
Ivo et al. Journal of Software Engineering Research and
Development (2018) 6:9
https://doi.org/s40411-018-0053-5

RESEARCH Open Access

An approach for applying Test-Driven
Development (TDD) in the development of
randomized algorithms
André A. S. Ivo1,2* , Eduardo M. Guerra2, Sandy M. Porto2, Joelma Choma2 and Marcos G. Quiles3

*Correspondence:
andre.ivo@gmail.com
Development of the technique;
Framework development;
bibliographic research in TDD;
design, conduction, and analysis of
the experiment; lead the paper
writing.
1Centro Nacional de
Monitoramento e Alertas de
Desastres Naturais (CEMADEN),
Estrada Dr. Altino Bondensan, 500 -
Coqueiro, 12247-016 São José dos
Campos - SP, Brazil
2Instituto Nacional de Pesquisas
Espaciais (INPE), Av. dos Astronautas,
1.758 - Jardim da Granja, 12227-010
São José dos Campos - SP, Brazil
Full list of author information is
available at the end of the article

Abstract

TDD is a technique traditionally applied in applications with deterministic algorithms, in
which the input and the expected result are known. However, the application of TDD
with randomized algorithms have been a challenge, especially when the execution
demands several random choices. The goal of this paper is to present an approach to
allow the use of TDD in the development of randomized algorithms, and the Random
Engagement for Test (ReTest) framework, a JUnit extension that provides support for
the proposed approach. Furthermore, this paper present the results of a single-subject
experiment carried out to assess the feasibility of the proposed approach, and a study
on developer experience when using ReTest framework. Our results support the claim
that the proposed approach is suitable for the development of randomized software
using TDD and that the ReTest framework is useful and easy to use.

Keywords: TDD, Randomized, Tests, Framework, JUnit, Metadata, Code, Annotations

1 Introduction
When the execution of a software system always leads to an expected result, it is consid-
ered a deterministic algorithm. However, there are several algorithms whose execution
might result in different correct outputs for the same input. This kind of algorithm
with non-deterministic behavior is named randomized algorithms (Cormen et al. 2001).
Commonly, these algorithms depend on various random decisions made during their
execution.
Randomized algorithms are widely used to solve problems that might have several cor-

rect or acceptable answers for a particular input. For instance, to simulate stochastic
systems or in approximation algorithms to solve intractable problems. Some classic exam-
ples of randomized algorithms are primality testing, heuristic algorithms to the traveling
salesperson, k-clique, andmultiprocessor scheduling.
Randomized algorithms use functions that return a pseudo-random number in a given

range or a random element from a given set. In some cases, when this function is used
only a few times, the use of automated testing becomes feasible, because it is possible to
execute the algorithm simulating several return values for the random functions under
consideration. However, if the random function is used several times or a variable number
of times, it is not reasonable to simulate the value of several calls. Therefore, it is not

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://orcid.org/0000-0001-6192-7705
mailto: andre.ivo@gmail.com
http://creativecommons.org/licenses/by/4.0/

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 2 of 31

practical to simulate all of these paths to test a randomized algorithmwith several random
choices. Moreover, even if it were feasible to simulate all these answers, they would not be
truly random. As any code with a lack of tests, when these algorithms need maintenance,
or new solutions need to be developed, faults can be inserted into the system without
notice.
TDD is a software development technique in which tests are developed before the code,

in short and incremental cycles (Guerra and Aniche 2016). This technique proposes for
the developer to create a new flawed test, and then to implement a little piece of code, in
order to satisfy the current test set. Then, the code is refactored if necessary, to provide a
better structure and architecture for the current solution (Beck 2002; Astels 2003).
TDD is traditionally used with deterministic algorithms when there is a known input

and one expected result. The challenge addressed in this work is to use TDD in appli-
cations with non-deterministic behavior as stated before. Although it is not possible to
know exactly what the output will be, it is usually possible to check whether the generated
output is valid or not.
The following factors make it difficult to develop randomized software using TDD: (a)

results for each execution may be different for the same inputs, which makes it difficult
to validate the return value; (b) obtaining a valid return for a test case execution does not
mean that valid return will be delivered on the next executions; (c) the random decisions
and their paths number make it not viable to createMock Objects (Mackinnon et al. 2001;
Freeman et al. 2004) that return fixed results for these decisions; and (d) it is difficult to
execute a previous failed test with the same random decisions undertaken in its former
execution.
In this paper, we present (1) an approach that allows an extension of TDD for its

application in algorithms with non-deterministic characteristics, and (2) a framework
for the JUnit called ReTest (Ivo and Guerra 2017b), developed by the authors in order
to support the random algorithms testing. In short, the proposed approach uses multi-
ple verification to validate of the algorithm return and executes each test several times
with different seeds to increase test coverage. From the result of these repetitions, the
seeds from pseudo-random test cases that generated failures are stored and used in
future tests, ensuring that a scenario where an error was detected in the past is executed
again.
Furthermore, we present the results of two studies: a single-subject experiment

carried out to assess the feasibility of the proposed approach in an algorithm
implementation involving multiple random decisions in sequence, and a study to
assess the developer’s experience when using ReTest framework that automates the
approach steps.
The paper is organized as follows. Section 2 introduces the background necessaries

knowledge. Section 3 describes the method we applied in this research. Section 4 presents
our approach outlined from a set of patterns that assist in the test automation of ran-
domized algorithms. Section 5 presents a single-subject experiment of an implementation
that used the proposed approach. Section 6 presents the ReTest framework, including an
example of use in the context of TDD. Section 7 describes a study carried out to assess
the developer’s experience when using ReTest framework. Section 8 presents the discus-
sion and limitations of the research. Finally, Section 9 presents the conclusions and future
perspectives.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 3 of 31

2 Background
In this section, we present concepts and techniques related to the approach for applying
TDD in the development of randomized algorithms. Section 2.1 presents the types of
randomized algorithms that can be developed with the proposed approach. Section 2.2
describes TDD as a coding and design technique, and Section 2.3 introduces the JUnit,
one of the most used frameworks used for creating unit tests, used as the basis for the
ReTest framework.

2.1 Randomized algorithms

Many algorithms might consider, at some point, one or more random steps during their
executions. For instance, algorithms used to find an approximate solution to NP-Hard
problems or Monte Carlo Algorithm, usually take random choices into account.
These randomized algorithms are commonly categorized into two classes (Cormen et al.

2001):
• Monte Carlo Algorithms: define a class of algorithms that generally run quickly and

return the correct answer with high probability, albeit, it might return a wrong
answer. Approximation algorithms, such as Genetic Algorithms, are variations of the
Monte Carlo Algorithms.

• Las Vegas Algorithms: which are those algorithms that always return a correct
answer, but running time is random, although finite (Galbraith 2012).

The algorithm used in the study to verify the viability of our approach (Section 5) is the
Las Vegas type algorithm that always gives to a correct answer (or so the proposed tech-
nique guarantees), but performs at random time. Using a graph as input, the algorithm
applies a random sequence of transformations, and the output should be a graph that
has some specific metrics. Notwithstanding, the approach proposed in this study can be
applied to both classes of randomized algorithms.
Finally, it should be stated that the stochasticity or non-determinism considered here

are not related to the theoretical concept of non-determinists algorithms. These non-
determinists algorithms rely on the architecture of a non-deterministic Turing Machine
(Floyd 1967). In our scenario, non-determinism is related to the stochastic behavior of the
algorithm.

2.2 Test-driven development (TDD)

TDD is a code development and design technique, in which the test code is created before
the production code. There are several works reported by Guerra and Aniche (see (Guerra
and Aniche 2016)) that indicates that the use of TDD can improve source code quality.
One of the reasons for the popularization of TDD is its explicit mention as part of the
agile methodology Extreme Programming (XP) (Beck and Andres 2004), however today
it is also used out of this context.
In TDD practice, the developer chooses a requirement to determine the focus of the

tests, then writes a test case that defines how that requirement should work from the class
client point of view. Because this requirement has not yet been implemented, the new test
is expected to fail.
The next step is to write the smallest amount of code possible to implement the new

requirement verified by the test. At this point, the added test, as well as all other pre-
viously existing tests, are expected to run successfully. Once the tests are successfully

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 4 of 31

Fig. 1 TDD execution diagram

executed, the code can be refactored so that its internal structure can be continuously
evolved and improved. The tests help to verify if the behavior has not been modified
during refactoring.
This cycle is performed repeatedly until the tests added verify scenarios for all expected

class requirements. The TDD cycle is presented in Fig. 1 (Beck 2002; Astels 2003).
With the use of TDD, the code design is defined in cycles. The idea is that with each

new test added, a small increment of functionality is made compared to the previous
version. TDD technique widely used in industry, being described in several books, such
as “Test-Driven Development by Example” (Beck 2002); “Agile Software Development,
Principles, Patterns, and Practices” (Martin 2003); “Growing Object-Oriented Software,
Guided by Tests” (Freeman and Pryce 2009); and “Test-Driven Development: A Practical
Guide” (Astels 2003).

2.3 JUnit framework and its extension points

JUnit is a Java open-source framework for the creation of unit tests. Its purpose is to be a
basis for the creation of test automation code. It is used for the practice of TDD, and its
model has been taken into account to create test frameworks for other languages. Some of
the main features of these frameworks are the execution of test cases and the presentation
of the execution results (Beck and Gamma 2000).
JUnit, since version 4, provides extension points that allow the introduction of new

functionality. Some of the most important JUnit extension points are represented by the
classes Runner and Rule.
Runner is the class responsible for running the test methods from a test class. When a

simple test class is executed with JUnit 4, it uses the class BlockJUnit4ClassRunner as the
default runner. The Runner class hierarchy is represented in the diagram in Fig. 2.
In this way, to implement a new test runner it is necessary to create a new class

extending Runner. To use it in a test class, the annotation @RunWith should be config-
ured receiving in its attribute value the new class that replaces the default test runner.
If it is necessary to extend the existing functionality, the new runner should extend the
BlockJUnit4ClassRunner class.
Another JUnit extension point is known as Rule and it allows the addition of new

behaviors mainly before and after the execution of each test. To introduce a new Rule,

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 5 of 31

Fig. 2 Core class diagram of ReTest framework

it is necessary to create a class that implements the TestRule interface. To use it, a pub-
lic attribute should be declared in the test class and annotated with @Rule, as shown in
Listing 1.

Listing 1 @Rule use example

1 public class TestClass {
2
3 @Rule
4 public NewRule newRule = new NewRule();
5
6 @Test
7 public void testMethod(){
8 Object result = TestedClass.testedMethod();
9 assertResult(result);

10 }
11 }

In the example shown in Listing 1, when executing the test project, the newRule is called
before and after the testMethod(). The annotation @Rule is responsible for adding the
desired behaviors before and after each test.

3 Researchmethod
The need of this research was raised during the development of a randomized algorithm
in the National Institute of Space Research. The developer was familiar with the TDD
technique but did not know how to apply it in that context. Based on that need from a
real implementation the approach was developed.
The proposed approach was initially evaluated in a feasibility study, performed through

a single-subject experiment that used the algorithm that motivated its development.
Single-subject studies are one way to provide empirical support for software-engineering
techniques, in which only one subject performs the tasks in the study (Harrison 2000).
Single-subject studies usually are analyzed by determining whether the treatment’s effects
are noticeable, and therefore does not require elaborate statistical analysis (Harrison
2005).
In this single-subject experiment, our approach was applied in the algorithm imple-

mentation involving multiple random decisions in sequential performing. The results of
this implementation using our approach was compared to the same algorithm previous
implemented in the traditional way, using the same programming language and without

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 6 of 31

unit tests. Information about the effects of using and not using the approach was provided
by the researcher, the single subject who implemented twice the same algorithm.
The set of practices identified as the core of the proposed technique were documented

as three patterns (Ivo and Guerra 2017a). The published paper focused on practitioners
and provided a detailed description of each pattern. It has a different goal from the present
paper that focuses on the research involved in the development and evaluation of the
approach.
Based on the documented practices and in the experience of using the approach for a

complex algorithm implementation, a testing framework for Java called ReTest was devel-
oped. This framework has features that make easy the usage of the proposed approach,
such as the generation of seeds, the repetition of test execution and the support for
re-executing previous failed tests.
After the framework implementation, we performed a study to evaluate the applied

approach with the support of the ReTest framework in terms of ease of use, usefulness,
perceived benefits, drawbacks, and difficulties. In this study, 10 participants implemented
a simple algorithm using the ReTest framework for tests and following an established
procedure to guarantee the application of TDD. At the end of the activity, a questionnaire
with open and closed questions was used to gather the opinion and perceptions of the
developers-participants regarding their experiences with the use of the framework in the
implementation task. Studies on the developer experience have been important in several
areas of software development, such as in the software process improvement (Fagerholm
and Münch 2012). As a consequence, studies based on developers’ perception can give
valuable input for analyzing and adjusting new development techniques, procedures and
tools.

4 Approach to automate tests randomized logic
In general, existing test techniques are suitable for applications with deterministic algo-
rithms, when one has a known entry and an expected result. More traditional testing
strategies often focus on exploring the input domain by evaluating the values used as input
and obtained as outputs to find combinations of input parameters that can cause failures.
Several testing techniques focus on indicating a set of tests necessary to a proper

coverage of the input domain. Combinatorial testing, for example, combines all pos-
sible rearrangements of the input parameters and submits this list to the algorithm
to be tested (Anand et al. 2013), such as Pairwise testing (Bach and Schroeder 2004).
Unfortunately, the coverage of the input domain is not enough for randomized algo-
rithms, because even for the same input the result can be different. In other words,
a successful execution might fail in the next time it is executed with the same
inputs.
In order to automate tests of randomized logic, we have proposed an approach

based on three software patterns: Deterministic Characteristic Assertion - to create
an assertion that verifies the validity of the algorithm result; Re-test With Differ-
ent Seeds - to execute the test several times with different seeds; and Recycle Failed
Seeds - to persist seeds used in failed tests to be reused in future test executions.
Next, we present an overview of each pattern. And, after the explanation of the pat-
terns, we present the application of the proposed approach through an illustrative
example.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 7 of 31

4.1 Deterministic characteristic assertion

TheDeterministic Characteristic Assertion pattern proposes the usage of assertions based
on a criteria that verifies deterministic characteristics of the result at the end of the exe-
cution. If all criteria are met, the results can be considered valid. This pattern can be
associated with test oracles. An ideal test oracle provides a pass/fail judgment for any pos-
sible program execution, judged against a specification of expected behavior (Baresi and
Young 2001).
This pattern is related to how the assertion should be performed, and it is related to

the correctness of the algorithm. In theoretical computer science, the correctness of an
algorithm is asserted when the algorithm is correct concerning a specification. Functional
correctness refers to the input-output behavior of the algorithm (i.e., for each input it
produces the expected output) (Dunlop and Basili 1982).
The solution is summarized in the selection of fundamental characteristics that deter-

mine the validity of the algorithm result. An analysis of the algorithm should be per-
formed with the intention of identifying the main requirements and behaviors that do
not change in a valid result. Then, these items should be related to a list of deterministic
characteristics that can be verified.
For each deterministic characteristic, an assertion procedure should be developed.

After developing the set of characteristics verification, the algorithm should be exe-
cuted, and its result submitted to the assertion set. If all set of characteristics tests run
successfully, it means the output is valid, regardless of its exact value.
In general, there is an intention of evaluating the behavior of the algorithm inde-

pendently of the outcome. In some cases, it is possible to extract the characteristics
of the result itself, in others, it is not. As a good practice, there may be cases where
it is necessary to divide the algorithm into some parts so that it is possible to isolate
the randomized parts and to verify deterministic characteristics from its intermediate
results.

4.2 Re-test with different seeds

This pattern is focused on increasing test coverage, which is not the same thing as
functional correctness, which is covered by the Deterministic Characteristic Assertion
pattern. Test coverage is not an aspect of product quality; it is just one measure of how
well exercised a product is. Thus, broader code coverage correlates with fewer expected
undiscovered product bugs.
For this reason, the proposed approach applies this pattern combined with Deter-

ministic Characteristic Assertion. To use this pattern, the developed algorithm should
be able to receive the object used to generate the pseudo-random inputs or the seed
that should be used. The test using Deterministic Characteristic Assertion pattern
should be executed several times varying pseudo-random inputs generator or its seed.
The seed for each execution can also be implemented using a pseudo-random input
generator.
In general, a library with functionality to generate pseudo-random values based on a

seed is present in several programming languages. A seed is generally an integer and acts
as a “key-primary” in pseudo-random generations. When the pseudo-random generation
algorithm receives a seed, following generations must always result in the same sequence,
therefore the so-called “pseudo-random” generation.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 8 of 31

The combination of pseudo-random inputs and the number of repetitions causes the
algorithm to be exercised traversing different paths. So, the larger is the number of
repetitions, the wider is the code coverage.
For cases where the complexity of the code and the number of features is high, it is

recommended to increase the number of repetitions to generate a more extensive code
coverage.
It is important to state that the use of this pattern does not guarantee that the tests

will cover all possibilities. However, especially in an environment where the tests are fre-
quently executed, after several executions, it is possible to have good coverage, providing
confidence that the algorithm is implemented correctly.

4.3 Recycle failed seeds

This pattern is used to enable the re-execution of test cases that failed in previous exe-
cutions. One of the most significant problems in randomized algorithms is debugging,
since its stochastic behavior makes the reproduction of an error a complex task. This fea-
ture makes it hard to apply specific modern techniques in software quality, for example,
regression tests. The primary goal of regression testing is to provide confidence that the
newly introduced changes do not generate errors on existing and/or unchanged parts of
the software system (Yoo and Harman 2012).
Regression testing may become very large during the process of integration tests. Thus,

it is unpractical and less efficient to re-run all the tests for each modification (Xiaowen
2013). Because of these difficulties, alternative approaches to the Regression Test Selec-
tion (RTS) technique has been proposed in Agrawal et al. (1993); Chen et al. (1994);
Harrold and Souffa (1988); Hartmann and Robson (1990); Rothermel and Harrold (1997).
RTS approach recommends that only a select subset of the tests be run to optimize and
minimize the time of the execution. This subset must be selected according to the need
and characteristics of the software system being developed (Kim et al. 2000).
As a complete solution for tests of randomized algorithms, as well as Adaptive Random

Testing (ART), this article proposes the division of the input domain into two sets. How-
ever, unlike ART, the first set of the input domain is only a projection of the actual test
cases, the second set is the test cases that have presented errors in executions.
To get the first set of the input domain, onemust use the pseudo-random generations as

presented in the Re-testWith Different Seeds pattern. To obtain the second set of the input
domain, the seeds associated with the failed tests should be preserved. Select the seeds
from the failed tests, and perform new tests with these seeds, inducing the randomized
algorithms to repeat the same paths and behaviors that led to failure. Like the Re-testWith
Different Seeds pattern, this pattern is focused on increasing code coverage.

4.4 Approach applied: an illustrative example

To represent a method whose return is random, consider an algorithm that generates
an array of “n” positions, with pseudo-random numbers varying between 10 and -10,
whose total sum of elements is always zero. Note that in this example a number of possi-
ble returns grow exponentially with “n”. The following formula calculates the number of
possible returns, where “n” is the array size and “e” is the number of elements:

Possibilities = en (1)

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 9 of 31

Since between -10 and 10 we have 21 elements (including 0), the following calculates the
number of possibilities for an array of 3 positions:

Possibilities = 213 = 9261 (2)

Each of the possibilities presents a path that must be tested, so the amount of testing rises
exponentially with the number of possibilities. In fact here the question is not the number
of possible answers, but the fact that there are several correct answers and the algorithm
can return different answers to each execution.
The Listing 2 shows a simple example of how to use the proposed test approach. The

first software pattern (Deterministic Characteristic Assertion) is introduced with assert-
ValueInterval() and assertSumEqualZero() functions. These functions represent the point
where all assertions of the characteristics are performed.
The second software pattern (Re-test With Different Seeds) is represented by a software

loop. On the Listing 2, the use of this pattern can be observed in the first for statement.
The focus of this pattern is to increase the code coverage and for a better performance
(functional correctness) should be used in conjunction with the pattern Deterministic
Characteristic Assertion. For this reason, the assertion methods are invoked inside this
loop.
Listing 2 also demonstrates how to use the Recycle Failed Seeds pattern, the third soft-

ware pattern proposed. This pattern proposes to save the seeds when the characteristics
assertion fails, so the same seeds can be used later in future executions.
Still in Listing 2, the invocation of the method saveFailureSeed() represents the logic to

save the seed. The seed can be saved in memory, in a file or even in a database, depending
on the test requirements.

Listing 2 Simple example of how to use the proposed test approach

1 @Test
2 private void testFixedCharacteristics(){
3 int n = 2;
4
5 //First set of the input domain.
6 //Number of repetitions.
7 int numberRepetitions = 100;
8 for(int i=1;i<=numberRepetitions;i++){
9 //New seed is introduced based on the computer clock.

10 long new_seed = System.currentTimeMillis();
11 Random rSeed = new Random(new_{s}eed);
12 int[] result =

ArrayFactory.generateArrayBasedRandomSeedWithSumZero
(rSeed, n);

13
14 if(assertValueInterval(result, n)==false){
15 saveFailureSeed(new_{s}eed);
16 };
17 if(assertSumEqualZero(result, n){
18 saveFailureSeed(new_{s}eed);
19 };
20 }
21
22 //Second set of the input domain.
23 long[] allSeeds = getAllFailuresSeeds();
24 for(int i=0;i<=allSeeds.length-1;i++){

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 10 of 31

25 //Get failed seed.
26 long fail_{s}eed = allSeeds[i];
27
28 //A pseudo-random input is generated based on failed seed
29 Random rSeed = new Random(fail_{s}eed);
30 int[] result =

ArrayFactory.generateArrayBasedRandomSeedWithSumZero
(rSeed, n);

31
32 assertValueInterval(result, n);
33 assertSumEqualZero(result, n);
34 }
35 }
36
37 private void assertValueInterval(int[] arr, int arraySize) {
38 int result = 0;
39 //verify if value are between -10 and 10
40 for (int i = 0; i < arraySize; i++) {
41 assertTrue(arr[i] >= -10 && arr[i] <= 10);
42 }
43 }
44
45 private void assertSumEqualZero(int[] arr, int arraySize) {
46 int result = 0;
47 //verify if sum equals 0
48 for (int i = 0; i < arraySize; i++) {
49 result = result + arr[i];
50 }
51
52 //verify the sum
53 assertEquals(0, result);
54 }

In Listing 2, the second part of the input domain is represented by a loop with the failed
seeds, implemented in the second for statement. Inside the loop, note that the input values
are generated through a pseudo-random mechanism that receives the seed that failed as
a the parameter, which then reproduces the same inputs, inducing the same behavior in
the test.

5 Feasibility study: a single-subject experiment
In this section, we report the results of the first study investigating the effects of proposed
approach applied for implementation of a complex randomized algorithm involving the
creation and evolution of dynamic graphs. First, we provide an overview on domain and
related concepts, giving an idea about the complexity of the problem handled. Then, we
describe the single-subject experiment carried out by the researcher proponent of the
algorithm for dynamic graphs and, finally, we report the results of this study.

5.1 Dynamic graphs

A dynamic graph is a graph that is constantly changing. They are those in which
their elements, vertices, and edges, are constantly being added or deleted. The bench-
mark proposes a controlled dynamic environment by providing functions that simulate
transformations that may occur in a graph considering its structure in communities.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 11 of 31

Fig. 3 Possible changes that a community can suffer (Porto and Quiles 2014)

The community structure of a graph is a metric that can be used to cluster its ver-
tices. One can define which groups of vertices form a community through the comparison
between the density of the graph and the density of the group. The density is calculated
considering the number of edges within the vertices of the community, where more edges
mean higher density.
All functions that simulate transformations reach their goal by making changes in the

graph elements. Basically, there are three types of transformations, which are illustrated
in Fig. 3: (a) one-to-one, which involves the growth or contraction of the community; (b)
one-to-many or many-to-one, that are related to the splitting ormerging phenomena, i.e.
one community can give rise to several others or several communities can merge into a
single one; and (c) one-to-zero or zero-to-one, represented by the birth or termination of
a community (Porto and Quiles 2014).

5.2 Dynamic communities algorithm

The algorithm described in this study creates a sequence of graphs, each containing its
own structure in communities, to simulate the behavior of a dynamic graph. Dynamic
communities algorithm is composed of six functions that simulate these behaviors,
named: born, growth, extinction, contraction, merge, and split. Hence, the output this
algorithm is a graph that passes through a sequence of random changes considering the
six possible functions stated before; this response must have specific properties.
The properties are some topological measurements extracted from the graph. The out-

put graph must preserve the measures of the input graph according to some previously
established parameters. Here, the measurements are the average degree of the network
and the maximum degree, in which the degree of a vertex is the sum of the number of
edges connected to it; the mixing parameter, which controls the fraction of edges that a
vertex shares with vertices belonging to other communities; and, finally, the minimum
and maximum size of the communities. While it is simple to check these properties, it
is not trivial to implement an algorithm that generates a final graph that complies with

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 12 of 31

them. As a consequence, there must be a test routine to facilitate and give confidence to
the code.
However, in addition to the challenges already mentioned above, another challenge to

test algorithms treated in this work is the input domain (Elva 2013). The input domain is
any possible combination of all input parameters of a method. However, if the parameters
can be chased from an infinite set, which is the case in this experience, it means that the
input domain is also infinite. Therefore, not every possible combination is available.
As already stated, the algorithm output is a graph which undergoes a sequence of ran-

dom changes using the six possible change functions. The input of each function is also
a graph, so the output of one function can be used as input to the next one, without
any interference. However, in the tests, each output is checked whether it is under the
properties established before, and it is used as input to the next function.
Equation 3 gives an example of a possible sequence executed by the algorithm, where gi

is the initial input graph and go is the final output graph.
go = born(extinction(born(growth(gi)))) (3)

5.3 Randomized algorithm

Randomness plays an important role in the algorithm. The six functions aim to create a
dynamic network with community structure evolution, step by step, to serve as a bench-
mark for community detection algorithms. It means that the randomness is not only a
consequence of the way the algorithm has been implemented but a requirement.
Each function, born, extinction, growth, contraction, merge, and split will perform a

series of modifications in the network. Such modifications involve adding and removing
vertices and edges of one or more communities. Also, despite the algorithm having con-
trol of which are the vertices and edges of the network that may undergo such changes,
the number of times that they occur is decided only at runtime. The only estimate one can
make is that this amount is proportional to the number of vertices that are being treated
by the function.
For example, the merge function first chooses how many (first random decision) com-

munities will undergo changes, which can be at least two and up to all the communities.
Then choose which (second random decision) communities will merge with which. From
there, it sums up the total amount of vertices in the communities and calculates the mini-
mum expected number of edges (density) to merge the selected communities. Then, pairs
of vertices are selected (multiple random decisions in sequence) and become adjacent
until the desired density is achieved.
Randomness was present in all steps of the merge function, as described in the previous

paragraph, and is also present in all other functions. The first and second random deci-
sion of the merge function define how many decisions will be made after and the same
principle applies to all other functions as well. This is a significant problem when testing
computer code, after all, before running there is no indication of howmany arbitrary deci-
sions will be needed. It is only known that this quantity will be proportional to the number
of vertices treated in the function. Furthermore, even this amount is only determined at
runtime.
From the input graph, each function generates a sequence of graphs that correspond

to the evolution (or transformation) of the graph in time. Thus, community detection
algorithms can be tested in the most diverse situations regarding the order of application

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 13 of 31

of each one of the six functions of the algorithm. Ideally, this order must be as random as
possible, as well as the number of transformations. Both order and quantity are chosen at
runtime.

5.4 Experimental design

A single-subject experiment was performed to verify the feasibility of the approach pro-
posed to applying TDD in the development of the randomized algorithm for creation
and evolution of dynamic graphs. The single-subject in this study is a computer scien-
tist who develops research in the area of Machine Learning using Complex Networks,
in the Associated Laboratory of Computation and Applied Mathematics at the INPE.
The task assigned to researcher-developer was to implement the Dynamic Communities
Algorithm using our approach, which had originally been implemented by herself in R
programming language (R Core Team 2015) in a traditional way. The participant received
previous training on TDD which consisted of theoretical classes and practical exercises,
during a course in software design at the INPE. On this occasion, the approach to using
TDD with randomized algorithms was presented.
The independent variables of the study are (1) the programming language, (2) the

randomized algorithm, and (3) the developmental approach that is also the treatment
variable. The objectives dependent variables observed in this study are: lines of code,
number of functions, lines of code per function, lines of test code, and number of test
cases. The developer’s view about the effects of applied treatment is a subjective variable
that was considered in this study.
Single case experimental designs usually involve an initial period of observation referred

to as the “baseline” or “A Phase”. Upon completion of this phase, the independent variable
is manipulated during the second period of observation referred to as the “treatment” or
“B Phase”, in order to verify the dependent variables. This procedure is known as an A-B
design (Harrison 2000).

5.5 Results

As aforementioned, the Dynamic Communities algorithm was twice implemented.
Regarding implementation time, in the first time, the researcher-developer took approx-
imately three months to implement the algorithm in the traditional way, using R as the
programming language (A Phase). In this phase, the long implementation time was due
to the fact that the solution was not well defined from the beginning. During this imple-
mentation, a period of research was necessary to study the application requirements and
define the logic that would be employed.
In the second time, the researcher-developer took approximately three weeks to imple-

ment the algorithm using the same programming language, but this time following the
proposed approach to the use of TDD with randomized algorithms (B Phase). Less
time was needed in this phase since the research had already been consolidated with a
well-defined algorithm. The implemented code is hosted on GitHub1.
In the second implementation, the output graph (the last one in the sequence) is tested

for its metrics, being the average degree, maximum degree, mixing parameter and size
of the smallest and largest graph community. The mentioned metrics form the group
of characteristics that are evaluated in the output. That is, in this case, is employed the
Deterministic Characteristic Assertion pattern, as described in the Section 4.1.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 14 of 31

Furthermore, if the graph passes all tests, it is used as input to the next function; if not,
the seed used is stored to be used in the regressions tests, employing Recycle Failed Seeds
pattern, as described in the Section 4.3. All of these metrics must be within a previously
established threshold for the graph be considered correct. Note that the Re-test With Dif-
ferent Seeds pattern was not used in this implementation because it met a very specific
situation.
Listing 3 summarizes the tests applied in each experiment. First, the seeds of this battery

of tests are chosen, the randomness of the choice is to fulfill the Re-test With Different
Seeds pattern (Section 4.2). Each seed is an increase on the test coverage. For each seed,
an initial graph is created and tested. Then, the size of the sequence of functions is chosen.
For each function to be applied in the current graph, the output is tested. If any test fails
during execution, the seed is stored. The initial set of seeds can be altered to receive the
set of seeds that led to errors.

Listing 3 Resume of the tests performed in the experiment

1 q = 100; //arbitrarily chosen
2 seeds = random_{n}umbers(q);
3 for(seed in seeds){
4 g_{0} = create_{i}nitial_{g}raph();
5 if(test(g_{0}) fails) store(seed);
6 n = choose_{q}uantity(); //size of the sequence
7 for(i in 1:n){
8 f = choose_{f}unction(); //choose one of the six

functions
9 g_{i} = f(g_(i-1)); //applying the choosen function

10 if(test(g_{i}) fails) store(seed);
11 }
12 }

The tests performed in each graph, besides checking the metrics already mentioned,
also make specific checks considering which function was applied. For example, if the
born function was used, one community with a specific size (number of vertices) was
added to the graph, so it is necessary to verify if the number of nc communities increased
by exactly one unit and if the number of vertices in the graph increased precisely the size
of the new community. In the extinction function, the inverse applies, one community
with a specific size was eliminated of the graph, so one needs to verify if the number of
communities decreased by exactly one unit and if the number of vertices decreases the
size of the community eliminated.
In the growth and contraction functions, it is necessary to verify if the number of com-

munities has remained, but the number of vertices has increased (or decreased). In the
merge and split functions, it is necessary to verify if the number of vertices remained
the same, after all, only the edges are modified in these functions, but the number of
communities must decrease (or increase).
At this point, the researcher-developer highlighted that some situations which could

lead to errors had not been detected during the first implementation. Such as (a) empty
graph as input, (b) graph with only one community as input, and (c) pre-checking the
value of the mixing parameter before changing any edges. The latter situation allowed
the algorithm to become more efficient. The researcher-developer recognized that such
improvements were only possible with the use of our approach.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 15 of 31

Table 1 Results of the two phases of implementation

A Phase B Phase

Lines of code 522 766

Number of functions 8 24

LOC per function 65.25 31.91

Lines of test code 0 417

Number of test functions 0 112

In the GitHub repository, there is a file named “Erros.dat”2 containing all the seeds that
exposed an error along with a message describing the detected error. The file contains
236 rows, each row being a seed that was stored, so during the algorithm’s development,
236 errors were detected and corrected.
There were also tests related to the storage and transfer of graph sequences from main

memory to secondary memory. Table 1 shows the code metrics reported in the first
phase of implementation (A Phase) using a traditional process, and in the second phase
(B Phase) using the approach applying TDD. The first thing that can be noticed in the
table is the presence of test code in Phase B.
By the numbers in Table 1, it is possible to notice an increase in the number of functions.

This more granular division of the code favors the testing activity since it is easier to
evaluate the behavior if the function has a more limited scope. Smaller and more granular
functions also indicate that the code in B Phase have a better design and it is easier to
maintain.
An increase in the number of lines of code can also be noticed by comparing the two

implementation phases. Despite the additional code for handling scenarios that were
not considered in the initial version, this increase could also be justified by the devel-
oper attention to code readability. With automated tests, it was safer to refactor the code
continuously during its implementation.
In the opinion of the subject researcher-developer of this study, the rewriting of the

code using the TDD following the proposed approach demonstrated that “even consid-
ering the complexity and randomness of the algorithm reported, the code gained a lot of
quality, flexibility, maintainability, and confidence in the performance of the algorithm.
Additionally, the organization of the tests also helped in the verification and validation of
the results, comparing them with other results of the literature.”

6 ReTest: test framework for randomized algorithms
To support our approach for testing randomized algorithms, we developed a framework
called ReTest (Random Engagement for Test), available at https://github.com/andreivo/
retest. This framework provides its users a mechanism for managing the seeds used to
generate random data in the algorithm being tested. Consequently, the same test can be
repeated using the seeds used in previously failed executions. These features facilitate the
application of TDD for the development of randomized algorithms.
It should be mentioned that the framework does not have any feature to implement the

pattern Deterministic Characteristic Assertion since it is something very specific to each
algorithm. However, its features support the implementation of the two other patterns,
Re-test With Different Seeds and Recycle Failed Seeds.

https://github.com/andreivo/retest
https://github.com/andreivo/retest

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 16 of 31

6.1 Overview

To use ReTest the developer needs to create a test project using JUnit 4, and include the
@RunWith annotation with ReTestRunner.class argument in the test class.
In the test methods, the developer needs to include annotations to configure how it

should be executed and annotations in the parameters that need to receive values gener-
ated and managed by the framework. The framework managed parameters are meant to
be used as input data for the tests. The Listing 4 shows a simple example of use.

Listing 4 Simple example of how to use ReTest

1 @RunWith(ReTestRunner.class)
2 public class TestClass {
3 @Test
4 @ReTest(10)
5 @SaveBrokenTestDataFiles(filePath = "/data/file1.csv")
6 @LoadTestFromDataFiles(filePath = "/data/file1.csv")
7 public void testMethod(
8 Object result = nonDeterministicAlgorithm(random);
9 assertResult(result);

10 }
11 }

In the code shown in Listing 4, the test method is marked with the @ReTest(10) anno-
tation, which configures the framework to execute it 10 times. At each execution, the
framework will initialize the parameter marked with @RandomParam received by the
test method with a different seed. Notice that this object is passed as an argument to the
method being tested, called nonDeterministicAlgorithm(). The class Random is used inter-
nally by the test method for the generation of its random numbers and, consequently, as a
basis for its stochastic decisions. The assertResult() is used to verify whether the return of
the algorithm is considered valid. This test will be executed multiple times with Random
initialized with different seeds, simplifying the execution of a large number of scenarios.
The seeds used in failed tests will be stored in the file “data/file1.csv”, because the test

method is marked with the@SaveBrokenTestDataFiles annotation.When executed again,
in addition to the 10 repetitions configured by the @ReTest annotation, the test method
will also run with the seeds stored in the “data/file1.csv” file, which is configured by the
@LoadTestFromDataFiles annotation. That way, by running the failed tests again, you can
check that the error has been corrected in addition tomaintaining a set of regression tests.
Since in TDD the tests are executed frequently, throughout the development process

the test executions should achieve good code coverage. This is reinforced by the fact that
the tests that have failed previously are always executed again, enabling the debugging for
a specific test scenario.
The ReTest framework has an API that allows you to:

(a) generate random data to be used in the test methods;
(b) create custom randomizers for data in the application domain;
(c) save seeds from failed tests;
(d) save seeds from tests that were successfully executed;
(e) save the return of the test method to generate a set of data based on random inputs

and expected outputs;
(f) load test data from external files or sources;

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 17 of 31

(g) create custom mechanisms for handling external sources, both for saving and
loading test data.

6.2 ReTest annotation set

In addition to the common JUnit annotations, the ReTest framework has a set of 4
annotations for the test methods and 4 annotations for the method parameters.
The annotations for the methods are:

(a) @ReTest: This annotation is responsible for performing the test repetition. In this
annotation it is possible to indicate how many times the test method should be
executed;

(b) @SaveBrokenTestDataFiles: When you mark a method with this annotation, the
input data will be saved to the file when the test fails;

(c) @SaveSuccessTestDataFiles: When you mark a method with this annotation, the
input data will be saved to file when the test is successful;

(d) @LoadTestFromDataFiles: When you mark a method with this annotation, the
input data from this file will be loaded and used in the execution.

The annotations for the method parameters are:

(a) @IntegerParam: Annotation indicates that the ReTest framework should pass as a
parameter a random integer;

(b) @RandomParam: This annotation indicates that the framework should pass an
instance of an object of type Random, with a known seed, so that it can be stored
and retrieved from files, making it possible to reconstruct the same test scenario;

(c) @SecureRandomParam: This annotation indicates that the framework should
pass an instance of an object of type SecureRandom, with a known seed, so that it
can be stored and retrieved from files, making it possible to reconstruct the same
test scenario;

(d) @Param: This annotation allows the developer to indicate custom randomizers for
the specific data types in the application domain, allowing the extension of the
framework for the random generation of several types of data.

6.3 Internal architecture and extension points

This framework is based on the implementation of a new Runner, which reads and
interprets the annotations presented in the Section 6.2. The Fig. 4 shows the class dia-
gram of the ReTestRunner implementation. In this diagram, it is possible to observe
the first extension point of the framework for customization of the data files format,

Fig. 4 Core class diagram of ReTest framework

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 18 of 31

Fig. 5 Class diagram of randomized objects

in the form of the implementation of the abstract class TestDataFiles. To configure the
newly created class, it should be passed as a parameter to the@SaveBrokenTestDataFiles,
@SaveSuccessTestDataFiles, and@LoadTestFromDataFiles annotations.
The Fig. 5 shows the existing randomizers used to introduce parameters with random

values in the test methods. At this point, it is possible to observe the second exten-
sion point of the framework, in the form of the implementation of the abstract class
DataType. To configure the new class created to be the data generator for a test, it should
be configured as an attribute of the@Param annotation.

6.4 ReTest example

As mentioned earlier, TDD is not a technique normally used in the development of
randomized algorithms, which depend on various random decisions made during their
execution. Thus, one of the goals of the ReTest framework is to make the use of this
technique feasible for these scenarios.
From the use of the proposed approach with the support of the ReTest framework, it is

possible to complement the development cycle of TDD as observed in Fig. 6. The steps of
this new cycle consist of:

1 Create a new test that fails in at least one of its executions;
2 Store information of the failed scenarios to enable the verification if the changes in

the production code make the failed scenario to pass;

Fig. 6 Adaptation of TDD to ReTest

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 19 of 31

3 Develop the simplest solution that makes the test suite run successfully for all
inputs;

4 Run the test cases several times including new random generators with new seeds
and with seeds that failed in previous test executions;

5 Refactor, if necessary, to provide a better internal structure for the final solution;

In this cycle, the steps of the original TDD, presented in section 2.2, are included. New
steps were added as extensions proposed by the use of the ReTest framework, in order
to ensure that TDD can be used as an application design technique and for generating
automated tests for randomized algorithms.
To illustrate the use of this TDD cycle, consider the creation of a method to generate an

array of “n” positions, with random numbers varying between 10 and -10, whose total sum
of its elements is zero, as described in Section 4.4. The following items describe the steps
used to develop this function using TDD. Due to space limitations, the code for each of the
steps will not be displayed and refactoring steps will be omitted. For more information,
see the code at https://github.com/andreivo/retest/blob/master/sources/retest/src/test/
java/initial/case01

(a) The first test asks the method to create an array with size 1. Since there is only one
valid response for this case, which is 0, it is not necessary to use any ReTest
annotations;

(b) It is written as the method implementation the return of a fixed value, and the test
is executed successfully;

(c) The second test introduced invoke the method passing the parameter to create a
size 2 array, initially checking only if the response has the appropriate array size. At
the first moment the test fails, because of the method in returning an array of size 1;

(d) As an initial implementation, an array of the size passed as a parameter is created
and a random value generated within the range of -10 to 10 is set for each position;

(e) When executed, the tests pass, but it is known that the validity of the response is
not being verified correctly;

(f) An auxiliary assertion method is then created to check the validity of the output
according to the requirements. This method checks if the array has the expected
size if the value of each element is within range of -10 to 10, and if the sum of the
elements is equal to zero, as shown in Listing 5;

Listing 5Method for evaluating rules

1 private void assertElements(int[] arr, int arraySize) {
2 int result = 0;
3 //verify if all
4 for (int i = 0; i < arraySize; i++) {
5 assertTrue(arr[i] >= -10 && arr[i] <= 10);
6 result = result + arr[i];
7 }
8
9 //verify the sum

10 assertEquals(0, result);
11 }

(g) The test code for n = 2 is then modified so that it uses the assertion method
created. The @ReTest annotation is used for this test method to configure the

https://github.com/andreivo/retest/blob/master/sources/retest/src/test/java/initial/case01
https://github.com/andreivo/retest/blob/master/sources/retest/src/test/java/initial/case01

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 20 of 31

Fig. 7 Result of using ReTest for 2-position array

framework to execute it 10 times. The Fig. 7 shows the result of the test execution.
Note that in 3 out of 10 scenarios the test runs successfully. As it is known that the
implementation has not yet been performed, the information about the failed tests
should not be saved yet;

(h) The code is changed so that the last array value is not randomly generated, but is
the value that makes the sum to be equals to zero. The tests are run and now all
pass successfully;

(i) The test is then annotated with @SaveBrokenTestDataFiles and
@LoadTestFromDataFiles so that, from this point, on the information of failed
tests is stored and executed again, as can be seen in Listing 6; From this point the
test code for other methods is similar to this one, varying only the parameter “n”
passed to the function generateArrayWithSumZero() ;

Listing 6 Example of test method

1 @Test
2 @ReTest(10)
3 @SaveBrokenTestDataFiles(filePath = "/tmp/dataTest.csv")
4 @LoadTestFromDataFiles(filePath = "/tmp/dataTest.csv")
5 public void test2(@RandomParam Random r) {
6 int n = 2;
7 int[] result = ArrayFactory.generateArrayWithSumZero(r,

n);
8 assertElements(result, n);
9 }

(j) The third test added uses as parameter n = 3 so that an array of size 3 is generated.
This test already receives the @ReTest annotation to be repeated 10 times. When
performing the tests, some of the repetitions fail, because in some cases this
approach does not generate a valid response, as can be observed in Fig. 8;

(k) The TDD process follows by having all the test running in the 3-element array
generation scenario, and then placing the annotations so that failed executions are
stored and included in the regression tests;

(l) The process is repeated in the introduction of new tests with the parameter “n”
assuming the values 10, 100 and 1000. Figure 9 shows the execution of the tests for

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 21 of 31

Fig. 8 Result of using ReTest for 3-position array with previous tests

an array with 1000 elements, after successive changes in the algorithm being
developed;

From the example, it is possible to have a more concrete vision of how ReTest can
be used to support the use of TDD in the development of a randomized algorithm.
Note that test cases are gradually being introduced and implementation is also occurring
incrementally.
The first point to emphasize is that when a test that needs to be repeated is executed,

its execution is only considered correct when in all cases success is obtained. Note in
Fig. 6, for example, that some executions always execute successfully, not because the
implementation is correct, but because randomness leads to the correct solution in some
cases. In this case, the repetition functionality of the framework is important because in
each execution of the test suite it is possible to repeat the same test several times.
Another important point is in storing the seeds that generated failed test scenarios.

Although it has not been commented, in the development of the example, in some cases
modifications in code lead previous tests to fail in some scenarios. In this case, it was
important to have the same test scenarios executing again to make sure that the problem
was solved.

7 ReTest framework: a developer experience assessment
This section describes a study carried out to assess our approach from the software
developer experience, applying it through the ReTest framework.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 22 of 31

Fig. 9 Final result of the example with all tests running

Initially, the idea was to perform a comparative study to the development with TDD
without a previous knowledge of the proposed approach. However, in the first attempt
to conduct an experiment, most participants claimed that they did not know how to use
TDD to develop a randomized algorithm. Additionally, we also considered that a com-
parative study with participants using the proposed technique with and without ReTest
would not be fair since the framework automates the steps that would be manually
implemented without it. Based on that, we decided to perform a study to investigate
whether the proposed approach could be used successfully by developers, assessing their
experience when using it.

7.1 Goals

The purpose of this study is to assess some aspects such as ease of use, difficulties, use-
fulness, and benefits of this approach that allows the use of TDD in the development of
randomized algorithms supported by the ReTest framework from the viewpoint of soft-
ware developers in the context of the software design course at the INPE. In so doing, we
have investigated the following research questions:

RQ1: Does the proposed approach supported by ReTest framework can be efficiently
applied by less experienced developers?

RQ2: What were the main difficulties encountered by the developers using the
proposed approach?

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 23 of 31

Table 2 Participants background in terms of years of experience

Experience Group Min Mean Max StDev

Programming Group 1 01.0 03.0 05.0 1.58

Group 2 10.0 14.6 20.0 4.21

Java language Group 1 01.0 02.8 05.0 1.78

Group 2 02.0 09.8 16.0 5.76

RQ3: What are the benefits and drawbacks of the proposed approach from the point of
view of the developers?

RQ4: What is the usefulness of the proposed approach perceived by the developers?

7.2 Participants

Ten participants were selected among enrolled in graduate courses in the field of software
design at the National Institute of Space Research. As a requirement, in order to partic-
ipate in the study, the participant needs to have experience in programming using Java
language and knowledge of code annotations.
Despite they were master and Ph.D. students, most of the participants at that moment

works on industry and were doing the course as special students. During the analysis
of the results, we divided the 10 participants into two distinct groups, where 5 partici-
pants with experience less than 10 years were assigned to Group 1, and the remaining
5 with experience equal or greater than 10 years were assigned to the Group 2. Table 2
shows some statistics about participants background in terms of years of experience as
programmers; and years of experience with the Java Language.
As for participants expertise on TDD techniques, most of them—90% (9 on 10 partici-

pants)—had some experience with it. Nevertheless, all the participants received a training
about TDD in order to homogenize their knowledge. This training involved 16 hours of
theoretical classes and practical code exercises on the course of software design at the
INPE.

7.3 Instrumentation and procedures

When preparing the activities of the study we considered two key requirements: (a) an
algorithm that is easy to understand and develop; and (b) to ensure that everyone executes
the task based on TDD concepts.
After the training period, the participants had two weeks to perform the task of imple-

menting a randomized algorithm. This task was performed extra-class because of the lack
of an appropriate laboratory for this activity. The time was measured by the participants
themselves. To mitigate the risk of a wrong measurement, we elaborated a procedure to
assist the participants during their activities. The procedure was presented to them as
follows:

• Set aside a time between 1 and 2 hours when you can perform the task without
interruption and seek a quiet environment where you can focus on the task.

• Use a time marker (stopwatch) and start timing the task at that time. The accuracy of
the time marking can be in minutes.

• If there are unavoidable interruptions during the task, stop the time and resume
when you return. Record how long you needed to interrupt your task (this will be
asked later in the questionnaire).

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 24 of 31

• Stop and record the time by the time you complete all necessary steps and tests.
Theminimum time per phase was not defined because this is a metric that was searched

in the study. After completion of the tasks, the participants had to fill a questionnaire to
answer about their experience. In the first part of the questionnaire, the participants had
to answer the following topics regarding the execution of the task:

• the time spent to complete the task (without interrupt time);
• the activity had to be interrupted, and why;
• the difficulties to complete the task;
• additional information was necessary and what kind of information.

In the last part of the questionnaire, the participants had to highlight the benefits and
drawbacks of the proposed approach based on their experience. In addition, they needed
to report whether the framework could be used in other applications.There was also an
open text field on this form in which participants could use to add any other comments.
To answer the research question RQ1, we have considered the amount of time spent

completing the task by each of the participants, who were divided into two groups accord-
ing to their professional experience. RQ2, RQ3, and RQ4 are answered by means of the
analysis of the participants’ answers to the other questions in the questionnaire.

7.4 Implementation task

The implementation task was based on the illustrative example presented in the
Section 4.4. That is, a method to generate an array of “n” positions, with random numbers
ranging from -10 to 10, whose total sum of elements will be always zero (0). This method
has an input parameter the size of the array that will be generated, parameter “n” and a
Random object (which must be used by the method to generate random numbers). In this
problem, non-determinism is represented by the Random object, which at each execution
will have a different and undetermined seed.
In this task, the participants should develop this function using TDD and the pro-

posed approach with ReTest framework. The following instructions were presented to the
participants as the algorithm to be implemented:

(1) Generate an integer random number between -10 and 10 using the expression
“random.nextInt (21) - 10” and assign it to each position of the array;

(2) Record the sum of all numbers generated for the array;
(3) While the total sum does not equal 0, do:

(a) Find a random array index (also using the Random class’s nextInt ()
method);

(b) Verify that the value of this index could be changed to a value between -10
and 10 that would make the sum closer to or equal to zero;

(c) Verify that the value of the array at that index has the same sign as the
sum and, if it does, generate a random number with the opposite sign
within the range of -10 and 10, assign the array to the index and update
the value of the sum (which will cause the sum value to closer to zero).

(4) Return the generated array.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 25 of 31

Aiming to ensure that everyone follows the TDD minimum steps, a simple roadmap
was presented to developers:

(1) Develop a test that ensures that the method creates an array of size 1. In this case,
there is only one valid return that is 0;

(2) Implement the method with expected return;
(3) The second test introduced should ensure that the method creates an array of size

2, initially checking only if the response has the appropriate array size. At first, the
test should fail because the method only returns the array of size 1;

(4) Introduce the implementation that creates an array with the size passed as a
parameter (in this case, the parameter is two) and receives a random value
generated within the range of -10 to 10. The test method should receive a
parameter of type Random annotated with @RandomParam to be passed to the
method being developed, as shown in Listing 7:
Listing 7 Example of test method for case study

1 @RunWith(ReTestRunner.class)
2 public class TestClass {
3 @Test
4 @ReTest(10)
5 public void testMethod(
6 Object result = nonDeterministicAlgorithm(random);
7 assertResult(result);
8 }
9 }

(5) Run the tests. At this point in development, the tests must be passing, but it is
known that the validity of the response is not being verified;

(6) Then create an assertion helper method to check the validity of the output. This
method checks if the array has the expected size, if the value of each element is in
the range of -10 to 10, and if the sum of the elements is equal to zero;

(7) Modify the test code to n = 2 so that it uses the assertion method you created. The
@ReTest annotation must be used for this test method to run 10 times;

(8) Change the method code so that the return is as expected and for all tests to run
successfully;

(9) Annotate the tests with @SaveBrokenTestDataFiles and @LoadTestFromDataFiles
so that from that point on, the failed tests are stored and run again;

(10) Create at least 3 more tests with @ReTest (10), for n equal to 3, 10 and 100, by
varying only the n parameter of the function, updating the implementation. If
necessary, create additional tests.

7.5 Results

All participants were able to complete the implementation task following the steps
outlined in the procedure. Below, the results are presented according to our research
questions.

7.5.1 Required experience (RQ1)

The results of the time spent (in minutes) per group are reported in Table 3. In this
table, we present average values (Mean), standard deviation (StDev), minimal value (Min),
median value (Median) andmaximal value (Max). By examining the time spent per group,

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 26 of 31

Table 3 Descriptive statistics in terms of minutes spent

Group Mean StDev Min Median Max

Group 1 91.2 27.8 47.0 90.0 120.0

Group 2 78.2 17.9 60.0 87.0 090.0

we noticed that the average times are close, and the difference between the two groups is
small.
Figure 10 presents the boxplots that allow us graphically comparing the spent time val-

ues per groups. As shown in the boxplots, the more experienced developers spent less
time on the implementation task. However, in order to verify whether such differences
between the two groups are significant, we compared the samples using t-Test. The result
of the t-Test (p-value = 0.3844) revealed no statistically significant differences at the 0.05
level of alpha. Therefore, this analysis corroborates with the statement that the use of the
Re-Test framework does not require wide programming experience. As aforementioned,
all participants were able to use it to complete their tasks.

7.5.2 Difficulties encountered (RQ2)

With regard to ease of use, 60% of the participants stated that the framework was easy to
use, while 40% of the participants stated a medium difficulty to use it, as shown in Fig. 11.
Moreover, five participants reported some type of difficulty. Their reports were analyzed
and their difficulties were classified as being related to the framework, to the algorithm
or to the IDE. Table 4 presents the main difficulties encountered by them. Checking the
results of the table, we can notice that only two of them found some type of difficulty with
the test framework.

7.5.3 Benefits and drawbacks (RQ3)

Table 5 presents the benefits that were highlighted by participants. The main benefit
highlighted by 90% of participants was the possibility of executing regression tests on ran-
domized algorithms. However, some participants recognized as benefits the possibility
of executing of TDD on randomized algorithms (60%), less complexity on a test of these
algorithms (70%), and the simplicity of use of the ReTest framework (50%).

Fig. 10 Development time per group

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 27 of 31

Fig. 11 Perceived ease of use

Table 6 presents the drawbacks perceived by participants. Only two participants
reported drawback of the approach: the difficulty in debugging source code, and increased
time to run the tests.

7.5.4 Perceived usefulness (RQ4)

At the end of the questionnaire, participants were inquired about the the usefulness of the
framework. Figure 12 presents a graph of the percentage of participants who judge that
can develop the proposed task using TDD without the help of the framework. Although
40% of the participants judge that have the ability to do the task without the ReTest
framework, 90% of the participants stated that the framework helped a lot in the imple-
mentation task, as shown in the Fig. 13. Moreover, some participants highlighted the
usefulness of the framework for other types of algorithms, such as: algorithms for aircraft

Table 4 Difficulties encountered

Type of difficulty Participants

Difficulties with the test framework 2

Difficulties with algorithm logic 1

Difficulties with the IDE 2

Table 5 Perceived benefits

Benefits Participants

Simplicity of use 5

Decreased complexity of randomized algorithm tests 7

Enables the use of TDD in randomized algorithms 6

Enables regression tests on randomized algorithms 9

Table 6 Perceived drawbacks

Drawbacks Participants

Difficulty in debugging source code 1

Increased time to run the tests 1

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 28 of 31

Fig. 12 Is it possible to make the proposed algorithm without ReTest?

performance, algorithms for load testing, algorithms for calculus in dynamic systems, and
algorithms for simulation models with unpredictable characteristics.

8 Discussion and limitations
To date, we carried out two studies towards to evaluate our approach for applying TDD
in the development of randomized algorithms. In the first study, we were able to evaluate
the feasibility of the proposed approach in a real case carrying out a single-subject exper-
iment which involved a randomized algorithm for creation and evolution of dynamic
graphs.
In single-subject experimentation, the main challenges and limitations are associated

with the internal and external threats to validity (Harrison 2000). Threats to internal valid-
ity concern analyses if, in fact, the treatment causes the effect (Wohlin et al. 2012). The
internal threats identified in this study refer to lack of statistical analysis and the effect of
subject learning in the experiment.
Statistical analysis usually does not apply in single-subject experiments because of the

lack of replications. The analysis performed in this experiment was based on observing
whether the effects of the treatment are important or not. However, an A-B-A design
could provide stronger evidences than just an A-B design. In the additional A Phase,

Fig. 13 TDD helped in the development of the proposed algorithm?

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 29 of 31

the treatment is removed, and another baseline phase entered to confirm the previ-
ous findings. For sure this type of design will be considered in our future single-subject
experiments.
Regarding the effect of learning, the outcome of the experiment could be affected

because the participant implemented the same algorithm twice, and in the second time
the problemwas already familiar. However, such an effect is minimized in this study, since
the second code was implemented almost a year and a half after the first implementation.
Threats to external validity is concerned with the generalization of the results (Wohlin

et al. 2012). Performing an experiment with a single-subject allowed us to evaluate our
approach from real and complex problem in machine learning field. Having a real prob-
lem, instead of a toy one, increased the external validity of the experiment, especially
with regard to algorithms with non-deterministic behavior which are rarely addressed in
software engineering research. Ideally, evaluation studies should involve realistic projects
with various subjects, and rigor to ensure reliability on outcomes derived from the treat-
ment that was applied (Sjoberg et al. 2007). However, comparative group experiments
can be time-consuming, expensive, and difficult to control mainly when involving vari-
ous subjects. Moreover, many tasks are constructed to be small toy examples in order to
observe the effects of the treatment within a short period of time (Harrison 2005). The
biggest challenge to evaluate our approach, however, has been to find expert developers
in the development of random or non-deterministic algorithms. The single participant of
this study had the appropriate developer profile for the experiment and a real case to be
applied our approach.
In the second study, we were able to assess the using the ReTest framework from devel-

oper experience. The purpose of the study was not to compare our approach with any
other since we find out that most developers did not know how to apply TDD in random-
ized algorithms without a previous knowledge of the patterns. However, the proposed
task was adequate to assess the use of the ReTest framework. Proper use of the framework
requires knowledge in applying TDD and design patterns which is a fundamental prereq-
uisite for TDD. Such requirements were filled with the training performed. Certainly, the
simple task and the roadmap provide to developers also helped the participants to com-
plete their tasks, even the developers without so much experience. Through this study, we
found that most developers recognized the usefulness of the framework, reporting more
benefits than drawbacks. And, only two participants reported difficulties properly using
the framework.

9 Conclusion
Themain contribution of this paper is to present an approach to allow the use of the TDD
as development and design technique of applications involving randomized algorithms,
specifically when several random choices need to be made during its execution. The pro-
posed approach consists of an extension of TDD to enable its application for algorithms
with non-deterministic characteristics, based on a set of software patterns to guide the
application of this approach. In addition, a testing framework called ReTest was developed
to support such algorithms in the Java programming language.
Two studies were carried out to assess the feasibility of the proposed approach applied

in an algorithm implementation involving multiple random decisions in sequence, and to
assess the use of the Re-Test framework from the point of view of the developers.

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 30 of 31

In the first study, the results of the single-subject experiment suggest that it is possible
to find more bugs with the proposed approach because their patterns enable the use of
TDD in random or non-deterministic algorithms, something that up to now had not been
used. Consequently, these types of algorithms can be now covered by unit tests, including
regression tests. The results also suggest that the design of randomized algorithms can
be improved with the proposed approach. And, the maintainability of the algorithm was
another improvement aspect identified in this experiment.
In the second study on the developers’ perceptions, the results suggest that the ReTest

framework is easy to use and usefulness in the opinion of the majority of participants who
used it. Also, we found that despite the difficulties, all participants were able to complete
the task using the proposed approach based on provided documentation.
It is worthwhile stressing that both studies results are not intended to be conclusive

statements because of their limitations and the threats to validity. Thus, all of the results
reported in this paper must be confirmed with further research.
Until now the results were satisfactory and indicated that the strategy is quite promis-

ing. However, further investigations are needed to verify whether such findings can be
extended to cases involving (i) more complex tasks that better reproduce the needs and
reality of the developers; (ii) another type of randomized algorithms in other research
fields; and (iii) the measurement of objective variables to better evaluate the ReTest
framework.

Endnotes
1 https://github.com/sandyporto/DynamicCommunities
2 https://github.com/sandyporto/DynamicCommunities/blob/master/Erros.dat

Abbreviations
ART: Adaptive Random Testing; CEMADEN: Centro Nacional de Monitoramento e Alertas de Desastres Naturais; INPE:
Instituto Nacional de Pesquisas Espaciais (National Institute of Space Research); ReTest: Random Engagement for Test;
RTS: Regression Test Selection; TDD: Test-Driven Development; UNIFESP: Instituto de Ciencias e Tecnologia, Universidade
Federal de São Paulo; XP: Extreme Programming

Funding
This article has no funding.

Availability of data andmaterials
The datasets supporting the conclusions of this article are available in the GitHub repository, https://github.com/
andreivo/retest and https://github.com/sandyporto/DynamicCommunities.

Authors’ contributions
AASI: Development of the approach; Framework development; bibliographic research in TDD; design, conduction, and
analysis of the second study; lead the paper writing. EMG: Development of the approach; advised in the development of
the framework and the single-subject experiment; design and conduction of the second study; collaboration in the
paper writing. SMP: Development of the dynamic communities algorithm; bibliographic research in randomized
algorithms; perform the single-subject experiment; collaboration in the paper writing. JC: Review of experimental
software engineering concepts; collaboration in the paper writing. MGQ: Advised in the development of the
single-subject experiment; bibliographic research in randomized algorithms; collaboration in the paper writing. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN), Estrada Dr. Altino Bondensan, 500 -
Coqueiro, 12247-016 São José dos Campos - SP, Brazil. 2Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos
Astronautas, 1.758 - Jardim da Granja, 12227-010 São José dos Campos - SP, Brazil. 3Instituto de Ciencias e Tecnologia,

https://github.com/sandyporto/DynamicCommunities
https://github.com/sandyporto/DynamicCommunities/blob/master/Erros.dat
https://github.com/andreivo/retest
https://github.com/andreivo/retest
https://github.com/sandyporto/DynamicCommunities

Ivo et al. Journal of Software Engineering Research and Development (2018) 6:9 Page 31 of 31

Universidade Federal de São Paulo (UNIFESP), Avenida Cesare Monsueto Giulio Lattes, 1201 - Coqueiro, 12247-014 São
José dos Campos - SP, Brazil.

Received: 19 February 2018 Accepted: 22 August 2018

References
Agrawal H, Horgan JR, Krauser EW, London S (1993) Incremental regression testing. In: Proceedings of the Conference on

Software Maintenance. ICSM ’93. IEEE Computer Society, Washington. pp 348–357. http://dl.acm.org/citation.cfm?id=
645542.658149

Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M, Harrold MJ, Mcminn P (2013) An orchestrated
survey of methodologies for automated software test case generation. J Syst Softw 86(8):1978–2001

Astels D (2003) Test Driven Development: A Practical Guide. Prentice Hall Professional Technical Reference
Bach J, Schroeder PJ (2004) Pairwise testing: A best practice that isn’t. In: 22nd Annual Pacific Northwest Software Quality

Conference. pp 180–196. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.3811
Baresi L, Young M (2001) Test oracles. Technical report. University of Oregon, Dept. of Computer and Information Science,

Eugene
Beck K (2002) Test Driven Development. By Example (Addison-Wesley Signature). Addison-Wesley Longman, Amsterdam,

Amsterdam
Beck K, Andres C (2004) Extreme Programming Explained: Embrace Change. 2nd edn. Addison-Wesley Professional
Beck K, Gamma E (2000) More java gems. Cambridge University Press, New York. Chap. Test-infected: Programmers Love

Writing Tests. http://dl.acm.org/citation.cfm?id=335845.335908
Chen Y-F, Rosenblum DS, Vo K-P (1994) Testtube: A system for selective regression testing. In: Proceedings of the 16th

International Conference on Software Engineering. ICSE ’94. IEEE Computer Society Press, Los Alamitos. pp 211–220.
http://dl.acm.org/citation.cfm?id=257734.257769

Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to Algorithms. 2nd edn. The MIT Press
Dunlop DD, Basili VR (1982) A comparative analysis of functional correctness. ACM Comput Surv 14(2):229–244
Elva R (2013) Detecting semantic method clones in java code using method ioe-behavior. Doctor of philosophy (ph.d.),

College of Engineering and Computer Science - University of Central Florida. http://stars.library.ucf.edu/cgi/
viewcontent.cgi?article=3620&context=etd

Fagerholm F, Münch J (2012) Developer experience: Concept and definition. In: Proceedings of the International
Conference on Software and System Process. IEEE Press. pp 73–77

Floyd RW (1967) Nondeterministic algorithms. J ACM 14(4):636–644
Freeman S, Pryce N (2009) Growing Object-Oriented Software, Guided by Tests. 1st edn. Addison-Wesley Professional
Freeman S, Mackinnon T, Pryce N, Walnes J (2004) Mock roles, not objects. In: Companion to the 19th Annual ACM

SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications. OOPSLA ’04. ACM,
New York. pp 236–246. http://doi.acm.org/10.1145/1028664.1028765

Galbraith SD (2012) Mathematics of Public Key Cryptography. 1st edn. Cambridge University Press, New York
Guerra E, Aniche M (2016) Chapter 9 - achieving quality on software design through test-driven development. In: Mistrik I,

Soley R, Ali N, Grundy J, Tekinerdogan B (eds). Software Quality Assurance. Morgan Kaufmann, Boston. pp 201–220
Harrison W (2000) N=1: an alternative for software engineering research. In: Beg, Borrow, or Steal: Using Multidisciplinary

Approaches in Empirical Software Engineering Research, Workshop, vol 5. Citeseer. pp 39–44
Harrison, W (2005) Skinner wasn’t a software engineer. IEEE Softw 22(3):5–7
Harrold MJ, Souffa ML (1988) An incremental approach to unit testing during maintenance. In: Proceedings. Conference

on Software Maintenance, 1988. pp 362–367
Hartmann J, Robson DJ (1990) Techniques for selective revalidation. IEEE Softw 7:31–36
Ivo A, Guerra EM (2017) A set of patterns to assist on tests of non-deterministic algorithms. In: Proceedings, Vancouver.

Conference on Pattern Languages of Programs, 24. (PLoP)
Ivo AAS, Guerra EM (2017) Retest: framework for applying tdd in the development of non-deterministic algorithms. In:

Silva TSd, Estácio B, Kroll J, Fontana RM (eds). Agile Methods: 7th Brazilian Workshop, WBMA 2016, Curitiba, Brazil,
November 7-9, 2016. Springer, Curitiba-Brazil. pp 72–84. https://doi.org/10.1007/978-3-319-55907-0_7

Kim J-M, Porter A, Rothermel G (2000) An empirical study of regression test application frequency. In: Proceedings of the
2000 International Conference on Software Engineering, 2000. pp 126–135

Mackinnon T, Freeman S, Craig P (2001) Extreme programming examined. Addison-Wesley Longman Publishing Co., Inc.,
Boston. Chap. Endo-testing: Unit Testing with Mock Objects. http://dl.acm.org/citation.cfm?id=377517.377534

Martin RC (2003) Agile Software Development: Principles, Patterns, and Practices. Prentice Hall PTR, Upper Saddle River
Porto S, Quiles MG (2014) A methodology for generating time-varying complex networks with community structure. In:

Murgante B, Misra S, Rocha AMAC, Torre C, Rocha JG, Falcão MI, Taniar D, Apduhan BO, Gervasi O (eds).
Computational Science and Its Applications – ICCSA 2014. Springer, Cham. pp 344–359

R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna. https://www.R-project.org/

Rothermel G, Harrold MJ (1997) A safe, efficient regression test selection technique. ACM Trans Softw Eng Methodol
6(2):173–210

Sjoberg DI, Dyba T, Jorgensen M (2007) The future of empirical methods in software engineering research. In: Future of
Software Engineering, 2007. FOSE’07. IEEE. pp 358–378

Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A (2012) Experimentation in Software Engineering. Springer
Xiaowen L (2013) Research on regression testing methods for industry applications. Int J Smart Home 7(6):111–122
Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: A survey. Softw Test Verif Reliab

22(2):67–120

http://dl.acm.org/citation.cfm?id=645542.658149
http://dl.acm.org/citation.cfm?id=645542.658149
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.3811
http://dl.acm.org/citation.cfm?id=335845.335908
http://dl.acm.org/citation.cfm?id=257734.257769
http://stars.library.ucf.edu/cgi/viewcontent.cgi?article=3620&context=etd
http://stars.library.ucf.edu/cgi/viewcontent.cgi?article=3620&context=etd
http://doi.acm.org/10.1145/1028664.1028765
https://doi.org/10.1007/978-3-319-55907-0_7
http://dl.acm.org/citation.cfm?id=377517.377534
https://www.R-project.org/

	Abstract
	Keywords

	Introduction
	Background
	Randomized algorithms
	Test-driven development (TDD)
	JUnit framework and its extension points

	Research method
	Approach to automate tests randomized logic
	Deterministic characteristic assertion
	Re-test with different seeds
	Recycle failed seeds
	Approach applied: an illustrative example

	Feasibility study: a single-subject experiment
	Dynamic graphs
	Dynamic communities algorithm
	Randomized algorithm
	Experimental design
	Results

	ReTest: test framework for randomized algorithms
	Overview
	ReTest annotation set
	Internal architecture and extension points
	ReTest example

	ReTest framework: a developer experience assessment
	Goals
	Participants
	Instrumentation and procedures
	Implementation task
	Results
	Required experience (RQ1)
	Difficulties encountered (RQ2)
	Benefits and drawbacks (RQ3)
	Perceived usefulness (RQ4)

	Discussion and limitations
	Conclusion
	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

