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Abstract

This survey reviews published materials related to the specific area of Search-Based
Software Engineering that concerns software maintenance and, in particular,
refactoring. The survey aims to give a comprehensive review of the use of
search-based refactoring to maintain software. Fifty different papers have been
selected from online databases to analyze and review the use of search-based
refactoring in software engineering. The current state of the research is
analyzed and patterns in the studies are investigated in order to assess gaps in
the area and suggest opportunities for future research. The papers reviewed are
tabulated in order to aid researchers in quickly referencing studies. The literature
addresses different methods using search-based refactoring for software maintenance, as
well as studies that investigate the optimization process and discuss components of the
search. There are studies that analyze different software metrics, experiment with multi-
objective techniques and propose refactoring tools for use. Analysis of the literature has
indicated some opportunities for future research in the area. More experimentation of
the techniques in an industrial environment and feedback from software developers is
needed to support the approaches. Also, recent work with multi-objective techniques
has shown that there are exciting possibilities for future research using these techniques
with refactoring. This survey is beneficial as an introduction for any researchers aiming to
work in the area of Search-Based Software Engineering with respect to software
maintenance and will allow them to gain an understanding of the current
landscape of the research and the insights gathered.

Keywords: Review, Search-based software engineering, Software maintenance,
Refactoring, Software metrics, Metaheuristic search, Multi-objective optimization

1 Introduction
SEARCH-Based Software Engineering (SBSE) concerns itself with the resolution of

software engineering optimization problems by restructuring them as combinatorial

optimization problems. The topic has been addressed and researched in a number of

different areas of the software development life cycle, including requirements

optimization, software code maintenance and refactoring, test case optimization and

debugging. While the area has existed since the early 1990s and the term “search-based

software engineering” was originally coined by (Harman & Jones, 2001), most work in

this area has been recent with the number of published papers on the topic exploding

in the last number of years (De Freitas & De Souza, 2011). Many of the papers in the

area of SBSE propose using an automated approach to increase the efficiency of the
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area of the software process looked at. Of the papers published concerning SBSE, a

relatively small amount is related to software maintenance. This is despite the fact that

it is estimated that the maintenance process takes 70–75% of development effort (Bell,

2000; Pressman & Maxim, 2000) of the development process.

Software code can fall victim to what is known as technical debt. For a software pro-

ject, especially large legacy systems, the structure of the software can be degraded over

time as new requirements are added or removed. This “software entropy” implies that

over time, the quality of the software tends towards untidiness and clutter. This degrad-

ation leads to negative consequences such as extra coupling between objects and in-

creased difficulty in adding new features. As a result of this issue, the developer often

has to restructure the program before new functionality can be added. This costs the

developer time as the overall development time for functionality is offset by this obliga-

tory cleaning up of code.

SBSE has been used to automate this process, thus decreasing time taken to restruc-

ture a program. SBSE can be applied to software maintenance by applying refactorings

to the code to reduce technical debt. Using a search-based algorithm, the developer

starts with the original program as a baseline from which to improve. The measure of

improvement for the program is an uncertain aspect and can be subjective and so can

be done in a variety of different ways. The developer needs to devise a heuristic, or

most likely a set of heuristics to inform how the structure of the program should be

improved. Often these improvements are based on the basic tenets of object-oriented

design, where the software has been written in an object-oriented language (these te-

nets consist of cohesion, coupling, inheritance depth, use of polymorphism and adher-

ence to encapsulation and information hiding). Additionally, there are other sources of

heuristics such as the SOLID principles introduced by (Martin, 2003). The developer

then needs to devise a number of changes that can be made to the software to refactor

it in order to enforce the heuristics. A refactoring action modifies the structure of the

code without changing the external functionality of the program. When the refactorings

are applied to the software they may either improve or impair the quality, but regard-

less, they act as tools used to modify the solution.

The refactorings are applied stochastically to the original software solution and then

the software is measured to see if the quality of the solution has improved or degraded.

A “fitness function” combining one or more software metrics is generally used to meas-

ure the quality. These metrics are very important as they heavily influence how the

software is modified. There are various metric suites available to measure characteris-

tics like cohesion and coupling, but different metrics measure the software in different

ways and thus how they are used will have a different affect on the outcome. The CK

(Chidamber & Kemerer, 1994) and QMOOD (Quality Model for Object-Oriented De-

sign) (Bansiya & Davis, 2002) metric suites have been designed to represent object-

oriented properties of a system as well as more abstract concepts such as flexibility.

Metrics can be used to measure single aspects of quality in a program or multiple

metrics can be combined to form an aggregate function. One common approach is to

give weights to the metrics on which heuristics are more important to maintain and

combine them into one weighted sum (although this weighting process is often subject-

ive). This weighting may be inappropriate since there is a possibility of metrics conflict-

ing with each other. For instance, one metric may cause inheritance depth to be
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improved but may increase coupling between the objects. Another method is to use Pa-

reto fronts (Harman & Tratt, 2007) to measure and compare solutions and have the de-

veloper choose which solution is most desirable, depending on the trade-offs allowed.

A Pareto front will indicate a set of optimal solutions among the available group and

will allow the developer to compare the different solutions in the subset according to

each individual objective used.

Using the metric or metrics to give an overall fitness value, the fitness function

of the search-based technique measures the quality of the software solution and

generates a numerical value to represent it. In the solution, refactorings are applied

at random and then the program is measured to compare the quality with the pre-

viously measured value. If the new solution is improved according to the software

metrics applied, this becomes the new solution to compare against. If not, the

changes are discarded and the previous solution is kept. This approach is followed

over a number of iterations, causing the software solution to gradually improve in

quality until an end point is reached and an optimal (or near optimal) solution is

generated. The end point can be triggered by various conditions such as number

of iterations executed or the amount of time passed. The particular approach used

by the search technique may vary depending on the type of search-based approach

chosen, but the general method consists of iteratively making changes to the solu-

tion, measuring the quality of the new solution, and comparing the solutions to

progress towards a more optimal result.

This survey aims to review and analyze papers that use search-based refactor-

ing. We apply certain inclusion and exclusion criteria to find relevant papers

across a number of research databases. We highlight different aspects of the re-

search to inspect and analyze through a set of research questions. We also iden-

tify related work and highlight the differences between those papers and this

survey (e.g. many of the related reviews investigate other areas of SBSE or differ-

ent aspects of refactoring like UML model refactoring or refactoring opportun-

ities. One study that looks at search-based refactoring is investigated in more

detail in Section 7.1 to compare similar aspects of the analysis conducted in the

paper). Each paper is reviewed and summarised to give an overview of any exper-

iments conducted and the results gained. The overview of the papers is organised

into five different groups to cluster together related studies. The papers are then

analyzed to address the research questions outlined and derive similarities and

differences between the studies. Various different aspects of the papers are ana-

lyzed as well as research gaps and possible areas for future work in the area.

The remainder of the survey is structured as follows. Section 2 gives an overview

of some of the more common search techniques used for refactoring in SBSE. Sec-

tion 3 gives an outline of how the survey is conducted, along with an outline of

aspects to be measured and analyzed, and introduces the research questions. Sec-

tion 4 gives a synopsis of the analyzed papers. Section 5 analyzes the papers

reviewed and measures patterns that can be derived from the work conducted in

the literature. Section 6 discusses and addresses the research questions outlined in

Section 3. Section 7 gives an overview of related work along with a discussion of

the differences and similarities. Section 8 looks at validity threats in the survey and

Section 9 concludes the survey.
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2 Search techniques
There are numerous different metaheuristic algorithms available to use in the SBSE

field. These methods are used to automate search-based problems through gradual

quality increases. Random search is used as a benchmark for most search-based meta-

heuristic algorithms to compare against. Although most metaheuristics use a non-

deterministic approach to making choices, the choice must be assessed for validity and

a fitness function is used to evaluate whether the search should continue from that

point or backtrack. Below, the most common metaheuristic algorithms used in the lit-

erature are discussed:

2.1 Hill climbing

Hill climbing (HC) is a type of local search algorithm. With the HC approach, a ran-

dom starting point is chosen in the solution, and the algorithm begins from that point.

A change is then made, and the fitness function is used to compare the two solutions.

The one with the highest perceived “quality” becomes the new optimum solution and

the algorithm continues in this way. Over time, the quality of the solution is improved

as less optimal changes are discarded and better solutions are chosen. Eventually, an

optimal or sub-optimal solution is reached with the same functionality but a better

structure. This is considered a fast algorithm in relation to the other metaheuristic

choices but, as with other local search algorithms, it has the risk of being restricted to

local optima. The algorithm may “peak” at a less optimal solution (akin to reaching a

peak after climbing a hill). There are two main types of HC search algorithm that differ

in one aspect. First-ascent HC is the simpler version of the algorithm, whereas

steepest-ascent HC has a slightly more sophisticated search method and is a superior

choice for quality. Other variations are stochastic HC (neighbors are chosen at random

and compared) or random-restart HC (algorithm is restarted at different points to ex-

plore the search space and improve the local optima reached). HC is one of the more

common search algorithms used in SBSE, and has similarities to other search tech-

niques. The HC technique may not produce solutions as effective as some others do,

but it does tend to find a suitable solution faster and more consistently (O’Keeffe &

Cinnéide, 2006).

2.2 Simulated annealing

Simulated annealing (SA) is a modification of the local search algorithm, used to ad-

dress the problem of being trapped with a locally optimum solution. In SA, the basic

method is the same as the HC algorithm. The metaheuristic checks stochastically be-

tween different variations of a solution and decides between them with a fitness func-

tion until it reaches a higher quality. The variation is that it introduces a “cooling

factor” to overcome the disadvantage of local optima in the HC approach. The cooling

factor adds an extra heuristic by stating the probability that the algorithm will choose a

solution that is less optimal than the current iteration. While this may seem unintuitive,

it allows the process to explore different areas of the search space, giving extra options

for optimization that would otherwise be unavailable. This probability is initially high,

giving the search the ability to experiment with different options and choose the most

desirable neighborhood in which to optimize. This is then generally decreased gradually
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until it is negligible. The probability given by the cooling factor is normally linked to a

“temperature” value that is used to simulate the speed in which the algorithm “cools”.

Although the SA process may come up with a better solution compared to the HC

process, HC is a lot more reliable as the SA process may struggle to settle on a

solution.

2.3 Genetic algorithms

Genetic algorithms (GAs) are a class of evolutionary algorithms (EAs) that, much like

SA, mimic a process used elsewhere in science, namely the reproduction and mutation

processes in genetics and natural selection. GAs use a fitness function to measure the

quality among a number of different solutions (known as “genes”) and prioritize them.

At each generation (i.e. each iteration of the search), the genes are measured to deter-

mine which are the “fittest”. Each generation, in order to introduce variation into the

gene pool, a proportion of the population is selected and used to breed the new gener-

ation of solutions. With this selection, two steps are used to create the new generation.

First, a crossover operator is used to create the child solution(s) from the parents se-

lected. The algorithm itself determines exactly how the crossover operator works, but

generally, selections are taken from each parent and spliced together to form a child.

Once the child solution(s) have been created, the second step is mutation. Again, the

mutation implementation depends on the GA written. The mutation is used to provide

random changes in the solutions to maintain variation in the selection of solutions and

prevent convergence. After mutation is applied to a selection of the child solutions, the

newly created solutions are inserted back into the gene pool. At this point the algo-

rithm calculates the fitness of any new solutions and reorders them in relation to the

overall set. Generally, a population size is specified, and this ensures that the weakest

solutions are weeded out of the gene pool each generation. This process is repeated

until a termination condition is reached.

2.4 Multi-objective evolutionary algorithms

When refactoring a software project, as with other areas of software engineering, there

are likely numerous conflicting objectives to address and optimize. A multi-objective al-

gorithm can be used to consider the objectives independently instead of having to com-

bine them into one overarching objective to improve. There are numerous EAs

available that are used for multi-objective problems, known as multi-objective evolu-

tionary algorithms (MOEAs). The downside to using multi-objective algorithms for

software refactoring over the mono-objective metaheuristic algorithms is that the extra

processing needed to consider the various objectives can cause an increase in the time

needed to generate a set of solutions. Another issue is that when a MOEA generates a

population of solutions, the “best solution” is up to the interpretation of the user.

Whereas a single-objective EA can rank the final population of solutions by a single fit-

ness value, there may be numerous possible choices in the MOEA population depend-

ing on which objective fitness is more important. On the other hand, this gives the user

multiple options depending on their desire or the situation.

Most MOEAs use Pareto dominance (Coello Coello, 1999) in order to restrict the

population of solutions generated. If, for a solution, at least one objective of that
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solution is better than in another solution and none of the remaining objectives are

worse, that solution is said to dominate the other solution. Therefore, a solution is

non-dominated unless another solution in the population dominates it. When Pareto

dominance is used to generate an optimal set of solutions, they can be inspected on a

Pareto front. When the number of objectives is less than or equal to three, the non-

dominated solutions can be visualized on the Pareto front. This allows the user to easily

visualize the state of the solutions according to each independent objective and choose

the most suitable one along the Pareto front. Multi-objective algorithms that are de-

signed to handle more than three objectives are generally referred to as many-objective

algorithms (Deb & Jain, 2013). These tend to avoid using only Pareto dominance as it

can have difficulty successfully handling more than three objectives (Jain & Deb, 2014).

As the amount of objectives to measure increases, it becomes more difficult to rank the

solutions into different fitness fronts (as an increasing amount become non-dominated,

which results in many of the solutions being given the same fitness rank). When this

happens, the multi-objective algorithm becomes less useful at discerning better popula-

tions of solutions. Table 1 lists MOEAs that use Pareto dominance to choose solutions.

For further information, a survey of MOEAs is given by (Coello Coello, 1999).

3 Survey outline
In this survey, we aim to aggregate information and patterns about the research that

have been conducted related to search-based refactoring for software maintenance and

the trends that have been uncovered. As such, we aim to answer the following

question:

“To what extent has search-based refactoring been studied in software maintenance?”

In order to address this, the following research questions have been introduced:

� RQ1: How many papers were published per year?

� RQ2: What are the most common methods of publication for the papers?

� RQ3: Who are the most prolific authors investigating search-based refactoring in

software maintenance?

� RQ4: What types of studies were used in the papers?

� RQ5: What refactoring approaches were used in the literature?

� RQ6: What search techniques were used in the refactoring studies?

� RQ7: What types of programs were used to evaluate the refactoring approaches?

Table 1 MOEAs That Use Pareto Dominance

MOEA Full Name Developers

DMOEA Dynamic Multiobjective Evolutionary Algorithm Yen and Lu (2003)

M-PAES Memetic-Pareto Archive Evolutionary Stategy Knowles and Corne (2000)

NGPA Niched Pareto Genetic Algorithm Horn et al. (1994)

NSGA-II Nondominated Sorting Genetic Algorithm II Deb et al. (2002)

PAES Pareto Archive Evolutionary Strategy Knowles and Corne (2000)

PDE Pareto-frontier Differential Evolution Abbass et al. (2001)

PESA Pareto Envelope-based Selection Algorithm Corne et al. (2000)

SPEA Strength Pareto Evolutionary Algorithm Zitzler and Thiele (1999)

SPEA2 Strength Pareto Evolutionary Algorithm 2 Zitzler et al. (2001)

Mohan and Greer Journal of Software Engineering Research and Development  (2018) 6:3 Page 6 of 52



� RQ8: What tools were used for refactoring?

� RQ9: What types of metrics were used in the studies?

� RQ10: What are the gaps in the literature and available research opportunities in

the area?

To answer these questions, we analyze and discuss similarities and patterns in the

studies investigated. The research questions are addressed in Section 5 by inspecting

the various aspects queried such as search techniques used, popular authors, relevant

conferences and journals and open source programs used in the studies.

Google Scholar, IEEE Xplore, ScienceDirect, Springer and Scopus were used to find

relevant papers by using the search string “search AND based AND software AND en-

gineering AND maintenance AND refactoring AND metaheuristic”. We used AND to

connect the keywords as using OR or a combination of the two would have been too

general, giving hundreds of thousands of results in Google Scholar. The search was

conducted by looking for the words anywhere in the article, rather than the alternative

of looking only within the article title or elsewhere. The most recent search was imple-

mented in September 2016. The time period for the search in which the papers were

published was unrestricted, therefore the period is for papers published up to and in-

cluding 2016. The amount of papers found in each search repository is given in Table 2.

Of the papers found with the search, the results were analyzed and reduced to only in-

clude the papers that were relevant to software maintenance and involved one of the

following:

� Refactoring with search-based techniques.

� Automated refactoring.

� Investigation of maintenance metrics with search-based techniques.

Likewise, the following papers were excluded:

� Papers that involved defect detection but not resolution.

� Literature reviews, theses, abstracts, tutorials, reports or posters.

� Papers that were written in a language other than English.

Although certain related areas captured in the search (such as modelling, defect de-

tection, software architecture, testing etc.) could have been excluded from the search to

reduce the number of hits, the papers were analyzed manually using the inclusion and

exclusion criteria due to the similar nature of many of the areas in order to ensure that

relevant papers weren’t lost from the review. Of the papers analyzed, 34 were found to

Table 2 Amount of Results in Each Repository

Search Repository Number Of Papers

Google Scholar 293

IEEE Xplore 21

ScienceDirect 24

Springer 27

Scopus 43
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be applicable. Accompanying this, 16 other relevant papers were found on Google

Scholar and the IEEE database by analyzing references, researcher profiles and by dis-

cussion with other researchers, as well as conducting similar searches. Overall, the

number of papers reviewed came to 50. Table 10 in the appendix gives a list of the papers,

as well as the authors and year published. Extra information about the papers surveyed is

given in the Additional file 1, as well as a list of literature reviews related to SBSE in general.

4 Refactoring in search-based software engineering
The different papers captured in the search are analyzed below. They have been further

categorised into five subsections to capture commonly recurring areas, although there

may be some overlap between a paper in one section with another section.

4.1 Refactoring to improve software quality

Ó Cinnéide and Nixon (1999a) developed a methodology to refactor software programs

to apply design patterns to legacy code. They created a tool to convert the design pat-

tern transformations into explicit refactoring techniques that can then be automatically

applied to the code. The tool, called DPT (Design Pattern Tool), was implemented in

Java and applied the transformations first to an abstract syntax tree that was used to

represent the code, before changes were applied to the code itself. The tool would first

work out the transformations needed to convert the current solution to the desired pat-

tern (in the paper a plausible precursor was chosen first). It then converted the pattern

transformations into a set of minipatterns. These minipatterns would then be further

decomposed, if needed, into a set of primitive refactorings. The minipatterns would be

reused if applicable for other pattern transformations.

The authors analyzed the (Gamma et al., 1994) patterns to determine whether a suit-

able transformation could be built with the applicable mini transformations. They

found that while the tool generally worked well for the creational patterns, structural

patterns and behavioral patterns caused problems. In a different paper (Cinnéide &

Nixon, 1999b), more detail was given on the tool and how it can be used to apply the

Factory Method pattern, and in another subsequent paper (Cinnéide, 2000), Ó Cinnéide

defined further steps of work to test the applicability of the tool. He defined plans to

apply the patterns to production software to test whether behavior is truly preserved

and to create a tool to objectively measure how suitably the pattern has been applied to

the software.

O’Keeffe and Ó Cinnéide (2003) continued to research in the area of SBSE relating to

software maintenance by developing a tool called Dearthóir. They introduce Dearthóir

as a prototype tool used to refactor Java code automatically using SA. The tool used

two refactorings, “pullUpMethod” and “pushDownMethod” to modify the hierarchical

structure of the target program. Again, the refactorings must preserve the behavior of

the program in order for them to be applicable. They must also be reversible in order

to use the SA method. To measure the quality of the solution, the authors employed a

small metric suite to analyze the object-oriented structure of the program. The metrics,

“availableMethods” and “methodsInherited” were measured for each class in the pro-

gram and a weighted sum was used to give an overall fitness value for the solution. A

case study was employed to test the effectiveness of the tool. A simple 6-class hierarchy
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was used for the experiment. The tool was shown to restructure the class design to im-

prove cohesion and minimize code duplication.

Further work (O’Keeffe & Cinnéide, 2004) introduced more refactorings and different

metrics to the tool. Along with method movement refactorings the ability to change a

class between abstract and concrete was introduced and to extract or collapse a sub-

class from an abstract class, as well as the ability to change the position of a class in

the hierarchy of the class design. A method was introduced to choose appropriate met-

rics to use in the metrics suite of the tool. The metrics used measured the methods

and classes of the solution, counting the number of rejected, duplicate and unused

methods as well as the number of featureless or abstract classes. Due to the possibility

for the metrics to conflict with each other they were then given dependencies and

weighted according to the authors’ judgment, as outlined in the method detailed before.

Another case study was used to detail the action of the tool and the outcome was eval-

uated using the value of the metrics before and after the tool was applied. Every metric

used either improved or was unchanged after the tool had been applied, indicating that

the tool had been successful in improving the structure of the solution.

O’Keeffe and Ó Cinnéide continued to work on automated refactoring by developing

the Dearthóir prototype into the CODe-Imp platform (Combinatorial Optimisation for

Design Improvement). They introduced it initially as a prototype automated design-

improvement tool (O’Keeffe & Cinnéide, 2006) using Java 1.4 source code as input. Like

Dearthóir, CODe-Imp uses abstract syntax trees to apply refactorings to a previously

designed solution, but it has been given the ability to implement HC (first-ascent or

steepest-ascent) as well as SA. They based the set of metrics used in the tool on the

QMOOD model of software quality (Bansiya & Davis, 2002). Six refactorings were

available initially, and 11 different metrics are used to capture flexibility, reusability and

understandability, in accordance to the QMOOD model. Each evaluation function is

based on a weighted sum of quotients on the set of metrics.

The authors then conducted a case study to test how effective each function and each

search technique is at refactoring software. The reusability function was found to not

be suitable to the requirements of search-based refactoring due to the introduction of a

large number of featureless classes. The other two evaluation functions were found to

be suitable with the understandability function being most effective. All search tech-

niques were found to produce quality improvements with manageable run-times, with

steepest-ascent HC providing the most consistent improvements. SA produced the

greatest quality improvements in some cases whereas first-ascent hill-climbing gener-

ally produced quality improvements for the least computational expenditure. They fur-

ther expanded on this work (O’Keeffe & Cinnéide, 2008a) to include a fourth search

technique (multiple-restart HC) and larger case studies. The functionality of the

CODe-Imp tool was also expanded to include six additional refactorings. Similar results

were found with the reusability function found to be unsuitable for search-based refac-

toring and all of the available search techniques found to be effective.

They subsequently (O’Keeffe & Cinnéide, 2007a) used the CODe-Imp platform to

conduct an empirical comparison of three methods of metaheuristic search in search-

based refactoring; multiple-ascent (as well as steepest-ascent) HC, SA and a GA. To

conduct the comparison, four Java programs were taken from SourceForge and Spec-

Benchmarks and the mean quality change was measured across the program solutions
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for each of the three metaheuristic techniques. These results were then normalized for

each metaheuristic technique and then compared against each other. They analyzed the

results to conclude that multiple-ascent HC was the most suitable method for search-

based refactoring due to the speed and consistency of the results compared to the other

techniques. This work was also expanded (O’Keeffe & Cinnéide, 2008b) with a larger

set of input programs, greater number of data points in each experiment and more de-

tailed discussion of results and conclusions.

At a later point, Koc et al. (2012) also compared metaheuristic search techniques

using a tool called A-CMA. They compared five different search techniques by using

them to refactor five different open source Java projects and one student project. The

techniques used were HC (steepest descent, multiple steepest descent and multiple first

descent), SA and artificial bee colony (ABC), as well as a random search for compari-

son. The results suggest that the ABC and multiple steepest descent HC algorithms are

the most effective techniques of the group, with both techniques being competitive

with each other. The authors suggested that the effectiveness of these techniques may

be due to their ability to expand the search horizon to find higher quality solutions.

Mohan, Greer and McMullan (Mohan et al., 2016) adapted the A-CMA tool to inves-

tigate different aspects of software quality. They used combinations of metrics to repre-

sent three quality factors; abstraction, coupling and inheritance. They then constructed

an experimental fitness function to measure technical debt by combining relevant met-

rics with influence from the QMOOD suite, as well as the SOLID principles of object-

oriented design. The technical debt function was compared against each of the other

quality factors by testing them on six different open source systems with a random

search, HC and SA. The technical debt function was found to be more successful than

the others, although the coupling function was also found to be useful. Of the three

searches used, SA was the most effective. The individual metrics of the technical debt

function were also compared to deduce which were more volatile.

O’Keeffe and Ó Cinnéide used steepest-ascent HC with CODe-Imp to attempt to

refactor software programs to have a more similar design to other programs based on

their metric values (O’Keeffe & Cinnéide, 2007b). The QMOOD metrics suite was used

to compare against previous results, and an overall fitness value was derived from the

sum of 11 different metrics. A dissimilarity function was evaluated to measure the ab-

solute differences between the metric values of the programs tested, where a lower dis-

similarity value meant the programs were more similar. CODe-Imp was then used to

refactor the input program to reduce its dissimilarity value to the target program. This

was tested with three open source Java programs, with six different tests overall (testing

each program against the other two). Two of the programs had been refactored to be

more similar to the targets, but for the third, the dissimilarity was unchanged in both

cases. The authors speculated that this was due to the limited number of refactorings

available for the program as well as the low dissimilarity to begin with. They further

speculated that the reason for the limited available refactorings was due to the flat hier-

archical structure in the program.

Moghadam and Ó Cinnéide (2011) rewrote the CODe-Imp platform to support Java

6 input and to provide a more flexible platform. It now supported 14 different design-

level refactorings across three categories; method-level, field-level and class-level. The

number of metrics had also been expanded to 28, measuring mainly cohesion or
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coupling. The platform was also given the option of choosing between using Pareto op-

timality or weighted sums to combine the metrics and derive fitness values.

Moghadam and Ó Cinnéide used CODE-Imp along with JDEvAn (Xing & Stroulia,

2008) to attempt to refactor code towards a desired design using design differencing

(Moghadam & Cinnéide, 2012). The JDEvAn tool is used to extract the UML models of

two solutions of code, and detect the differences between them. An updated version of

the code is created by a maintenance programmer to reflect the desired design in the

code and the tool uses this along with the original design to find the applicable changes

needed to refactor the code. The CODe-Imp platform then uses the detected differ-

ences to implement refactorings to modify the solution towards the desired model. Six

open source examples were used to test the efficiency of these tools to create the de-

sired solutions. The number of refactorings detected and applied in each program using

the above approach were collected, and in each case a high percentage of refactorings

were shown to have been applied.

Seng, Stammel and Burkhart (Seng et al., 2006) introduced an EA to apply possible

refactorings to a program phenotype (an abstract code model), using mutation and

crossover operators to provide a population of options. The output of the algorithm

was a list of refactorings the software engineer could apply to improve a set of metrics.

They used class level refactorings, noting the difficulty of providing refactorings of this

type that were behavior preserving. They tested their technique on the open source Java

program JHotDraw, using a combination of coupling and cohesion metrics to measure

the quality gain in the class structure of the program. For the purposes of the case

study, they focused on the “move method” refactoring. The algorithm successfully used

the technique to improve the metrics. They also tested the ability of the algorithm to

reorganize manually misplaced methods, and it was successfully able to suggest that

the methods are moved back to their original position.

Harman and Tratt (Harman & Tratt, 2007) argued how Pareto optimality can be used

to improve search-based refactoring by combining different metrics in a useful way. As

an alternative to combining different metrics using weights to create complex fitness

functions, a Pareto front can be used to visualize the effect of each individual metric on

the solution. Where the quality of one solution may have a better effect on one metric,

another solution may have an increased value for another. This allows the developer to

make an informed decision on which solution to use, depending on what measure of

quality is more important for the project in that instant. Pareto fronts can also be used

to compare different combinations of metrics against each other. An example was given

with the metrics CBO (Coupling Between Objects) and SDMPC (Standard Deviation of

Methods Per Class) on several open source Java applications.

4.2 Refactoring for testability

Harman (Harman, 2011) proposed a new category of testability transformation (used to

produce a version of a program more amenable to test data generation) called testabil-

ity refactoring. The aim of this subcategory is to create a program that is both more

suited to test data generation and improves program comprehension for the program-

mer, combining the two areas (testing and maintenance) of SBSE. As testability trans-

formation uses refactorings to modify the structure of a program the same technique
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can be used for program maintenance, although the two aims may be conflicting. Here

a testability refactoring will refer to a process that satisfies both objectives. Harman

mentioned that these two possibly conflicting objectives form a multi-objective sce-

nario. He explained that the problem would be well suited to Pareto optimal search-

based refactoring and also mentioned a number of ways in which testability transform-

ation may be suited to testability refactoring.

Morales et al. (2016) investigated the use of a multi-objective approach that takes into

consideration the testing effort on a system. They used their approach to minimize the

occurrence of five well known anti-patterns (i.e. types of design defect), while also

attempting to reduce the testing effort. Three different multi-objective algorithms were

tested and compared; NSGA-II, SPEA2 and MOCell. This approach was tested on four

open source systems. Of the three options, MOCell was found to be the metaheuristic

that provided the best performance.

Ó Cinnéide, Boyle and Moghadam (2011) used the LSCC (Low-level Similarity-based

Class Cohesion) metric with the CODe-Imp platform to test whether automated refac-

toring with the aid of cohesion metrics can be used to improve the testability of a pro-

gram. They refactored a small Java program with cohesive defects introduced. Ten

volunteers with varying years of industrial experience constructed test cases for the

program before and after refactoring, and were then surveyed on certain areas of the

program to discern whether it had become easier or harder to implement test cases for

them after refactoring. The results were ambivalent but generally there was little differ-

ence reported in the difficulty of producing test cases in the initial and final program.

The authors suggested that these unexpected results may stem from the size of the pro-

gram being used. They predicted that if a larger, more appropriate application was be-

ing used, then the refactored program may produce easier test cases. The programmers

surveyed also mentioned the use of modern IDE’s helped to reduce the issues with the

initial code and alleviated any predicted problems with producing test cases for the

program in this state.

4.3 Testing metric effectiveness with refactoring

Ghaith and Ó Cinnéide (2012) investigated a set of security metrics to determine how

successful they could be for improving a security sensitive application using automated

refactoring. They used the CODe-Imp platform to test the 16 metrics on an example

Java application by using them separately at first. After determining that only four of

the metrics were affected with the refactoring selection available, they were combined

together to form a fitness function to represent security. To avoid the problems related

to using a weighted sum approach to combining the metrics, they instead used a Pareto

optimal approach. This ensured that no refactoring would be chosen that would cause

a decrease in any of the individual metrics in the function. The function was then

tested on the Java program using first-ascent HC, steepest-ascent HC and SA. The re-

sults for the three searches were mostly identical except that SA caused a higher im-

provement in one of the metrics. Conversely, the SA solution entailed a far larger

number of refactorings than the other two options (2196 compared to 42 and 57). The

effectiveness of these metrics was also analyzed and it was discovered that of the 27%

average metric improvement in the program, only 15.7% of that improvement indicated
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a real improvement in its security. This was determined to be due to the security met-

rics being poorly formed.

Ó Cinnéide et al. (2012) conducted an investigation to measure and compare dif-

ferent cohesion metrics with the help of the CODe-Imp platform. Five popular co-

hesion metrics were used across eight different real world Java programs to

measure the volatility of the metrics. It was found that the five metrics that aimed

to measure the same property disagreed with each other in 55% of the applied

refactorings, and in 38% of the cases metrics were in direct conflict with each

other. Two of the metrics, LSCC and TCC (Tight Class Cohesion), were then stud-

ied in more detail to determine where the contradictions were in the code that

caused the conflicts. Different variations of the metrics were used to compare them

in two different ways This study was extended (Cinnéide et al., 2016) to use 10

real world Java programs. Two new techniques, exploring areas referred to as

Iterative Refactoring Agreement/Disagreement and Gap Opening/Closing Refactor-

ing, were used to compare the metrics and the number of metric pairs compared

was increased to 90 pairs. Among the metrics compared, LSCC was found to be

the most representative, while SCOM (Sensitive Class Cohesion) was found to be

the least.

Veerappa and Harrison (2013) expanded upon this work by using CODe-Imp to

inspect the differences between coupling metrics. A similar approach was used to

measure the effects of automated refactoring on four standard coupling metrics and to

compare the metrics with each other. Eight open source Java projects were used, with

all but one of the programs being the same as those used in Ó Cinnéide et al.’s experi-

ment. To measure volatility, they calculated the percentage of refactorings that caused

a change in the metrics, and from these a mean value was calculated across the eight

projects. The amount of spread between these values was calculated for each metric

using standard deviation, as well as the correlation values between each metric. This

experiment resulted in less divergence between metrics, with only 7.28% of changes in

direct conflicting, but in 55.23% of cases the changes were dissonant, meaning that

there was a larger chance that a change in one metric had no effect on another. They

also measured the effect of refactoring with the RFC (Response For Class) metric on a

cohesion metric and found that after a certain number of iterations, the cohesion will

continue to increase as the coupling decreases, minimizing the effectiveness of the

changes.

Simons, Singer and White (2015) compared metric values with professional opinions

to deduce whether metrics alone are enough to helpfully refactor a program. They con-

structed a number of software examples and used a selection of metrics to measure

them. A survey was then conducted and responded to by 50 experienced software engi-

neers. They were asked on their opinion of the quality of the solutions by asking

whether they agree or disagree that a solution was reusable, flexible or understandable.

The metrics were corresponded to the quality attributes and correlation plots were

produced to measure whether there was any correlation between the engineer’s opin-

ions and the metric values. There was found to be almost no correlation between the

two, leading the authors to suggest that metrics alone are insufficient to optimize soft-

ware quality as they do not fully capture the judgments of human engineers when

refactoring software.
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Vivanco and Pizzi (2004) used search-based techniques to select the most suitable

maintainability metrics from a group. They presented a parallel GA to choose between

64 different object-oriented source code metric. Firstly, they asked an experienced soft-

ware architect to rank the 366 components of a software system in difficulty, from 1 to

5. The GA was then run for the set of metrics in sequential and parallel, using C++ for

the GA and MPI to implement the parallel improvements. Metrics found to be more

efficient included coupling metrics, understandability metrics and complexity metrics.

Furthermore, the parallel program ran substantially faster than the sequential version.

Bakar et al. (2012a) attempted to outline a set of guidelines to select the best metrics

for measuring maintainability in open source software. An EA was used to optimize

and rank the set of metrics, which were listed in previous work (Bakar et al., 2012b).

An analysis was conducted to validate the quality model using the CK metric suite

(Chidamber & Kemerer, 1994) of Object-Oriented Metrics (also known as MOOSE –

Metrics for Object-Oriented Software Engineering). The CKJM tool proposed by (Spi-

nellis, 2005) was used to calculate the values of the CK metrics for the open source

software under inspection. These values were then used in the EA as ranking criteria in

selecting the best metrics to measure maintainability in the software product. This pro-

posed approach had not yet been empirically validated, and had presented the outcome

of ongoing research.

Harman, Clark and Ó Cinnéide (2013) wrote about the need for surrogate metrics

that approximate the quality of a system to speed up the search. If non-functional

properties of the system (e.g. if a mobile device is used) mean limited time or power,

then it may be more important for the fitness function to be calculated quickly or with

little computational effort, in which case approximate metrics will be more useful than

precise ones. The trade-off here is that the metrics will guide the search in the direction

of optimality while improving the performance of the search. This ability would be use-

ful in dynamic adaptive SBSE, where self-adaptive systems may take into account func-

tional as well as non-functional properties. Harman et al. had also discussed dynamic

adaptive SBSE elsewhere (Harman et al., 2012).

4.4 Refactoring to correct software defects

Kessentini et al. (2011) used examples of bad design to produce rules to aid in design

defect detection with genetic programming (GP), and then used these rules in a GA to

help propose sequences of refactorings to remove the detected defects. The rules are

made up of a combination of design metrics to detect instances of blob, spaghetti code

or functional decomposition design defects. Before the GA was used, a GP approach

experimented with different rules than can reproduce the example set of design defects,

with the most accurate rules being returned. Once a set of rules were derived, they

could be used to detect the number of defects in the correction approach. The GA

could then be used to find sequences of refactorings that reduce the number of design

defects in the program. The approach was compared against a different rules-based ap-

proach to defects detection with four open source Java programs and was found to be

more precise with the design defects found.

Further work with this approach to design smell (defect) correction was then investi-

gated (Kessentini et al., 2011; Ouni et al., 2013; Kessentini et al., 2012). First,
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(Kessentini et al., 2011) extended the experimental code base to six different open

source Java programs, with the results further supporting the approach. Ouni et al.

(2013) replaced the GA used in the code smell correction approach with a multi-

objective GA (NSGA-II). They used the previous objective function to minimize design

defects as one of two separate objectives to drive the search. The second objective used

a measure of the effort needed to apply the refactoring sequence, with each refactoring

type given an effort value by the authors. Kessentini, Mahaouachi and Ghedira (2012)

extended the original approach by using examples of good code design to help propose

refactoring sequences for improving the structure of code. Instead of generating refac-

toring rules to detect design defects and then using them to generate refactoring se-

quences with a GA, they used a GA directly to measure the similarity between the

subject code and the well-designed code. The fitness function used adapted the

Needleman-Wunsch alignment algorithm (a dynamic programming algorithm used to

efficiently find similar regions between two sequences of DNA, RNA or protein. It can

be used to efficiently compare code fragments) to increase the similarity between the

two sets of code, allowing the derived refactoring sequences to remove code smells.

Ouni et al. (2012) created an approach to measure semantics preservation in a

software program when searching for refactoring options to improve the structure.

They used a multi-objective approach with NSGA-II to combine the previous

approach for resolving design defects with the new approach to ensure that the

resolutions retained semantic similarity between code elements in the program.

The new approach used two main methods to measure semantic similarity. The

first method measures vocabulary based similarity by inspecting the names given to

the software elements and comparing them using cosine similarity. The other

method measures the dependencies between objects in the program by calculating

the shared method calls of two objects and the shared field accesses and combin-

ing them into a single function. An overall objective for semantics similarity is

derived from these measures by finding the average, and this is then used to help

the NSGA-II algorithm find more meaningful solutions. These solutions were ana-

lyzed manually to derive the percentage of meaningful refactorings suggested. The

results across two different open source programs were then compared against a

previous mono-objective and previous multi-objective approach, and, while the

number of defects resolved was moderately smaller, the meaningful refactorings

were increased.

Ouni, Kessentini and Sahraoui (2013) then explored the potential of using develop-

ment refactoring history to aid in refactoring the current version of a software project.

They used a multi-objective approach with NSGA-II to combine three separate objec-

tives in proposing refactoring sequences to improve the product. Two of the objectives,

improving design quality and semantics preservation, were taken from previous work.

The third objective used a repository of previous refactorings to encourage the use of

refactorings similar to those applied to the same code fragments in the past. The ap-

proach was tested on three open source Java projects and compared against a random

search and a mono-objective approach. The multi-objective algorithm had better qual-

ity values and semantics preservation than the alternatives, although this approach did

not apply the proposed refactorings to the code, leaving the refactoring sequences to be

applied manually by the developer.
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They further explored this approach (Ouni et al., 2013) by analyzing co-change that

identified how often two objects in a project were refactored together at the same time

and also by analyzing the number of changes applied in the past to the objects. They

also explored the effect of using refactoring history on semantics preservation. Further

experimentation on open source Java projects showed a slight improvement in quality

values and semantics preservation with these additional considerations. Another study

(Ouni et al., 2015) investigated the use of past refactorings borrowed from different

software projects when the change history for the applicable project is not available or

does not exist. The improvements made in these cases were as good as the improve-

ments made when previous refactorings for the relevant project were available.

Wang et al. (2015) combined the previous approach by (Kessentini et al., 2011) to re-

move software defects with time series in a multi-objective approach using NSGA-II.

The time series was used to predict how many potential code smells would appear in

future versions of the software with the selected solution applied. One of the objectives

was then measured by minimizing the number of code smells in the current version of

the software and estimated code smells in future versions of the software. The other

objective aimed to minimize the number of refactorings necessary to improve the soft-

ware. The approach was tested on four open source Java programs and one industrial

Java project. The programs were chosen based on the number of previous versions of

the software available, as the success of the approach would depend on this input. The

experimental results were compared against previous mono-objective and multi-

objective approaches and were found to have better results with less refactorings, but

also took longer to run.

Pérez, Murgia and Demeyer (2013) presented a short position paper to propose an

approach to resolving design smells in software. They proposed using the version con-

trol repository to find and use previously effective refactorings in the code and apply

them to the current design as “Refactoring Strategies”. Refactoring strategies are de-

fined as heuristic-based, automation-suitable specifications of complex behavior-

preserving software transformations aimed at a certain goal e.g. removing design smells.

They described an approach to build a catalogue of executable refactoring strategies to

handle design smells by combining refactorings that have been performed previously.

The authors claimed that, on the basis of their previous work and other available tools,

it would be a feasible approach.

Morales (2015) defined his aim to create an Eclipse plug-in to help with refactoring

in a doctoral paper. He aimed to compare different metaheuristic approaches and use a

metaheuristic search to detect anti-patterns in code. The plugin would then use auto-

mated refactoring to help remove the anti-patterns and improve the design of the code.

Morales et al. (2016) addressed this aim with the ReCon approach (Refactoring ap-

proach based on task Context). The approach leverages information about a developer’s

task, as well as one of three metaheuristics, to suggest a set of refactorings that affect

only the entities of the project in the developer’s context. The metaheuristics supported

are SA, a GA and variable neighborhood search (VNS). To test the approach, it was ap-

plied to three open source Java programs with sufficient information to deduce devel-

oper’s context. They adapted the approach to look for refactorings that can reduce four

types of anti-pattern; lazy class, long parameter list, spaghetti code, and speculative

generality. They also aimed to improve five of the quality attributes defined in the
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QMOOD model. The results showed that ReCon can successfully correct more than

50% of anti-patterns in a project using less resources than the traditional approaches

from the literature. It can also achieve a significant quality improvement in terms of re-

usability, extendibility and to some extent flexibility, while effectiveness reports a negli-

gible increment.

Mkaouer et al. experimented with combining quality measurement with robustness

(Mkaouer et al., 2014) to yield refactored solutions that could withstand volatile soft-

ware environments where importance of code smells or areas of code may change.

They used NSGA-II on six different open source Java programs of different sizes and

domains to create a population of solutions that used robustness as well as software

quality in the fitness measurement. To measure robustness, they used formulas to ap-

proximate smell severity (by prioritizing four different code smell types with scores be-

tween 0 and 1) and importance of code smells fixed (by measuring the activity of the

code modified via number of comments, relationships and methods) as well as measur-

ing the amount of fixed code smells. They also used a number of multi-objective per-

formance measurements (hypervolume, inverse generational distance and contribution)

to compare against other multi-objective algorithms. To analyze the effectiveness of the

approach and the trade-offs involved in ensuring robustness, the NSGA-II approach

was compared against a set of other techniques. For performance, it was compared to a

multi-objective particle swarm algorithm (as well as a random search to establish a

baseline), and was found to outperform or have no significant difference in perform-

ance in all but one project. It is suggested that since this was the smaller project, the

particle swarm algorithm may be more suited to smaller, more restrictive projects. It

was also compared to a mono-objective GA and two mono-objective approaches that

use a weighted combination of metrics (the same ones used above). It was found that

although the technique only outperformed the mono-objective approaches in 11% of

the cases, it outperformed them on the robustness metrics in every case, showing that

while it sacrificed some quality, the NSGA-II approach arrived at more robust solutions

that would be more resilient in a more unstable, realistic environment. This study was

extended (Mkaouer et al., 2016) by testing eight open source systems and one industrial

project, and by increasing the number of code smell types analyzed to seven.

They also experimented with the newly proposed evolutionary optimization method

NSGA-III (Mkaouer et al., 2014), which uses a GA to balance multiple objectives

through non-dominated sorting. They used the algorithm to remove detected code

smells in seven open source Java programs through a set of refactorings. They tested

the algorithm using different amounts of objectives (3, 5, 8, 10 and 15) to measure the

scalability of the approach to a multi-objective and many-objective problem set. These

results were then compared against other EAs to see how they scaled compared to

NSGA-III. The NSGA-III approach improved as the amount of objectives used was in-

creased, whereas the other algorithms did not scale as well. Three other MOEAs were

compared; IBEA, MOEA/D and NSGA-II. The other MOEAs were comparable when

the amount of objectives used in the search was smaller, but as the amount of objec-

tives used was increased, the results became less competitive with NSGA-III. The

search technique was also compared against two other techniques that used a weighted

sum of metrics to measure the software. These techniques performed significantly

worse than the NSGA-III approach. They extended the study (Mkaouer et al., 2015) by
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also experimenting on an industrial project and increasing the number of many-

objective techniques compared against from two to four. The number of objectives was

reduced to eight and changed to represent the quality attributes of the QMOOD suite

as well as other aggregate metric functions.

They also looked at many-objective refactoring with the NSGA-III algorithm for

remodularization (Mkaouer et al., 2015). They used four open source Java systems

in the experimentation along with one industrial system provided by Ford Motor

Company. They compared the technique against other approaches by looking at up

to seven objectives, using objectives from previous work to look at the semantic

coherence of the code and the development history along with structural objec-

tives. Again, the approach outperformed the other techniques and more than 92%

of code smells were fixed on each of the open source systems.

More recently, Ouni et al. (2015) adapted the chemical reaction optimization

(CRO) algorithm for search-based refactoring and explored the benefits of this ap-

proach. They compared this search technique against more standard optimization

techniques used in SBSE; a GA, SA and particle swarm optimization (PSO). They

combined four different prioritization measures to make up a fitness function that

aimed to reduce seven different types of code smells. The four measures were pri-

ority, severity, risk and importance. Each of the code smell types were given a pri-

ority score of 1 to 7 to represent their opinion of which smells are more urgent

from previous experience in the field. The inFusion tool (a design flaw detection

tool) was used to deduce severity scores to represent how critical a code smell is

in comparison with others of the same type. The risk score was calculated to rep-

resent riskier code as code that deviated from well-designed code. Code smells that

related to more frequently changed classes were considered more important as

code smells that hadn’t undergone changes were considered to have been created

intentionally. The approach was applied to five different open source Java programs

and was compared against a previous study and a variation of the approach that

didn’t use prioritization. The approach was superior using the relevant measures to

the other two solutions compared against it. It was also shown to give better solu-

tions in larger systems than the other optimization algorithms tested.

Amal et al. (2014) used an Artificial Neural Network (ANN) to help their approach

choose between refactoring solutions. They applied a GA with a list of 11 possible

refactorings to generate refactoring solutions consisting of lists of suggested refactor-

ings to restructure the program design. They then utilised the opinion of 16 different

software engineers, with programming experiences ranging from 2 to 15 years, to

manually evaluate the refactoring solutions generated for the first few iterations by

marking each refactoring as good or bad. The ANN used these examples as a training

set in order to develop a predictive model to evaluate the refactoring solutions for the

remaining iterations. Due to this, the ANN worked to replace the definition of a fitness

function. The approach was tested on six open source programs and compared against

existing mono-objective and multi-objective approaches, as well as a manual refactor-

ing approach. The majority of the suggested refactorings were considered by the users

to be feasible, efficient in terms of improving quality of the design and to make sense.

In comparison with the other mono-objective and multi-objective approaches, the

refactoring suggestions gave similar scores but required less effort and less interactions
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with the designer to evaluate the solutions. The approach outperformed the manual

refactoring approach.

4.5 Refactoring tools

Fatiregun, Harman and Hierons (2004) explored program transformations by experi-

menting with a GA and HC approach and comparing the results against each other as

well as a random search as a baseline. They used the FermaT transformation tool, and

the 20 transformations (refactorings) available in the tool, to refactor the program and

optimize its length by comparing lines of code before and after. The average fitness for

the GA was shown to be consistently better than the random search and the HC

search, while the HC technique was, for the most part, significantly better than the ran-

dom search.

DiPenta (2005) proposed another refactoring framework, Evolution Doctor, to handle

clones and unused objects, remove circular dependencies and reorganize source code

files. Afterwards, a hybridisation of HC and GAs is used to reorganize libraries. The fit-

ness function of the algorithm was created to balance four factors; the number of inter-

library dependencies, the number of objects linked to each application, the size of the

new libraries and the feedback given by developers. The framework was applied to

three open source applications to demonstrate its effectiveness in each of the areas of

design flaw detection and removal.

Griffith, Wahl and Izurieta (2011) introduced the TrueRefactor tool to find and re-

move a set of code smells from a program in order to increase comprehensibility.

TrueRefactor can detect lazy classes, large classes, long methods, temporary fields or

instances of shotgun surgery in Java programs and uses a GA to help remove them.

The GA is utilized to search for the best sequence of refactorings that removes the

highest number of code smells from the original source code. To detect code smells in

a program, each source file is parsed and then used to create a control flow graph to

represent the structure of the software. This graph can be used to detect the code

smells present. For each code smell type, a set of metrics are used to deduce whether a

section of the code is an instance of that code smell type. The tool contains a set of 12

refactorings (at class level, method level or field level) that are used to remove the code

smells. A set of pre conditions and post conditions are generated for each code smell

to ensure that they can be resolved beforehand. The paper used an example program

with code smells inserted to analyze the effectiveness of the tool. The number of code

smells of each type over the set of iterations was measured along with the measure of a

set of quality metrics. In both cases, the values improved initially before staying rela-

tively stable throughout the process. Comparison of initial and final code smells showed

that the tool removes a proportion of them and also metric values show that the surro-

gate metrics are improved. The tool is only able to generate improved UML representa-

tions of the code and not refactor the source code itself, and this restriction was

identified as an aim for future work.

5 Analysis
To address the research questions outlined in Section 3, each subsection analyzes the

relevant aspect of the papers.
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5.1 Papers published over time

Figure 1 shows the amount of papers published each year, going as far back as 1999.

From 1999 to 2008, the largest amount of papers published in a year is four. In 2009

and 2010, there are no papers published, but from 2011 there is an increased amount

of search-based refactoring research. From 2011 to 2016, there are at least four papers

published a year. The most prolific year for search-based refactoring research was 2012

with eight papers published that year. The years 2001, 2002, 2009 and 2010 are notable

for not having any search-based refactoring papers published. Overall, from 1999 to

2016, there is an average of three papers published per year. If we compare the popular-

ity of search-based refactoring research before 2010 with after, we can see that the aver-

age has increased from one paper a year to six. The earliest refactoring tool proposed

among the papers was DPT (Cinnéide & Nixon, 1999a), in 1999.

Figure 2 gives a look at the amount of papers that use each type of search technique

per year. In Fig. 2 GAs, GP and general evolutionary algorithms (GEAs) are encapsu-

lated as EAs and PSO and ABC are grouped together as swarm optimization algorithms

(SOAs). These are compared against the other search algorithms used (HC, SA, CRO

and VNS). Before 2003, there were no search algorithms involved in any of the pub-

lished papers. The earliest paper to use search techniques was “A Stochastic Approach

To Automated Design Improvement” (O’Keeffe & Cinnéide, 2003), with SA being used.

The earliest paper to actually compare search techniques, “Search-Based Software

Maintenance” (O’Keeffe & Cinnéide, 2006), wasn’t until 2006.

5.2 Types of paper

Figure 3 gives the different types of paper analyzed in the literature. All but one of the

papers were published in journals or featured in conferences. The other (Koc et al.,

2012) was included as a book section. Of the journal and conference papers, the major-

ity are from conferences. Table 3 gives the list of conferences that at least two of the

analyzed papers are from. GECCO has seven papers (Harman & Tratt, 2007; O’Keeffe

& Cinnéide, 2007a; Seng et al., 2006; Vivanco & Pizzi, 2004; Ouni et al., 2013; Mkaouer

et al., 2014; Mkaouer et al., 2014). This conference, which is concerned primarily with

EAs, contains more papers than conferences related to maintenance (CSMR, ICSM and

Fig. 1 Number of Papers Published Each Year
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SANER) and even SBSE (SSBSE), demonstrating how ubiquitous evolutionary computa-

tion is with search-based refactoring. The journals published in are listed in Table 4,

along with the number of papers published in each. The most widely published journals

are Empirical Software Engineering (Cinnéide et al., 2012; Cinnéide et al., 2016;

Mkaouer et al., 2016; Mkaouer et al., 2015) and the Journal of Systems and Software

(O’Keeffe & Cinnéide, 2008a; Mohan et al., 2016; Ouni et al., 2015; Morales et al.,

2016) with four papers apiece.

5.3 Authors

Figure 4 gives the number of papers each author has published. The majority of authors

have only published one paper. Of the remaining authors, six have published two pa-

pers. Only 11 of the 70 authors have published more than two papers. Table 5 lists

these authors and gives the number of papers published for each. Mel Ó Cinnéide has

published more papers than the other authors at 21. Only the top two authors have

Fig. 2 Number of Papers Using Each Type of Search Technique Per Year

Fig. 3 Types of Paper Analyzed
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published more than 10 papers. Between the two of them, Mel Ó Cinnéide and

Marouane Kessentini are authors on 33 of the 54 papers analyzed, with Ó Cinnéide

and Kessentini sharing authorship on four of the papers.

5.4 Types of study

Most of the studies in the papers were quantitative. Three were qualitative in comparison

to the 37 quantitative studies. A further 10 were discussion based papers with no experi-

mental portions. Of the quantitative papers, most of the studies tested different refactorings

approaches, but a number of papers (Harman & Tratt, 2007; Vivanco & Pizzi, 2004; Amal

et al., 2014) investigated other factors. Various studies examined the setup of the search ap-

proach. Amal et al. (2014) investigated the fitness function used in a GA to choose solu-

tions, by incorporating an ANN into the search. Harman and Tratt (2007) tested the Pareto

optimal approach to combine software metrics in a search. Vivanco and Pizzi (2004) used a

GA to test metrics and choose the most suitable ones to use (Bakar et al. (2012a) also pro-

posed a method to do this).

5.5 Refactoring approaches

In many cases, the studies conducted proposed and used tools in order to detect issues in

the code and of these tools some [Di Penta, 2005, Griffith et al., 2011] were used to find

specific issues, like god classes or data classes in the program. The studies are listed in

Table 6. One of the studies (Moghadam & Cinnéide, 2012) was used to resolve the issues

via refactoring, but used a different method to determine the steps needed to resolve them.

Two UML models were generated, one to represent the current solution and one to repre-

sent the desired solution. This was created with the assistance of the programmer. Using

these two models the refactorings needed to improve the program were then calculated

and could be applied. In this case the technique was concerned less with code smells de-

tected in the software and more with the desired structure of the solutions in the eyes of

the programmers themselves. This seems to isolate three main methods of automated

maintenance from the analyzed literature. There is the above method of working towards a

desired structure. There is the method where problems are first detected in the code and

then either refactoring options are generated in order to be applied manually (Kessentini

et al., 2011; Kessentini et al., 2011; Ouni et al., 2013; Kessentini et al., 2012; Ouni et al.,

2012; Ouni et al., 2013; Ouni et al., 2013; Ouni et al., 2015; Wang et al., 2015; Morales et

al., 2016; Mkaouer et al., 2014; Mkaouer et al., 2016; Mkaouer et al., 2015; Ouni et al.,

2015; Griffith et al., 2011) or the problems are addressed automatically (Di Penta, 2005).

Table 3 Number of Papers per Conference

Conference Number of Papers

Genetic and Evolutionary Computation Conference (GECCO) 7

European Conference on Software Maintenance and Reengineering (CSMR) 4

International Conference on Software Maintenance (ISCM) 3

Symposium on Search-Based Software Engineering (SSBSE) 3

International Conference on Software Analysis, Evolution, and Reengineering (SANER) 2

International Conference on Software Testing, Verification and Validation (ICST/ICSTVV) 2

International Symposium on Empirical Software Engineering and Measurement (ESEM) 2
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Finally, there is the method of using quality metrics to refactor the program stochastically

and work towards a better solution (O’Keeffe & Cinnéide, 2006; O’Keeffe & Cinnéide,

2004; O’Keeffe & Cinnéide, 2008a; O’Keeffe & Cinnéide, 2007a; O’Keeffe & Cinnéide,

2008b; Koc et al., 2012; Mohan et al., 2016; O’Keeffe & Cinnéide, 2007b; Ghaith &

Cinnéide, 2012; Cinnéide et al., 2012; Cinnéide et al., 2016; Veerappa & Harrison, 2013;

Fatiregun et al., 2004) or again, using this approach to suggest refactorings to apply

(Harman & Tratt, 2007; Seng et al., 2006; Mkaouer et al., 2014; Mkaouer et al., 2015).

5.6 Search techniques

Figure 5 identifies the number of papers that use each type of search technique, with GAs,

GP and GEAs again encapsulated as EAs and PSO and ABC encapsulated as SOAs.

Among the algorithms, the EAs were used the most, at 26 studies. EAs became more

prominent in the research after 2010, with three to four papers per year involving them,

whereas there had been six studies involving EAs altogether between 1999 and 2010. The

next most common technique, HC, was used in 14 studies, with SA being used in 11.

There has been a fairly consistent presence of HC and SA over the years. The largest

amount of studies looking at HC or SA was in 2007 at four. In comparison, there were four

studies involving EAs in both 2014 and 2015. The SOAs, together, were used in only five

studies. The SOAs have been more frequently investigated in recent years, with a paper in-

volving one of them in 2012, 2014, 2015 and 2016. CRO and VNS were used in one study

Table 4 Number of Papers per Journal

Journals Number of Papers

Empirical Software Engineering 4

Journal of Systems and Software 4

Software Quality Journal 2

ACM Transactions on Software Engineering and Methodology 1

Automated Software Engineering 1

Journal of Software Maintenance and Evolution: Research and Practice 1

Fig. 4 Number of Papers per Author
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Table 5 Number of Papers per Author

Authors Number of Papers

Mel Ó Cinnéide 21

Marouane Kessentini 16

Ali Ouni 8

Houari Sahraoui 7

Mark Harman 7

Mark O′ Keeffe 7

Slim Bechikh 6

Iman Hemati Moghadam 5

Kalyanmoy Deb 5

Wiem Mkaouer 5

Laurence Tratt 3

Table 6 Studies Proposing and Using Tools to Detect Issues in the Code

Authors [Ref] Year Title

Fatiregun et al. (2004) 2004 Evolving Transformation Sequences Using
Genetic Algorithms

O’Keeffe and Ó Cinnéide
(2004)

2004 Towards Automated Design Improvement
Through Combinatorial Optimisation

Di Penta (2005) 2005 Evolution Doctor: A Framework To Control
Software System Evolution

O’Keeffe and Ó Cinnéide
(2006)

2006 Search-Based Software Maintenance

O’Keeffe and Ó Cinnéide
(2007a)

2007 Getting The Most From Search-Based Refactoring

O’Keeffe and Ó Cinnéide
(2008b)

2007 Search-Based Refactoring: An Empirical Study

O’Keeffe and Ó Cinnéide
(2007b)

2007 Automated Design Improvement By Example

O’Keeffe and Ó Cinnéide
(2008a)

2008 Search-Based Refactoring For Software Maintenance

Griffith et al.
(2011)

2011 TrueRefactor: An Automated Refactoring Tool
To Improve Legacy System And Application Comprehensibility

Ghaith and Ó Cinnéide
(2012)

2012 Improving Software Security Using Search-Based Refactoring

Koc et al.
(2012)

2012 An Empirical Study About Search-Based Refactoring
Using Alternative Multiple And Population-Based
Search Techniques

Moghadam and Ó
Cinnéide (2012)

2012 Automated Refactoring Using Design Differencing

Ó Cinnéide et al.
(2012)

2012 Experimental Assessment Of Software Metrics Using Automated
Refactoring

Veerappa and Harrison
(2013)

2013 An Empirical Validation Of Coupling Metrics Using Automated
Refactoring

Mohan et al. (2016) 2016 Technical Debt Reduction Using Search Based
Automated Refactoring

Ó Cinnéide et al. (2016) 2016 An Experimental Search-Based Approach To
Cohesion Metric Evaluation
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each. Each of these studies (Morales et al., 2016; Ouni et al., 2015) are recent as well (2015

and 2016), suggesting a possibility for the CRO and VNS searches to be explored more in

future research.

Figure 6 gives the dispersion of the EAs between studies that use GAs, GPs and GEAs.

The majority of the EAs used are GAs, at 24 studies. The GP algorithm and GEA was only

used in three studies and two studies respectively. Three of the studies involved both GP and

a GA. A big reason for the prominence of the GA among the studies is that it is present

across the studies of (Kessentini et al., 2011; Kessentini et al., 2011; Kessentini et al., 2012),

(Mkaouer et al., 2014; Mkaouer et al., 2016; Mkaouer et al., 2014; Mkaouer et al., 2015;

Mkaouer et al., 2015) and (Ouni et al., 2013; Ouni et al., 2012; Ouni et al., 2013; Ouni et al.,

2013; Ouni et al., 2015; Ouni et al., 2015). This group of authors regularly used the GA in

their papers, amounting to 14 different instances among the 25. Of the 26 studies containing

EAs 12 used MOEAs. Figure 7 shows the dispersion of the SOAs between studies using

PSOs and ABCs. ABC was used in one study (Koc et al., 2012), but The PSOs were used

more frequently, with three studies (Mkaouer et al., 2014; Mkaouer et al., 2016; Ouni et al.,

2015).

Fig. 5 Types of Search Technique used in the Analyzed Papers

Fig. 6 Dispersion of Evolutionary Algorithms from Fig. 5
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Among the studies using search techniques, some were used to test or present an approach

proposed in the paper, and others compared different search techniques against each other.

As such, different papers using search techniques contained a different number of search

techniques within the paper. Figure 8 shows the number of papers that contained a certain

number of search techniques, ranging from no search techniques to the maximum amount

of four different techniques in one paper. 11 of the papers didn’t contain any search tech-

niques. The majority only used one, at 24 papers, although 15 other papers that did use

search techniques used more than one. Of these, 12 papers (O’Keeffe & Cinnéide, 2006;

O’Keeffe & Cinnéide, 2008a; O’Keeffe & Cinnéide, 2007a; O’Keeffe & Cinnéide, 2008b; Koc

et al., 2012; Mohan et al., 2016; Ghaith & Cinnéide, 2012; Morales et al., 2016; Mkaouer et

al., 2014; Mkaouer et al., 2016; Ouni et al., 2015; Fatiregun et al., 2004) directly compared the

Fig. 7 Dispersion of Swarm Algorithms from Fig. 5

Fig. 8 Number of Search Techniques Used/Analyzed in Each Paper
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different search techniques against each other to speculate on the most applicable. Only one

study (Ouni et al., 2015) looked at four separate search techniques.

Four of the papers O’Keeffe and Cinnéide, 2006, O’Keeffe and Cinnéide, 2007a, O’Keeffe

and Cinnéide, 2008b, Koc et al., 2012, focused mainly on comparing search techniques.

These studies compared HC with GAs, HC with SA or all three with each other. One

(Koc et al., 2012) also involved ABC by comparing it with HC and SA. In the studies, HC

seemed to outperform the other techniques. Although it had the possibility of being

trapped in local optima, the technique gave consistent results and was faster than other

techniques that would take time to gain traction. SA and GAs could give high quality re-

sults in certain cases but for both techniques, the results depend highly upon the config-

uration of the search beforehand. Therefore, it seems evident that while these options

may be useful, to get good results there will be overhead involved in finding the suitable

parameters that yield high quality results for the problem in question. In the study that in-

cluded the ABC search, it (along with the multiple steepest descent HC) did seem to be

more successful. However, as this is the only study to use the ABC technique, further

insight into the technique cannot be derived from the literature. Table 10 in the appendix

gives the search techniques, if any, used within each paper.

5.7 Input programs used

Figure 9 shows the different types of program used to test the approaches examined

among the studies. Most of the programs used are open source. The remaining programs

used consist of test programs developed for the study O’Keeffe and Cinnéide, 2003,

O’Keeffe and Cinnéide, 2004, Cinnéide et al., 2011, Simons et al., 2015, Fatiregun et al.,

2004, Griffith et al., 2011, in-house programs Koc et al., 2012, Vivanco and Pizzi, 2004

and industrial programs. Four studies Wang et al., 2015, Mkaouer et al., 2016, Mkaouer et

al., 2015, Mkaouer et al., 2015 used an industrial program by the Ford Motor Company,

referred to as JDI-Ford. As the vast majority of the frameworks used dealt with Java code,

Fig. 9 Types of Benchmark Program Used in Experimental Studies in the Analyzed Papers
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the open source programs used are in Java. Table 7 lists the open source programs used

among the papers, along with references to the studies that used them.

The project sizes are generally adequate for the experiments as they are large enough to

justify representation of a real project. The sizes of these projects generally tend to be tens

of thousands of lines of code with hundreds of classes. In the case of the test programs,

small programs are used or constructed to demonstrate the applicability of the program or

technique with an example. One study (O’Keeffe & Cinnéide, 2007a) deliberately kept the

programs smaller than 51 top-level classes. In contrast, another study (Di Penta, 2005) used

a large system with over one million lines of code.

5.8 Tools

There were a number of tools Cinnéide and Nixon, 1999a, O’Keeffe and Cinnéide, 2003,

Koc et al., 2012, Moghadam and Cinnéide, 2011, Fatiregun et al., 2004, Di Penta, 2005, Grif-

fith et al., 2011 proposed in the literature, using various different approaches to refactoring

code. They are listed in Table 8. While most of the seven tools were developed for Java

code, FermaT (Fatiregun et al., 2004) is used to provide more low-level changes with wide-

spectrum language (WSL) transformations. For one of the tools, TrueRefactor, plans were

expressed to adapt the tool to be applicable to multiple different programming languages

(Griffith et al., 2011). A number of the proposed tools identified design defects first before

attempting to resolve them. DPT (Cinnéide & Nixon, 1999a) was proposed to apply design

patterns to the code in an automated manner. It uses mini transformations built from refac-

torings to apply the patterns. Similarly, Evolution Doctor (Di Penta, 2005) is used to diag-

nose issues in the software first, before restructuring it to ameliorate those issues. Likewise,

TrueRefactor (Griffith et al., 2011) finds instances of five different types of code smells be-

fore finding refactorings to resolve them. Other tools O’Keeffe and Cinnéide, 2003, Koc et

al., 2012, Moghadam and Cinnéide, 2011, Fatiregun et al., 2004 use refactorings to improve

the code according to metric functions. Instead of analyzing the code for issues beforehand,

they refactor the code up front in order to resolve issues as they go along. A few of the pro-

posed tools were used in multiple papers. The A-CMA tool was proposed by (Koc et al.,

2012) and then adapted and used by Mohan, Greer and McMullan (Mohan et al., 2016).

The CODe-Imp tool was used in a myriad of studies O’Keeffe and Cinnéide, 2006, O’Keeffe

and Cinnéide, 2008a, O’Keeffe and Cinnéide, 2007a, O’Keeffe and Cinnéide, 2008b,

O’Keeffe and Cinnéide, 2007b, Moghadam and Cinnéide, 2011, Moghadam and Cinnéide,

2012, Cinnéide et al., 2011, Ghaith and Cinnéide, 2012, Cinnéide et al., 2012, Cinnéide et

al., 2016, Veerappa and Harrison, 2013. A precursor to CODe-Imp, DPT, was also present

in three different papers Cinnéide and Nixon, 1999a, Cinnéide and Nixon, 1999b, Cinnéide,

2000.

5.9 Metrics

Of the papers, there have been a number that have investigated O’Keeffe and Cinnéide,

2006, Mohan et al., 2016, O’Keeffe and Cinnéide, 2007b, Ghaith and Cinnéide, 2012, Cin-

néide et al., 2012, Cinnéide et al., 2016, Veerappa and Harrison, 2013, Vivanco and Pizzi,

2004, Bakar et al., 2012a or discussed Simons et al., 2015, Harman et al., 2013, Harman et

al., 2012 the metrics used in search-based approaches. Many of the programs analyzed in

the experiments and case studies conducted have been using Java (or one using C++
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Table 7 Open Source Test Programs Used in the Literature (and the Papers They are Used in)

GanttProject
(Moghadam & Cinnéide, 2012;
Morales et al., 2016;
Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013;
Kessentini et al., 2011;
Kessentini et al., 2011;
Ouni et al., 2013;
Kessentini et al., 2012;
Ouni et al., 2012;
Ouni et al., 2013;
Ouni et al., 2015;
Mkaouer et al., 2014;
Mkaouer et al., 2016;
Mkaouer et al., 2014;
Mkaouer et al., 2015;
Mkaouer et al., 2015;
Ouni et al., 2015;
Amal et al., 2014)

JHotDraw
(Harman & Tratt, 2007;
Mohan et al., 2016;
Moghadam & Cinnéide, 2012;
Seng et al., 2006;
Morales et al., 2016;
Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013;
Kessentini et al., 2012;
Ouni et al., 2013;
Ouni et al., 2015;
Mkaouer et al., 2014;
Mkaouer et al., 2016;
Mkaouer et al., 2015;
Ouni et al., 2015; Amal et al., 2014)

Xerces-J
(Kessentini et al., 2011;
Kessentini et al., 2011;
Ouni et al., 2013;
Kessentini et al., 2012;
Ouni et al., 2012;
Ouni et al., 2013;
Ouni et al., 2013;
Ouni et al., 2015;
Mkaouer et al., 2014;
Mkaouer et al., 2016;
Mkaouer et al., 2014;
Mkaouer et al., 2015;
Mkaouer et al., 2015;
Ouni et al., 2015;
Amal et al., 2014)

JFreeChart
(Veerappa & Harrison, 2013;
Ouni et al., 2013;
Ouni et al., 2015;
Wang et al., 2015;
Mkaouer et al., 2014;
Mkaouer et al., 2016;
Mkaouer et al., 2015;
Ouni et al., 2015;
Amal et al., 2014)

ArgoUML
(Morales et al., 2016;
Kessentini et al., 2011;
Kessentini et al., 2011;
Ouni et al., 2013;
Mkaouer et al., 2014;
Mkaouer et al., 2015)

Beaver
(O’Keeffe & Cinnéide, 2008a;
O’Keeffe & Cinnéide, 2007a;
O’Keeffe & Cinnéide, 2008b;
Koc et al., 2012;
Mohan et al., 2016;
O’Keeffe & Cinnéide, 2007b)

Apache Ant
(Mkaouer et al., 2014;
Mkaouer et al., 2016;
Mkaouer et al., 2014;
Mkaouer et al., 2015;
Amal et al., 2014)

Art of Illusion
(Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013;
Ouni et al., 2015;
Ouni et al., 2015)

Mango
(O’Keeffe & Cinnéide, 2007a;
O’Keeffe & Cinnéide, 2008b;
Koc et al., 2012;
Mohan et al., 2016;
O’Keeffe & Cinnéide, 2007b)

Spec-Check
(O’Keeffe & Cinnéide, 2006;
O’Keeffe & Cinnéide, 2008a;
O’Keeffe & Cinnéide, 2007a;
O’Keeffe & Cinnéide, 2008b;
O’Keeffe & Cinnéide, 2007b)

XOM
(Harman & Tratt, 2007;
Moghadam & Cinnéide, 2012;
Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013)

Azureus
(Kessentini et al., 2011;
Ouni et al., 2013;
Mkaouer et al., 2014;
Mkaouer et al., 2015)

JGraphX
(Moghadam & Cinnéide, 2012;
Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013)

QuickUML
(Kessentini et al., 2011;
Kessentini et al., 2011;
Ouni et al., 2013;
Kessentini et al., 2012)

JabRef
(Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013)

JRDF
(Cinnéide et al., 2012;
Cinnéide et al., 2016;
Veerappa & Harrison, 2013)

JTar
(Moghadam & Cinnéide, 2012;
Cinnéide et al., 2012;
Cinnéide et al., 2016)

Log4j
(Kessentini et al., 2011;
Ouni et al., 2013;
Mkaouer et al., 2016)

Rhino
(Mkaouer et al., n.d.;
Mkaouer et al., 2016;
Amal et al., 2014)

Apache XML-RPC
(Koc et al., 2012;
Mohan et al., 2016)

EAOP
(O’Keeffe & Cinnéide, 2007a;
O’Keeffe & Cinnéide, 2008b)

JFlex (Koc et al., 2012;
Mohan et al., 2016)

HTMLUnit
(Moghadam & Cinnéide, 2012;
Cinnéide et al., 2016)

JSON (Koc et al., 2012;
Mohan et al., 2016)

Mylyn (Morales et al., 2016;
Morales et al., 2016)

FindBugs (Wang et al., 2015) Grammatica (O’Keeffe &
Cinnéide, 2008b)

GRASS (Di Penta, 2005) Hibernate (Wang et al., 2015) jSMPP (Cinnéide et al., 2016)

KDE (Di Penta, 2005) Maven (Harman & Tratt, 2007) MySQL (Di Penta, 2005)
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(Vivanco & Pizzi, 2004)) and likewise, many of the metrics investigated have been related

to object-oriented behaviors. The most commonly used metrics were ones that measured

cohesion or coupling. Numerous different metrics are available to measure these qualities

and one study (Cinnéide et al., 2012) compared different cohesion metrics to determine

how similar they are, finding conflicting behaviors. Another study (Veerappa & Harrison,

2013) did a different comparison with coupling metrics. Some studies also used metrics to

represent the class structure of the program or for inheritance based observations. A study

was conducted (Vivanco & Pizzi, 2004) to compare 64 different metrics in an attempt to

determine the most effective ones for search-based optimization. The metrics included in

this study measured cohesion, coupling, size (number of methods, classes, lines of code

etc.), average size, ratios, complexity, depth of inheritance, comments, code reuse, naming

properties and more. The study found the cohesion metrics to be relevant, along with the

mean number of lines per method and method name length metrics, suggesting that

method names can affect the understanding of the code and that the size of the methods

can affect the maintenance of the code. One study (O’Keeffe & Cinnéide, 2006) used the

QMOOD model to represent the properties flexibility, reusability and understandability

with various weighted combinations of metrics to analyze which ones were most useful.

5.10 Research gaps and opportunities

Although significant work has been done to test various aspects of search-based mainten-

ance, there are numerous areas in which ongoing research is important in order to uncover

further innovations in the field. A major component of search-based maintenance and SBSE

as a whole is the metrics used to measure the quality of a program. Due to the highly subject-

ive nature of the quality of a software system, the metrics can have a huge impact on the

Table 8 List Of Automated Refactoring Tools With Brief Descriptions

Refactoring Tool [Ref] Year Purpose

A-CMA (Koc et al., 2012) 2012 Refactors Java bytecode using a selection of refactorings and metrics.

CODe-Imp (Moghadam &
Cinnéide, 2011)

2011 Automated refactoring tool containing numerous metrics and refactorings.

Dearthóir (O’Keeffe &
Cinnéide, 2003)

2003 Improves the design of an object-oriented program.

DPT (Cinnéide &
Nixon, 1999a)

1999 Applies design pattern transformations to Java programs.

Evolution Doctor
(Di Penta, 2005)

2005 Diagnoses reorganization opportunities and performs reengineering actions.

FermaT (Fatiregun
et al., 2004)

2004 Transformation tool for migration of legacy systems from assembly code to
higher level languages.

TrueRefactor (Griffith et
al., 2011)

2011 Identifies and removes five different design smells in Java.

Table 7 Open Source Test Programs Used in the Literature (and the Papers They are Used in)
(Continued)

Nutch (Mkaouer et al., 2016) PDE (Morales et al., 2016) Pixelitor (Wang et al., 2015)

Platform (Morales et al., 2016) Samba (Di Penta, 2005) Spec-Raytrace
(O’Keeffe & Cinnéide, 2006)

Wife (Ghaith & Cinnéide, 2012)

Mohan and Greer Journal of Software Engineering Research and Development  (2018) 6:3 Page 30 of 52



usefulness of the metaheuristic optimization technique, depending on how accurately they

portray quality in the eyes of the user. We need explicit metrics to guide the optimization of

a solution, but one developer’s view of quality may be different to another’s. Similarly, a pro-

grammer’s opinion of quality may change from project to project or over time. It would be

useful to have some form of explicit guidance on how to choose metrics for a search-based

optimization technique. What is the general view of software quality? How is this affected

from one programming language to another? Most previous research has been applied to

object-oriented programs and as such most fitness functions aim to improve object-oriented

behaviors like cohesion or flexibility. Even defining these aspects has proven to be difficult.

The field would gain valuable insight with research into developer opinions on software qual-

ity and on how technical debt is currently handled in the business environment.

Experimentation has been done to combine different software metrics together to create

more useful measures of quality, typically using either weighted sums or Pareto fronts. There

has also been some research into the applicability of certain metrics and into how metrics

that aim to measure similar aspects differ from each other. There is an opportunity for re-

search into using different combinations to improve the software in different ways, similarly

to how a human assisted tool can guide the improvement of the software design to a suitable

solution for the user.

Another important aspect to research is the applicability of these techniques in a

company environment. There are various things to consider here. Is the refactored code

actually useful for a maintenance programmer? There is a risk of the code being modi-

fied so much that it becomes incomprehensible. It has been suggested that the auto-

mated maintenance of code could possibly be viewed in a similar way to a compiler

that makes changes to the code behind the scenes that a programmer needs not worry

about. This further abstraction of the code may be the future of software design, as

metamodels become more involved in the coding aspect of the project development

cycle. In the analyzed literature, experimentation with industrial code has been lacking.

An increase in the use of industrial code and the opinions and expertise of experienced

software developers may help to simulate the company environment and uncover pos-

sible issues or problems to address. In addition to this, the majority of studies have

been concerned with the Java programming language. As this doesn’t accurately reflect

the range of programming languages used in the software environment, increased sup-

port for other programming languages is desirable.

Of the different search techniques used to address software maintenance, a large propor-

tion of the analyzed literature used EAs. Among these studies, a lot of recent work has

looked at multi-objective approaches. Multi-objective algorithms have been applied sparsely

to SBSE problems (Simons & Parmee, 2006; Yoo & Harman, 2007; Zhang et al., 2007; Si-

mons & Parmee, 2007; Finkelstein et al., 2008; Simons & Parmee, 2008; Wang et al., 2008;

Durillo et al., 2009; Maia et al., 2009; Maia et al., 2010; Bowman et al., 2010; Durillo et al.,

2011; Brasil et al., 2011; Colanzi et al., 2011; Assunção et al., 2011; Yoo et al., 2013) and only

recently have been used to address issues relating to maintenance. This indicates a promis-

ing evolution of automated maintenance in SBSE to generate more sophisticated solutions

to the problem area. The methods address the issue by allowing multiple aspects to be

taken into consideration. Further inspection of these techniques is required to discover the

potential of their use and derive ways to make the approach more practical for use in a soft-

ware development environment.
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6 Discussion
The survey aim was outlined in Section 3 when it was asked “To what extent has search-

based refactoring been studied in software maintenance?” In order to address this, 10 re-

search questions were proposed. RQ1 asked “How many papers were published per year?”

From 1999 to 2016, there is an average of three papers published per year, with a notable in-

crease in the amount being published after a drought in 2009 and 2010. Papers involving the

use of EAs also increased notably after 2010, along with studies of more obscure search tech-

niques (ABC, CRO, VNS). The largest amount of papers published in one year is eight pa-

pers, in 2012.

RQ2 asked “What are the most common methods of publication for the papers?” The

majority of papers were published in conferences with the evolutionary computation con-

ference GECCO publishing the most papers at seven. Only one paper was published as a

book section and 13 were published in journals in comparison to the 36 papers (72% of

those analyzed) that were published in conferences. The Empirical Software Engineering

journal and Journal of Systems and Software published the largest amount of journal pa-

pers at four each.

RQ3 asked “Who are the most prolific authors investigating search-based refactoring in

software maintenance?” 76% of the authors of the papers analyzed had only been involved

in one of the published papers, but 17 were authors in at least two. Eleven authors pub-

lished more than two papers each. Of these authors, Mel Ó Cinnéide and Marouane Kes-

sentini authored 33 of the papers between them, and worked together on four of them.

RQ4 was interested in the types of papers analyzed, asking “What types of studies were

used in the papers?” The majority of the papers (37) had quantitative studies, with three pa-

pers been qualitative studies and 10 being discussion papers with no experimental portions.

Most of the studies investigated refactoring approaches, but three of the quantitative studies

examined other aspects, such as the setup of the search process itself or the metrics used

for maintenance.

RQ5 asked “What refactoring approaches were used in the literature?” We isolated three

main methods for using search-based refactoring to improve the maintenance of software.

Design defects can be found in the code first and then removed, or the software can be

refactored up front to improve certain software metrics or sets of metrics. The less com-

mon approach used in only one study (Moghadam & Cinnéide, 2012) refactored software

towards a previously generated ideal software design using UML models. Other papers also

investigated the optimization process itself or tested the metrics available to measure

maintenance.

RQ6 was interested in “What search techniques were used in the refactoring studies?”

The majority of the studies involved EAs of some sort (mostly GAs). HC and SA were also

popular, being used in 14 studies and 11 studies respectively. Other search techniques were

used less frequently. PSO was used in three studies while ABC was experimented with in

one study. Studies also experimented with CRO and VNS in 2015 and 2016.

RQ7 asked “What types of programs were used to evaluate the refactoring approaches?” in

the experimentation. Most of the studies (33) used open source Java programs, but a selec-

tion of studies used test programs, in-house code or an industrial program called JDI-Ford.

Five of the studies used open source programs in conjunction with an in-house program or

the JDI-Ford industrial program. The program sizes were generally around tens of thousands

of lines of code.
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RQ8 asked “What tools were used for refactoring?” There were seven different refactoring

tools proposed and used among the studies. Most of them worked with Java code. Half of

the tools (Cinnéide & Nixon, 1999a; Di Penta, 2005; Griffith et al., 2011) used the design de-

fect approach to refactoring the code and the other half (O’Keeffe & Cinnéide, 2003; Koc et

al., 2012; Moghadam & Cinnéide, 2011; Fatiregun et al., 2004) used the approach that modi-

fied code based on a software quality measure. Of the tools, A-CMA was used in two papers,

and CODe-Imp was used in 12.

RQ9 asked “What types of metrics were used in the studies?” Most studies have used

metrics that examine object-oriented behaviours, cohesion and coupling in particular.

Some studies also used metrics to represent the class structure of a program or for inherit-

ance based observations. A number of the studies used metrics from the QMOOD metric

suite (Mohan et al., 2016; O’Keeffe & Cinnéide, 2007b) or the quality attributes constructed

by (Bansiya & Davis, 2002) using their QMOOD suite (O’Keeffe & Cinnéide, 2006;

O’Keeffe & Cinnéide, 2008a; O’Keeffe & Cinnéide, 2007a; O’Keeffe & Cinnéide, 2008b; Si-

mons et al., 2015; Ouni et al., 2015; Wang et al., 2015; Morales et al., 2016).

Finally, RQ10 asked “What are the gaps in the literature and available research opportun-

ities in the area?” Analysis of the literature and measurement of features of the research has

derived various observations of the developments in the area and isolated a few aspects

wherein there is an opportunity for future work and experimentation. Search-based refactor-

ing to automate software maintenance has been shown to work for experimental examples

and various tools have been developed to tackle the maintenance issue using automated

means, but more work needs to be done to measure empirical examples. It needs to be eval-

uated whether the search-based refactoring techniques that have been developed can carry

over to the business environment or whether real-world application scenarios will bring to

light further issues. Also, the metrics used to test the experimental approaches and aid with

refactoring could also be further examined. There have been a few studies investigating the

metrics used, but as they can be subjective, further inspection is necessary. Likewise, recent

work has experimented with the use of MOEAs for refactoring, and this is an exciting area

to investigate for further research.

7 Related work
There has already been a number of literature reviews related to the field of SBSE as well as

to various aspects of refactoring. Table 9 lists the other literature reviews related to SBSE or

refactoring.

Harman, Mansouri and Zhang wrote a general review of SBSE in 2009 (Harman et al.,

2009) before updating the review in 2012 (Harman et al., 2012). Another review of the area

of SBSE was done by (Harman et al., 2012). These reviews give an overview of the different

areas of SBSE and discuss research done in those areas up to that point in time. The litera-

ture review conducted in this survey sticks out from them as it focuses of SBSE in relation to

maintenance and, in particular, refactoring. Räihä wrote a report (Räihä, 2009) in 2009 that

was later released in a journal (Räihä, 2010) in 2010 that focused on the areas of architecture

design, software clustering, software refactoring and software quality. Although this review

focuses on similar areas to maintenance in SBSE and looks at refactoring, it was still a bit too

general in comparison with the current survey.

A few recent reviews were more focused and looked at various aspects of refactoring. Mis-

bhauddin and Alshayeb looked at UML model refactoring in 2015 (Misbhauddin &
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Alshayeb, 2015), concluding that UML model refactoring is a highly active area of research.

They noted that, while a number of approaches have been proposed in the area, there are still

some important issues and limitations to be addressed. Al Dallal also reviewed studies that

identified refactoring opportunities in 2015 (Al Dallal, 2015). They too concluded that the an-

alyzed area is a highly active area of research. They found that many of the studies used open

source systems and that they were limited in their size, recommending that further studies

involve industrial systems and systems of greater size to improve the generality of the results.

They also encouraged researchers to expand the coverage of their work to include more

refactoring activities. Mariani and Vergilio gave a review of search-based refactoring in 2017

(Mariani & Vergilio, 2017). They found that most of the search-based refactoring approaches

were more recent and that many of the studies used EAs. They also found that the most

commonly used refactorings were part of Fowler’s (Fowler, 1999) refactoring catalogue and

that the most common type of solution produced in the studies is a sequence of refactorings

to apply to the system.

Although the reviews of Misbhauddin and Alshayeb and of Al Dallal looked at as-

pects of refactoring, unlike this survey they did not focus on the use of search-based

refactoring applied to software maintenance. They looked at aspects of refactoring in

software engineering that was more abstract. Misbhauddin and Alshayeb investigated

the use of refactoring to modify UML models, as an aspect of model-driven engineer-

ing. This survey looks more directly at refactoring to improve aspects of the software

itself. Al Dallal investigates studies that identify opportunities for refactoring in object-

oriented code. Again, this is less distinct than the investigation in this paper that ana-

lyzes papers that provide actual refactoring solutions in software.

On the other hand, Mariani and Vergilio did look at search-based refactoring. However,

their study focuses only on the analysis of the studies, whereas this paper gives a detailed re-

view of the studies being analyzed. Thus, this survey can work as an introduction to the area

of SBSE relating to maintenance for researchers aiming to work in the area by giving an over-

view of the research actually conducted, as well as analyzing this research and drawing con-

clusions to derive gaps and possibilities for future work. On the other hand, the literature

review by Mariani and Vergilio is not a survey and as such is focused only on the analysis.

Not only is the review of the literature itself more in depth but the analysis also investigates

other aspects of the literature. There is a more in depth investigation of the tools used for

Table 9 Literature Reviews

Authors [Ref] Year Title

Al Dallal (2015) 2015 Identifying Refactoring Opportunities In Object-Oriented Code: A
Systematic Literature Review

Harman et al. (2009),
(2012)

2009/
2012

Search Based Software Engineering: A Comprehensive Analysis And Review
Of Trends Techniques And Applications/Search Based Software Engineering:
Trends, Techniques And Applications

Harman et al. (2012) 2012 Search Based Software Engineering: Techniques,
Taxonomy, Tutorial

Mariani and Vergilio
(2017)

2017 A Systematic Review On Search-Based Refactoring

Misbhauddin and
Alshayeb (2015)

2015 UML Model Refactoring: A Systematic Literature Review

Räihä (2009), (2010) 2009/
2010

An Updated Survey On Search Based Software
Engineering/A Survey On Search Based Software Engineering
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refactoring in the studies and also an examination into how metrics have been tested and dis-

cussed in the literature. This survey also investigates how the search techniques used in the

literature have changed over time. Similar aspects of the literature that have been investigated

in both papers are compared below in order to examine whether related trends have been

isolated across the two sets of analyzed papers.

7.1 Comparison

The review by Mariani and Vergilio (Mariani & Vergilio, 2017) analyzed some similar

aspects of the literature, finding related trends. They investigated the search techniques

used in the papers they examined. They observed that EAs and, in particular, the GA

were the most commonly used algorithms in the studies. They observed HC in 16 stud-

ies and SA in 10, and observed ABC and CRO in a small subset of studies (two and

one respectively). These trends within their review mirror this paper with EAs being

observed more commonly in both papers and HC and SA being observed in a similar

amount of studies, while other search techniques (e.g. ABC and CRO) are seen less

commonly.

Another aspect investigated in their review is the systems used in the experiments to

validate the approached proposed in the papers. Again, the observations they made

were similar. Many of the systems noted were open source Java programs. Four of the

papers they analyzed used the JDI-Ford program, and many of the most commonly

used Java programs analyzed in this paper were also analyzed in their review (for ex-

ample, Xerces-J, GanttProject, JHotDraw and JFreeChart were the most commonly

used open source programs among the studies in both papers). They listed a smaller

amount of open source Java programs tested, at 14, whereas in this paper there are 40

different programs used to test the approaches in the literature. They also investigated

the tools used for refactoring and found that the CODe-Imp tool was used in nine of

their studies, similarly to how 12 of the papers analyzed in this paper used the tool.

They examined the distribution of the studies analyzed per year, between 2005 and

2016. Multi-objective and many-objective approaches were observed from 2014, and

more papers were observed in general from 2010 onwards. Before 2010, there were at

most four papers per year whereas there were at least six papers analyzed per year

afterwards. Again, these trends are mirrored across their paper and this one. The ma-

jority of the papers analyzed in their review were from conferences, with the remaining

being published in journals (nine papers) or being from workshops (two papers). Lastly,

they investigated the most prominent researchers in the studies they analyzed, with the

seven authors they listed publishing more than five papers. Six of the seven authors are

also listed among the seven most prominent authors of the studies analyzed in this

paper, with the top two being noted in their paper and this one as authors that stand

out due to publishing at least 15 of the analyzed studies each. The one author among

the top seven in their survey who did not appear in this paper was Camelia Chisalita-

Cretu, who had published six of the papers they had analyzed.

8 Threats to validity
There are number of elements of how the literature search has been conducted that may

contribute threats to its validity. The methods used to address the aim of the survey “To

what extent has search-based refactoring been studied in software maintenance?” may
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provide a validity threat to the conclusions made. In this survey, we split the aim into a set

of 10 research questions, which each investigate some element of the papers analyzed. Each

research question is explored individually within the analysis and answered separately in

the discussion section. The papers captured in the search can also be affected by a number

of attributes related to how the search has been conducted. First, the search repository or

repositories used to find the papers may provide different results and could prevent the

identification of certain papers. To minimize this issue, we have used five popular search

repositories to look for papers related to the areas of focus. We also used a snowballing ap-

proach to finding further related papers by investigating references in the papers and con-

ducting similar searches.

Another element that could affect the papers returned is the search string used in the

search. The search string used in this survey was constructed in order to reduce the returned

results from hundreds of thousands of hits to something more feasible to sift through. As

such, some papers may have been filtered out of the search that could be relevant. This is

also somewhat appeased by the snowballing approach used so that other potentially related

papers will likely be found regardless. The time period used to filter the results can prove a

threat to the validity of the search, but the search used for this survey was conducted up to

September 2016, so many of the more recent results will not be filtered out. Finally, the

process used to search through and pick out relevant papers from the search results could

affect the analysis, depending on with papers are chosen to investigate. To maximise the re-

peatability of the process and minimize the validity threat, a set of inclusion and exclusion

criteria have been used to aid in picking out the relevant papers for the survey.

9 Conclusion
This survey investigates the question “To what extent has search-based refactoring

been studied in software maintenance?” and introduces a set of research questions to

help address it. Five different search repositories are used with the aid of a set of inclu-

sion and exclusion criteria to find 50 different papers that use search-based refactoring

for purposes of software maintenance. Before the papers are examined, the most com-

mon search techniques used in the studies are quickly discussed and described. Each of

the papers are examined and their research output is discussed. Then, different aspects

of the set of papers are analyzed according to the set of research questions outlined.

The research questions are addressed using each relevant aspect of the analysis. Related

reviews are also discussed and compared with the survey after it is conducted, describ-

ing the similarities and differences between them.

This survey is a valuable resource for researchers planning with investigate the use of

search-based refactoring techniques for software maintenance and gives an overview of the

field as well as the relevant work in the area. The analysis made within the paper allows

readers to be aware of how the research has progressed and addresses the aim of finding the

extent that search-based refactoring has been studied in software maintenance. The identified

gaps and recommended areas for future work allow researchers to investigate other aspects

of the research area. Work in these areas could contribute towards progression in the use of

search-based refactoring for software maintenance and could aid in making the approach

more feasible for use in the development of software products, therefore saving time and de-

veloper resources.

Mohan and Greer Journal of Software Engineering Research and Development  (2018) 6:3 Page 36 of 52



10 Appendix

Table 10 Papers On Search-Based Refactoring

Authors [Ref] Year Title Search
Technique

Amal et al. (2014) 2014 On The Use Of Machine Learning And Search-Based Software
Engineering For Ill-Defined Fitness Function: A Case Study On
Software Refactoring

GA

Bakar et al. (2012a) 2012 Applying Evolution Programming Search Based Software
Engineering (SBSE) In Selecting The Best Open Source Software
Maintainability Metrics

EA

Di Penta (2005) 2005 Evolution Doctor: A Framework To Control Software
System Evolution

GA

Fatiregun et al. (2004) 2004 Evolving Transformation Sequences Using Genetic Algorithms HC/GA

Ghaith and Ó
Cinnéide (2012)

2012 Improving Software Security Using Search-Based
Refactoring

HC/SA

Griffith et al. (2011) 2011 TrueRefactor: An Automated Refactoring Tool To
Improve Legacy System And Application Comprehensibility

GA

Harman (2011) 2011 Refactoring As Testability Transformation

Harman and Tratt
(2007)

2007 Pareto Optimal Search Based Refactoring At
The Design Level

HC

Harman et al. (2012) 2012 Dynamic Adaptive Search Based Software Engineering

Harman et al. (2013) 2013 Dynamic Adaptive Search Based Software Engineering
Needs Fast Approximate Metrics

Kessentini et al.
(2011)

2011 Design Defects Detection And Correction By Example GA/GP

Kessentini et al. (2011) 2011 Example-Based Design Defects Detection And Correction GA/GP

Kessentini et al.
(2012)

2012 What You Like In Design Use To Correct Bad-Smells GA

Koc et al. (2012) 2012 An Empirical Study About Search-Based Refactoring Using
Alternative Multiple And Population-Based Search Techniques

HC/SA/
ABC

Mkaouer et al., 2015 2014 Many-Objective Software Remodularization Using NSGA-III GA

Mkaouer et al., 2014 2014 High Dimensional Search-Based Software Engineering: Finding
Tradeoffs Among 15 Objectives For Automating Software
Refactoring Using NSGAIII

GA

Mkaouer et al., (2014) 2014 Software Refactoring Under Uncertainty: A Robust
Multi-Objective Approach

GA/PSO

Mkaouer et al., (2015) 2015 On The Use Of Many Quality Attributes For Software Refactoring:
A Many Objective Search-Based Software Engineering Approach

GA

Mkaouer et al. (2016) 2016 A Robust Multi-Objective Approach To Balance Severity And
Importance Of Refactoring Opportunities

GA/PSO

Moghadam and Ó
Cinnéide (2011)

2011 Code-Imp: A Tool For Automated Search-Based Refactoring

Moghadam and Ó
Cinnéide (2012)

2012 Automated Refactoring Using Design Differencing

Mohan et al. (2016) 2016 Technical Debt Reduction Using Search Based
Automated Refactoring

HC/SA

Morales (2015) 2015 Towards A Framework For Automatic Correction
Of Anti-Patterns

Morales et al. (2016) 2016 Finding The Best Compromise Between Design Quality And
Testing Effort During Refactoring

GA

Morales et al. (2016) 2016 On The Use Of Developers’ Context For Automatic
Refactoring Of Software Anti-Patterns

SA/GA/
VNS

Ó Cinnéide and Nixon
(1999a)

1999 Automated Application Of Design Patterns To
Legacy Code
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Table 10 Papers On Search-Based Refactoring (Continued)

Authors [Ref] Year Title Search
Technique

Ó Cinnéide and Nixon
(1999b)

1999 A Methodology For The Automated Introduction
Of Design Patterns

Ó Cinnéide et al.
(2011)

2011 Automated Refactoring For Testability HC

Ó Cinnéide et al.
(2012)

2012 Experimental Assessment Of Software Metrics Using
Automated Refactoring

HC

Ó Cinnéide et al.
(2016)

2016 An Experimental Search-Based Approach To Cohesion
Metric Evaluation

HC

Cinnéide 2000 2000 Automated Refactoring To Introduce Design Patterns

O’Keeffe and Ó
Cinnéide (2003)

2003 A Stochastic Approach To Automated Design Improvement SA

O’Keeffe and Ó
Cinnéide (2004)

2004 Towards Automated Design Improvement Through
Combinatorial Optimisation

SA

O’Keeffe and Ó
Cinnéide (2006)

2006 Search-Based Software Maintenance HC/SA

O’Keeffe and Ó
Cinnéide (2008b)

2007 Search-Based Refactoring: An Empirical Study HC/SA/GA

O’Keeffe and Ó
Cinnéide (2007a)

2007 Getting The Most From Search-Based Refactoring HC/SA/GA

O’Keeffe and Ó
Cinnéide (2007b)

2007 Automated Design Improvement By Example HC

O’Keeffe and Ó
Cinnéide (2008a)

2008 Search-Based Refactoring For Software Maintenance HC/SA

Ouni et al. (2012) 2012 Search-Based Refactoring: Towards Semantics Preservation GA

Ouni et al. (2013) 2013 Maintainability Defects Detection And Correction:
A Multi-Objective Approach

GA/GP

Ouni et al. (2013) 2013 The Use Of Development History In Software Refactoring Using
A Multi-Objective Evolutionary Algorithm

GA

Ouni et al. (2013) 2013 Search-Based Refactoring Using Recorded Code Changes GA

Ouni et al. (2015) 2015 Improving Multi-Objective Code-Smells Correction Using
Development History

GA

Ouni et al. (2015) 2015 Prioritizing Code-Smells Correction Tasks Using
Chemical Reaction Optimization

CRO/GA/
SA/ PSO

Pérez et al. (2013) 2013 A Proposal For Fixing Design Smells Using Software
Refactoring History

Seng et al. (2006) 2006 Search-Based Determination Of Refactorings For Improving
The Class Structure Of Object-Oriented Systems

EA

Simons et al. (2015) 2015 Search-Based Refactoring: Metrics Are Not Enough

Veerappa and
Harrison (2013)

2013 An Empirical Validation Of Coupling Metrics Using
Automated Refactoring

HC

Vivanco and Pizzi
(2004)

2004 Finding Effective Software Metrics To Classify Maintainability
Using A Parallel Genetic Algorithm

GA

Wang et al. (2015) 2015 On The Use Of Time Series And Search Based Software Engineering
For Refactoring Recommendation

GA
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Table 11 Papers On SBSM

Authors [Ref] Title Paper Type Journal/
Conference

Benchmark
Type

Benchmarks

Ó Cinnéide
and Nixon
(2007b)

A Methodology
For The
Automated
Introduction
Of Design
Patterns

Conference ICSM None

Pérez
et al.
(2015)

A Proposal
For Fixing
Design Smells
Using Software
Refactoring History

Conference RefTest None

Mkaouer et al.
(2004)

A Robust
Multi-Objective
Approach To
Balance Severity
And Importance
Of Refactoring
Opportunities

Journal Empirical
Software
Engineering.

Open-
Source/
Industrial

Xerces-J
JFreeChart
GanttProject
ApacheAnt
JHotDraw
Rhino
Log4J
Nutch
JDI-Ford

O’Keeffe
and Ó
Cinnéide
(2008)

A Stochastic
Approach
To Automated
Design
Improvement

Conference PPPJ Test

Koc
et al.
(2011)

An Empirical
Study About
Search-Based
Refactoring Using
Alternative Multiple
And Population-Based
Search Techniques

Book
Section

pp.
59–66

Open-
Source/
In-House

Beaver
Mango
JFlex
Apache
Xml-Rpc
JSON
Mosaic

Veerappa
and
Harrison
(2011)

An Empirical
Validation
Of Coupling
Metrics
Using
Automated
Refactoring

Conference ESEM Open-
Source

GanttProject
JabRef
JHotDraw
JFreeChart
XOM
JRDF
Art of
Illusion
JGraphX

Ó Cinnéide
et al.
(2012)

An
Experimental
Search-Based
Approach To
Cohesion Metric
Evaluation

Journal Empirical
Software Engineering.

Open-
Source

JHotDraw
XOM
Art of
Illusion
GanttProject
JabRef
JRDF
JTar
JGraphX
HTMLUnit
jSMPP

Bakar
et al.
(2012)

Applying
Evolution
Programming
Search
Based Software
Engineering
(SBSE)
In Selecting
The Best
Open Source
Software

Conference ISCAIE None
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Table 11 Papers On SBSM (Continued)

Authors [Ref] Title Paper Type Journal/
Conference

Benchmark
Type

Benchmarks

Maintainability
Metrics

Ó Cinnéide
and
Nixon
(2012)

Automated
Application
Of Design
Patterns
To Legacy Code

Conference Workshop on
Object-Oriented
Technology.

None

O’Keeffe
and Ó
Cinnéide
(2012)

Automated
Design
Improvement
By Example

Conference SoMeT Open-
Source

Beaver
Spec-
Check
Mango

Ó Cinnéide
et al.
(2012b)

Automated
Refactoring
For Testability

Conference ICST Test

Ó Cinnéide
(2011)

Automated
Refactoring
To Introduce
Design Patterns

Conference ICSE None

Moghadam
and Ó
Cinnéide
(2013)

Automated
Refactoring
Using Design
Differencing

Conference CSMR Open-
Source

JHotDraw
JGraphX
JTar
HTMLUnit
GanttProject
XOM

Moghadam
and
Ó Cinnéide
(2008)

Code-Imp:
A Tool For
Automated
Search-Based
Refactoring

Conference WRT None

Kessentini
et al.
(2015)

Design Defects
Detection And
Correction
By Example

Conference ICSM Open-
Source

GanttProject
Xerces-J
ArgoUML
QuickUML

Harman
et al.
(2015)

Dynamic
Adaptive
Search Based
Software
Engineering

Conference ESEM None

Harman
et al.
(2013)

Dynamic Adaptive
Search Based
Software Engineering
Needs Fast
Approximate
Metrics

Conference WETSoM None

Di Penta
(2008)

Evolution Doctor:
A Framework
To Control
Software System
Evolution

Conference CSMR Open-
Source

GRASS
KDE
MySQL
Samba

Fatiregun
et al.
(2007)

Evolving
Transformation
Sequences Using
Genetic
Algorithms

Conference SCAM Test

Kessentini
et al.
(2013)

Example-Based Design
Defects Detection
And Correction

Conference ICPC Open-
Source

GanttProject
Xerces-J
ArgoUML
QuickUML
Log4J
Azureus
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Table 11 Papers On SBSM (Continued)

Authors [Ref] Title Paper Type Journal/
Conference

Benchmark
Type

Benchmarks

Ó Cinnéide et al.
(2013)

Experimental
Assessment
Of Software Metrics
Using Automated
Refactoring

Journal Empirical
Software
Engineering.

Open-
Source

JHotDraw
XOM
Art of
Illusion
GanttProject
JabRef
JRDF
JTar
JGraphX

Vivanco
and
Pizzi
(2013)

Finding Effective
Software Metrics
To Classify Maintainability
Using A Parallel
Genetic Algorithm

Conference GECCO In-House Unspecified

Morales
et al.
(2012a)

Finding The Best
Compromise Between
Design Quality
And Testing
Effort During Refactoring

Conference SANER Open-
Source

ArgoUML
GanttProject
JHotDraw
Mylyn

O’Keeffe
and Ó
Cinnéide
(2011)

Getting The Most
From Search-
Based Refactoring

Conference GECCO Open-
Source

Beaver
Mango
EAOP
Spec-Check

Mkaouer
et al.
(2005)

High Dimensional
Search-Based
Software
Engineering:
Finding
Tradeoffs Among
15 Objectives For
Automating
Software
Refactoring Using
NSGA-III

Conference GECCO Open-
Source

Apache Ant
ArgoUML
GanttProject
Azureus
Xerces-J

Ouni
et al.
(2015)

Improving
Multi-Objective
Code-Smells
Correction
Using
Development
History

Journal Journal Of
Systems
And Software.

Open-
Source

Xerces-J
JFreeChart
GanttProject
Art of
Illusion
JHotDraw

Ghaith
and Ó
Cinnéide
(2005)

Improving
Software
Security Using
Search-Based
Refactoring

Conference SSBSE Open-
Source

Wife

Ouni
et al.
(2015)

Maintainability
Defects
Detection And
Correction: A
Multi-Objective
Approach

Journal Automated Software
Engineering.

Open-
Source

GanttProject
QuickUML
Azureus
Log4J
ArgoUML
Xerces-J

Mkaouer
et al.
(2006)

Many-Objective
Software
Remodularization
Using NSGA-III

Journal ACM Transactions
On Software
Engineering And
Methodology.

Open-
Source/
Industrial

Xerces-J
JHotDraw
JFreeChart
GanttProject
JDI-Ford

Morales
et al.
(2009)

On The Use Of
Developers’ Context
For Automatic
Refactoring Of

Journal Journal Of
Systems And
Software.

Open-
Source

Mylyn
PDE
Platform
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Table 11 Papers On SBSM (Continued)

Authors [Ref] Title Paper Type Journal/
Conference

Benchmark
Type

Benchmarks

Software
Anti-Patterns

Amal
et al.
(2011)

On The Use Of
Machine Learning
And Search-Based
Software
Engineering
For Ill-Defined
Fitness Function:
A Case
Study On
Software
Refactoring

Conference SSBSE Open-
Source

Xerces-J
JFreeChart
GanttProject
Apache Ant
JHotDraw
Rhino

Mkaouer
et al.
(2011)

On The Use
Of Many Quality
Attributes For
Software Refactoring:
A Many Objective
Search-Based
Software
Engineering
Approach

Journal Empirical
Software
Engineering.

Open-
Source/
Industrial

ArgoUML
Xerces-J
Apache Ant
GanttProject
Azureus
JDI-Ford

Wang
et al.
(2015)

On The Use Of
Time Series And
Search Based Software
Engineering For
Refactoring
Recommendation

Conference MEDES Open-
Source/
Industrial

JFreeChart
FindBugs
Hibernate
Pixelitor
JDI-Ford

Harman
and Tratt (2007)

Pareto Optimal
Search Based
Refactoring
At The
Design Level

Conference GECCO Open-
Source

JHotDraw
Maven
XOM

Ouni et al.
(2007)

Prioritizing
Code-
Smells
Correction
Tasks
Using
Chemical
Reaction
Optimization

Journal Software
Quality
Journal.

Open-
Source

Xerces-J
JFreeChart
GanttProject
Art of
Illusion
JHotDraw

Harman
(2004)

Refactoring As
Testability
Transformation

Conference ICSTW None

Seng
et al.
(2015)

Search-Based
Determination
Of Refactorings
For Improving
The Class Structure
Of Object-Oriented
Systems

Conference GECCO Open-
Source

JHotDraw

O’Keeffe
and Ó
Cinnéide
(2006)

Search-Based
Refactoring For
Software
Maintenance

Journal Journal Of
Systems
And Software.

Open-
Source

Spec-Check
Beaver

Ouni
et al.
(2016)

Search-Based
Refactoring Using
Recorded Code
Changes

Conference CSMR Open-
Source

GanttProject
Xerces-J
JHotDraw

O’Keeffe
and Ó

Journal Journal Of
Software

Open-
Source

Spec-Check
Beaver
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Table 11 Papers On SBSM (Continued)

Authors [Ref] Title Paper Type Journal/
Conference

Benchmark
Type

Benchmarks

Cinnéide
(2016)

Search-Based
Refactoring: An
Empirical Study

Maintenance
And Evolution:
Research and
Practice.

EAOP
Mango
Grammatica

Simons
et al.
(2011)

Search-Based
Refactoring:
Metrics Are
Not Enough

Conference SSBSE Test

Ouni
et al.,
2012

Search-Based
Refactoring:
Towards
Semantics
Preservation

Conference ICSM Open-
Source

GanttProject
Xerces-J

O’Keeffe
and Ó
Cinnéide (2006)

Search-Based
Software
Maintenance

Conference CSMR Open-
Source

Spec-Check
Spec
Raytrace

Mkaouer
et al.
(2014)

Software
Refactoring
Under
Uncertainty:
A Robust
Multi-Objective
Approach

Conference GECCO Open-
Source

Xerces-J
JFreeChart
GanttProject
Apache Ant
JHotDraw
Rhino

Mohan
et al.
(2012)

Technical Debt
Reduction Using
Search Based
Automated
Refactoring

Journal Journal Of Systems
And Software.

Open-
Source

JSON
JFlex
Apache
Xml-Rpc
Mango
Beaver
JHotDraw

Ouni
et al.
(2014)

The Use Of
Development
History In
Software
Refactoring
Using A
Multi-Objective
Evolutionary
Algorithm

Conference GECCO Open-
Source

JFreeChart
Xerces-J

Morales
(2009)

Towards A
Framework For
Automatic
Correction
Of Anti-Patterns

Conference SANER None

O’Keeffe
and Ó
Cinnéide
(2012)

Towards
Automated
Design
Improvement
Through
Combinatorial
Optimisation

Conference WoDiSEE Test

Griffith
et al.
(2008)

TrueRefactor: An
Automated
Refactoring
Tool To Improve
Legacy System
And Application
Comprehensibility

Conference ISCA Test

Kessentini
et al.
(2016)

What You
Like In Design
Use To Correct
Bad-Smells

Journal Software
Quality
Journal.

Open-
Source

GanttProject
Xerces-J
QuickUML
JHotDraw
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Table 12 Literature Reviews
Authors [Ref] Title Paper Type Journal/Conference

Al Dallal (2015) Identifying Refactoring
Opportunities In
Object-Oriented Code:
A Systematic
Literature Review

Journal Information
And Software
Technology.

Ferrucci
et al.
(2010)

Search-Based
Software
Project Management

Book Section pp.
373–399

Harman and
McMinn
(2009)

A Theoretical And
Empirical
Study Of
Search-Based
Testing: Local,
Global And
Hybrid Search

Journal IEEE Transactions
On Software
Engineering.

Harman
et al.
(1999a)

Search Based
Software
Engineering:
A Comprehensive
Analysis And
Review Of Trends
Techniques And
Applications

Report

Harman
et al.
(1999)

Search Based
Software Engineering:
Techniques, Taxonomy,
Tutorial

Book Section pp. 1–59

Harman
et al.
(2012)

Search Based
Software
Engineering:
Trends, Techniques
And Applications

Journal ACM
Computing
Surveys.

Mariani and
Vergilio
(2012)

A Systematic
Review On
Search-Based
Refactoring

Journal Information
And Software
Technology.

McMinn
(2017)

Search-Based
Software Test
Data Generation:
A Survey

Journal Software
Testing,
Verification
And Reliability.

Misbhauddin
and Alshayeb
(2015)

UML Model
Refactoring:
A Systematic
Literature
Review

Journal Empirical
Software
Engineering.

Pitangueira
et al.
(1999b)

A Systematic
Review Of
Software
Requirements
Selection And
Prioritization Using
SBSE Approaches

Conference SSBSE

Räihä (2009) A Survey On
Search Based
Software
Engineering

Journal Computer
Science
Review.

Räihä (1994) An Updated
Survey On
Search Based
Software
Engineering

Report

Sayyad and Ammar (2000) Pareto-Optimal
Search-Based
Software
Engineering
(POSBSE):
A Literature Survey

Conference RAISE
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Table 13 Amount Of Papers Per Author

Authors Amount Of Papers

Mel Ó Cinnéide 21

Marouane Kessentini 16

Ali Ouni 8

Houari Sahraoui 7

Mark Harman 7

Mark O′ Keeffe 7

Slim Bechikh 6

Iman Hemati Moghadam 5

Kalyanmoy Deb 5

Wiem Mkaouer 5

Laurence Tratt 3

John A. Clark 2

Mohamed Salah Hamdi 2

Mounir Boukadoum 2

Paddy Nixon 2

Steve Counsell 2

Wael Kessentini 2

A. B. Sultan 1

A. D. Bakar 1

Abdelkarim Erradi 1

Alessandro Murgia 1

Ali Andac 1

Boukhdhir Amal 1

Clemente Izurieta 1

Chris Simons 1

David Burkhart 1

David R. White 1

Deji Fatiregun 1

Dermot Boyle 1

Des Greer 1

Edmund Burke 1

Ekin Koc 1

Foutse Khomh 1

Francisco Chicano 1

Giuliano Antoniol 1

H. Zulzalil 1

Hanzhang Wang 1

Haythem Meddeb 1

Hurevren Kilic 1

Ibrahim Cereci 1

Isaac Griffith 1

J. Din 1

Javier Pérez 1

Jeremy Singer 1
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Table 13 Amount Of Papers Per Author (Continued)

Authors Amount Of Papers

Johannes Stammel 1

Josselin Dea 1

Katsuro Inoue 1

Khaled Ghedira 1

Lamjed Ben Said 1

Massimiliano Di Penta 1

Michael Mohan 1

Nicolino Pizzi 1

Nur Ersoy 1

Olaf Seng 1

Patrice Kontchou 1

Paul McMullan 1

Rachel Harrison 1

Rim Mahaouachi 1

Robert M. Hierons 1

Rodrigo Morales 1

Rodrigo Vivanco 1

Scott Wahl 1

Serge Demeyer 1

Shadi Ghaith 1

Shinpei Hayashi 1

Varsha Veerappa 1

William Grosky 1

Xin Yao 1

Zelal Seda Camlidere 1

Zéphyrin Soh 1
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Table 14 Amount Of Papers Per Conference

Conference Amount Of Papers

GECCO 7

CSMR 4

ICSM 3

SSBSE 3

ESEM 2

ICST/ICSTVV 2

SANER 2

ICPC 1

ICSE 1

ISCA 1

ISCAIE 1

MEDES 1

PPPJ 1

RefTest 1

SCAM 1

SoMeT 1

WETSoM 1

WoDiSEE 1

Workshop on Object-Oriented Technology 1

WRT 1
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11 Additional file

Additional file 1: Extra analysis of SBSM papers and a listing of literature reviews related to SBSE. (XLSX 22 kb)

Table 15 Amount Of Papers Per Open Source Benchmark

Benchmarks Studies Used

GanttProject 19

JHotDraw 16

Xerces-J 15

JFreeChart 9

ArgoUML 6

Beaver 6

Apache Ant 5

Art of Illusion 5

Mango 5

Spec-Check 5

XOM 5

Azureus 4

JGraphX 4

QuickUML 4

JabRef 3

JRDF 3

JTar 3

Log4j 3

Rhino 3

Apache XML-RPC 2

EAOP 2

HTMLUnit 2

JFlex 2

JSON 2

Mylyn 2

FindBugs 1

Grammatica 1

GRASS 1

Hibernate 1

jSMPP 1

KDE 1

Maven 1

MySQL 1

Nutch 1

PDE 1

Pixelitor 1

Platform 1

Samba 1

Spec-Raytrace 1

Wife 1
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