hold. Second, further analyses can be made using
code review data. For example, the proportion of votes (vetoes, rejections, approvals and
neutral feedback), the influence of the number of contributions as author or reviewer
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(overall and in the samemodule or file) and other reviewers’ characteristics are interesting
issues to be investigated.
As the patch size demonstrated to be a prominent influence factor, we also plan to ana-

lyze other forms of complexity and effort during code review, assuming that reviewing
ten lines added to a complex module requires more effort than reviewing ten lines added
to a simple module. It is possible to analyze the influence of other indications of com-
plexity, such as the total number of classes, files and LOC as well as the total cyclomatic
complexity.
For modular systems, some influence factors arise from the relations among the mod-

ules and from the role of each module. For instance, the number of dependent modules
could influence the participation in or the duration of the code review, and critical
infrastructure modules might have different code review dynamics when compared to
modules that implement user interfaces. Therefore, we plan to analyze the influence of
architectural aspects of the modules in the code review.
Finally, we considered many metrics to indicate the effectiveness of the review and

aim to investigate whether it is possible to derive a single metric that captures review
effectiveness by combining different review outcomes.

Endnotes
1 https://www.gerritcodereview.com/
2Available at http://www.inf.ufrgs.br/prosoft/resources/2017/sbes-mcr-dsd.
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