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Abstract

Context: Evaluation of design problems in object oriented systems, which we call
code smells, is mostly a human-based task. Several studies have investigated the
impact of code smells in practice. Studies focusing on human identification of code
smells have shown low agreement among developers. Unfortunately, those studies do
not attempt to investigate the reasons behind this phenomenon.

Objective: This paper aims to investigate factors affecting human perception of code
smells. Specifically, it focuses on factors affecting god class detection, one of the most
known code smells.

Method: The investigation encompassed a family of four controlled experiments,
covering potential factors affecting human detection of code smells. The method is
incremental. In other words, each experiment produces insights to the next one. This
allows the investigators to control specific factors affecting the agreement on god class
detection. The factors addressed in this study are: i) developer experience, ii) developer
knowledge, iii) developer training, iv) tool support for design comprehension, and v)
software size.

Result: Our findings show that tool support for design comprehension is the only
factor that does not affect the human perception of god class. The other factors impact
this perception in some way.

Conclusion: The area still needs more investigation and discussion on what we call
the code smell conceptualization problem, to ensure similar criteria and thresholds on
human-based code smell detection.
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1 Background
The software engineering community has been discussing strategies for the systematic
evaluation of potential design problems. This issue was raised as early as 1996 by Riel
(1996). He presented insights into design improvement and introduced the term “design
flaw” in his book. Fowler (1999), who coined the term “code smell”, focused on refactoring
and presented a catalog of smells, characterizing and proposing specific actions to remove
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them. Following suit, Lanza and Marinescu (2005) focused on metrics and heuristics to
detect what they called “disharmonies”.
Although, the terms “design flaw”, “code smell” and “disharmony” have been used to

define potential design problems, this work adopts the term code smell, or simply smell,
to refer to such problems. The works discussing design problems are based on com-
mon (and expected) principles such as inheritance, information hiding or polymorphism
(Meyer 1988). The authors consider that problems in design occur when these principles
are broken. Then, they propose different strategies for code smell detection, which is fun-
damental as it affects common activities of software development, such as diagnostics in
code inspection or refactoring and maintenance decisions.
In practice, all code smell detection strategies are human-based. For example, Fowler

(1999) does not provide objective criteria to identify code smells. He says that one needs
to develop its own sense of observation about attributes that could characterize pieces
of code as a smell. One has, for example, to develop its own sense of how many lines
of code define a long method. Lanza and Marinescu (2005) used an objective definition
for code smell detection based on metrics and thresholds. However, metrics and thresh-
olds are domain dependent, again introducing subjectivity in the code smell detection
process. Rapu et al. (2004) reinforced this observation declaring that metrics thresh-
olds are mainly chosen based on the experience of the analysts. One may then speculate
that code smell detection is a subjective task by nature, as its adoption is dependent on
human evaluation.
Understanding which and how subjective aspects affect code smell detection demands

empirical evaluation. Recently, some empirical studies have been carried out to better
understand this scenario (Yamashita and Moonen 2013; Palomba et al. 2014; Linares-
Vásquez et al. 2014; Ahmed et al. 2015; Fu and Shen 2015). Despite this, the area lacks
studies addressing the human role on smell detection. In a systematic mapping study,
Zhang et al. (2011) noted that most studies related to code smells focus on tools and
methods for automatic detection (tool assessment category). In a complementary remark,
Mäntylä and Lassenius (2006b) declared that the role of humans has been little studied. In
fact, many authors reinforce the idea that more empirical studies are necessary to enhance
the understanding of the code smell effect (Schumacher et al. 2010; Zhang et al. 2011;
Sjøberg et al. 2013).
The human perception has been pointed as a common problem in some studies focus-

ing on the role of humans in code smell detection. Palomba et al. (2014) observed that,
for some smells, the perception of the developers varies. Mäntylä and Lassenius (2006a)
highlighted the conflicting perceptions of different developers using code smells to eval-
uate software quality. Schumacher et al. (2010) found low agreement among developers
on code smell detection.
Due to these evidences, we believe that, before proposing new strategies, it is neces-

sary to understand the reasons behind the inconsistencies found in the current code smell
detection strategies. Thus, our main objective is to improve the understanding of fac-
tors affecting the code smells detection. In order to achieve this objective, we performed
a family of controlled experiments. We adopt the idea that a family of experiments is
formed by a set of experiments presented in a similar context (Basili et al. 1999). The
experiments were designed to investigate a number of factors, which potentially affect
the human perception of code smells. We ran four controlled experiments, up to now.
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For simplicity, we address god class, one of the most known code smells (Fernandes et al.
2016; Zhang et al. 2011).
In this paper, we focus on the investigation of five factors and how they impact the

human perception on detecting god class. The factors are design comprehension tool
support, developer experience, developer knowledge, developer training, and software size.
Here, we highlight two of our findings. First, we find out that all factors, except design
comprehension tool support, affects the human perception of god classes. This sup-
ports support our hypothesis that code smell detection is more related to human traits
than to an overall understanding of the code design. The idea behind this hypothesis
is that, considering the smell detection activity, subjectivity should be more relevant
than the understanding of the code design. Second, a training based on examples and
group discussion might to mitigate divergences on human perception of god classes and,
possibly, of other code smells. From this finding, we conjecture that there is no “silver
bullet” in terms of heuristics for smells detection, once benefits adopting the concept are
context-dependent.
We have already published partial results of our family of controlled experiments. In

these previous works, we covered other aspects on god class detection adopting different
strategies of analyses, which were not based on the investigation of factors impacting the
human perception on god class detection. In (Santos et al. 2013), we explored the differ-
ences among developers detecting god class, in terms of effort and decision drivers. In
(Santos et al. 2014), we investigated how a design comprehension tool impacts the effort
and the strategies adopted by developers detecting god class. We also deepen the anal-
yses of the strategies (Santos and Mendonça 2014) and the decision drivers (Santos and
Mendonça 2015) adopted by developers detecting god class. In summary, we previously
explored effort, strategies and decision drivers on god class detection. In this current
work, the five factors we cover are different. They represent more empirical evidence on
investigation of factors that affect the human perception of god classes.
The structure of the rest of this paper is as follows. In Section 2, we present concepts

and summarize prior empirical studies addressing code smell. In Section 3, we introduce
the family of controlled experiments. We also present the planning and execution of the
experiments. In Section 4, we discuss the factors we addressed in this paper, how we con-
trolled them through the family of experiments and our strategy of analysis. In Sections 5
and 6, we present the results and a discussion about them. In Section 7, we discuss the
threats to the validity of the studies. Lastly, in Section 8, we present our conclusions and
future work.

2 Context and related work
In this section, we present god classes as the central concept of our experiments. We
also present the most relevant studies focusing on code smell evaluation and detection
agreement.

2.1 The god class code smell

The term god class was coined by Riel (1996) to refer classes that tend to centralize the
intelligence of the system. Since then, god class has been addressed in different empir-
ical studies (Li and Shatnawi 2007; Olbrich et al. 2010; Abbes et al. 2011; Padilha et al.
2013). Riel presented god class as a problem of system intelligence poorly distributed.
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The problem manifests itself in the behavioral form when developers “attempt to capture
the central control mechanism so prevalent in the action-oriented paradigm within their
object-oriented design”. The heuristics proposed by Reil to avoid the god class smell are:

• “Top-level classes in a design should share work uniformly. [...]”
• “Beware of classes with much non-communicative behavior. [...]”
• “Beware of classes that access directly data from other classes.”

Fowler (1999) did not use the term god class to describe code smells. However, he pre-
sented a code smell with similar characteristics. He defined the large class code smell as
a class that tries to do too much. For him, a “class with too much code is prime breed-
ing ground for duplicated code, chaos, and death”. He proposes the use of the refactoring
techniques extract class, extract subclass and extract interface to solve the problem.
Lanza and Marinescu (2005) proposed a heuristic for god class detection. They con-

sider that if a class uses more than few attributes of other classes and has high functional
complexity and has low cohesion, then it is a god class. They define the thresholds for
few attributes, high functional cohesion and low cohesion according to the software
characteristics. Lanza and Marinescu (2005) based it on the definition of Riel (1996)
and explicitly declared that the concept is comparable to Fowler’s large class smell. The
authors also presented the code smell brain class in a similar way: complex classes that
tend to accumulate an excessive amount of intelligence. The main difference is that a god
class accesses directly many attributes of other classes.
God class, large class and brain class have a similar concept (Lanza andMarinescu 2005;

Mäntylä and Lassenius 2006a). In our work, we consider the general idea of these smells.
We adopt the term god class to refer to this general idea, indistinctly. Schumacher et al.
(2010) well capture the essence of the concept in a set of support questions, which we
adopt in our experiments:

• Does the class have more than one responsibility?
• Does the class have functionality that would fit better into other classes?

– By looking at the methods, could one ask: “Is this the class’ job?”

• Do you have problems summarizing the class’ responsibility in one sentence?
• Would splitting up the class improve the overall design?

2.2 Empirical studies on code smell

As the use of the code smell concept has become widespread, empirical studies have been
presented to help understanding its effect. In Section 2.2.1, we cover the use of tools
for code smell detection, since tool support is one of the independent variables in our
experiments. In Section 2.2.2, we present studies addressing the human role on smell
detection: our family of experiments is part of this scenario. To the best of our knowledge,
this is the first study analyzing such extensive set of independent variables with respect to
code smell detection.

2.2.1 Tool assessment

There are available tools for code smell detection, such as JDeodorant1 and inCode2. The
tools are based onmetrics and thresholds. Few studies on tool support for smell detection
consider the “inherent uncertainty of the detection” (Khomh et al. 2009;Moha et al. 2010).
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They evidence the necessity of works on tool assessment considering the human role on
smell detection.
In this direction, software visualization has emerged as an alternative to address smell

detection (Simon et al. 2001; Parnin et al. 2008; Murphy-Hill and Black 2010; Carneiro
et al. 2010). Software visualization employs visual paradigms (visual resources, graphic
design or animation) to facilitate both the human understanding and effective use of soft-
ware (Price et al. 1998). Software visualization tools are also based on metrics. However,
visual resources combined with metrics may help humans to identify design problems.
In some experiments presented in this paper, we use software visualization to assist code

smell detection. In the following, we briefly address some research works that support
our approach.
Murphy-Hill and Black (2010) presented a visualization tool implemented as an Eclipse

plug-in. The tool is composed of sectors in a semicircle on the right-hand side of the
editor panel, called petals: each petal corresponds to a smell. They performed a controlled
experiment with 12 participants (six programmers and six students) to evaluate the tool.
Their main findings were: i) programmers identify more smells using the tool than not
using the tool; ii) smells are subjective; and iii) the tool helps in deciding what is and what
is not a code smell.
Carneiro et al. (2010) presented the SourceMiner tool, a multi-perspective visualiza-

tion environment implemented as an Eclipse plug-in. SourceMiner has visualizations
addressing software characteristics such as inheritance and coupling. The visualizations
also portray previously mapped concerns of the software. The authors performed an
exploratory study using the concernmappingmulti-perspective approach to identify code
smells. Two main findings are presented. First, the concern visualizations provided use-
ful support to identify God Class and Divergent Change smells. Second, the authors were
able to identify strategies for smell detection, supported by the multiple concern views.

2.2.2 Role of human beings

This type of study explores factors impacting the human perception of code smells. As
previously discussed, our family of experiments is part of this scenario. It is important
to note that most of these studies aim to identify factors related to the human percep-
tion of smells. The identification of these factors is not our aim. We look for establishing
a cause-effect relationship between some specific factors and the human perception of
smells from our family of controlled experiments. To the best our knowledge, there are
few studies exploring this cause-effect relationship. Due to this, this section presents the
main ones we found in the literature about human perception of code smells, independent
of their aims.
Palomba et al. (2014) investigated if what developers believe to be a problem is actually

a problem. They adopted survey as the experimental method, considering different types
of participants: i) graduate students; ii) industrial developers and; iii) developers of the
systems themselves. Their findings show that some smells are generally not perceived
as a design problem: class data should be private, middle man, long parameter list, lazy
class, and inappropriate intimacy. They also noted “instances of a bad smell may or may
not represent a problem based on the ‘intensity’ of the problem”. Another finding was
that developers consider large/complex source code as an important threat. Finally, they
noted that developer experience and system’s knowledge play an important role on smell
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detection. Thus, they focus on the human role from a survey and they consider one of the
variables that we address, which is the developer experience.
Moonen and Yamashita (2012) analyzed the perception of participants on the main-

tainability of the systems and related it back to code smells. They adopted case study as
the experimental method, conducting interviews in an in vivo setting. The findings were
added to another empirical study performed with experts and using the same set of sys-
tems (Anda 2007). They identified thirteen factors, such as appropriate technical platform
and simplicity, affecting maintainability according to the participants. They found that
eight of the factors affecting maintainability are addressable by current code smell defi-
nitions. However, in most cases these code smells would need to be complemented with
alternative approaches, such as semantic analysis and manual inspection, in order to help
on identification of maintainability factors. Thus, they also consider factors impacting in
the human perception of design problems, which is similar to our objectives.
Mäntylä (2005) presented results of two studies addressing agreement in smell detec-

tion and factors to explain it. He adopted controlled experiments as the experimental
method. He found high agreement for simple code smells - long method and long param-
eter list - and weaker agreement concerning the feature envy code smell and refactoring
decisions. He found good correlation between the metric lines of code and the smell long
method; and the metric number of parameters and the smell long parameter list. However,
metrics were not useful to explain evaluation of feature envy and refactoring decisions.
Finally, he found low correlation between refactoring decisions and demographic vari-
ables, such as developer’s years of experience. Developer experience is one of the factors
that we are addressing in our experiments.
Mäntylä and Lassenius (2006b) investigated why and when people think a code needs

refactoring. They analyzed one of the experiments presented in Mäntylä (2005) to
investigate what issues in code define the refactoring decisions. They refer to these
issues as drivers. They adopted survey as the experimental method, applying a ques-
tionnaire to understand refactoring decisions. The most important driver was the size
of a method. One of their important findings was that there was a conflict of opin-
ions among the participants with respect both to the assessed internal quality of the
methods and the need to refactor them. They also found that some drivers are dif-
ficult or impossible to be detected automatically, and some code smells are better
detected by experienced participants than automatically. In our case, we considered
some drivers identified by Mäntylä and Lassenius (2006b), such as software size and
developer’s experience.
Schumacher et al. (2010) built on and extended Mäntylä and Lassenius (2006b). They

investigated the way software developer professionals detect the god class code smell.
Then, they compared these results to automatic classification. They adopted controlled
experiment as the experimental method, carrying it out in a professional environment.
Their main findings were: (1) there was low agreement among participants detecting god
class and (2) misplaced method was the strongest driver for god class detection. Related
to the evaluation of automatic detection, their main findings were: (1) an automated
metric-based pre-selection decreases the effort needed for manual code inspections and
(2) automatic detection followed by manual review increases the overall confidence.
Despite differences in the analysis procedure, Schumacher et al. (2010) investigated
human perception of god class, as we perform.
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Mäntylä and Lassenius (2006a) and Mäntylä et al. (2004), investigated agreement and
the impact of demographic data, such as experience of developers, on smell detection by
humans.Moreover, they compared results of human evaluation withmetric-based heuris-
tics. They adopted survey as the experimental method. In one of the findings the authors
declare: “the use of smells for code evaluation purposes is hard due to conflicting percep-
tions of different evaluators”. They also found that, some demographic variables, such as
developer experience, partly explain the variation. Related to the correlation of human
evaluation and the metric-based heuristics, they analyzed only four smells: large class,
long method, long parameter list, and duplicate code. For long method and long parameter
list, human evaluation correlated well with the metrics. For large class and duplicate code,
they did not perceive the correlation as well. From the drivers identified by Mäntylä and
Lassenius (2006a) and Mäntylä et al. (2004), we detach the developer’s experience as one
of the factors we are addressing.

3 The family of experiments
In this section, we present our family of controlled experiments, which is called
Finding God Class (FinG). FinG is proposed to explore a set of aspects related to
god class detection. As discussed in the Section 1, we used FinG family to investi-
gate effort, decision drivers and strategies adopted by participants during the detec-
tion of god classes. Readers interested in them should refer to the following papers
(Santos et al. 2013, 2014; Santos and Mendonça 2014, 2015). This paper does not
discuss these issues. It investigates different factors from different data and strategy
of analysis.
Currently, FinG has four controlled experiments. We named FinG 1, the first exper-

iment of FinG; FinG 2, the second experiment; and so on. Each experiment asks
participants to detect god classes in different pieces of source code. FinG was iteratively
defined as proposed by Mendonça et al. (2008): each experiment gave us insights to the
next experimental setup.
For sake of completeness, we detail each experiment of FinG following the guidelines

proposed by Jedlitschka et al. (2008). In Section 3.1, we present the experimental unit,
motivation and reward. In Section 3.2, we present the tools used in the family of exper-
iments. In Section 3.3, we present the forms and docs used to collect the data from the
participants. In Section 3.4, we present the software objects analyzed by the participants.
In Section 3.5, we present the task performed by the participants. In Sections 3.6, we
present the design for each experiment in the family. In Section 3.7, we present the pro-
cess we adopted in order to define our oracle. Finally, in Sections 3.8 and 3.9, we present
the execution and deviations occurred during the realization of the experiments.

3.1 Experimental unit, motivation and reward

All experiments involved undergraduate or graduate students (including professionals)
from the Federal University of Bahia (UFBA), in Brazil.
FinG 1. FinG 1 involved 11 junior (3rd year) undergraduate Computer Science students.

All students were enrolled in the Software Quality course offered in the first semester
of 2012. This is an optional subject of the Computer Science undergrad program, in
which design quality and smells are addressed. The course was considered appropri-
ate for the experiment, both because it was focused in related subjects and it was not
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mandatory, which means that most students enrolled on it were interested in the subject.
Furthermore, participation in the experiment was voluntary.
FinG 2, FinG 3 and FinG 4. The other three experiments involved graduate Computer

Science students. All students were enrolled in the Experimental Software Engineering
course offered in the second semester of 2012 (FinG 2), first semester of 2013 (FinG 3)
and second semester of 2013 (FinG 4). There were 25 participants in FinG 2, 25 in FinG 3
and 17 in FinG 4. The participation in the experiments was mandatory. The participants
received grades for their participation, but not for their performance.
From the analysis of the characterization form (we will discuss the forms later on), we

noted that, in FinG 2, all participants were, or had been, software developer profession-
als. In FinG 3, only four participants were not software developer professionals. And, in
FinG 4, only two participants were not professionals software developers. We considered
the data of the six participants without professional experience in software development
because their accuracy values, according to our oracle, were higher than the average
results of the other participants.

3.2 Tools

FinG 1, FinG 2 and FinG 3. In these experiments, we adopted two main software tools3:
Eclipse, a well-known software IDE; and SourceMiner, an Eclipse plug-in that provides
visual resources to enhance software comprehension activities.
SourceMiner enhances the comprehension of relevant software attributes on god class

detection, in comparison with the traditional Eclipse IDE setup (Carneiro et al. 2010;
Carneiro and Mendonça 2013, 2014). We detach the observation of size and coupling
relations among software classes. In order to observe these relations, developers using
Eclipse typically analyze the package-class-method structure of programs, by collapsing
and expanding the nodes of the vertical tree into the Package Explorer view (Fig. 1a).
Then, they open and read classes in the Source Code Editor view (Fig. 1b) to identify size
and coupling attributes. The two views present problems. Kersten andMurphy (2006) dis-
cuss limitations related to the use of Package Explorer for developers navigating between

Fig. 1 Eclipse IDE: (a) the package explorer view and (b) the source code editor view
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software artifacts in different modules; and de Alwis and Murphy (2006) discuss difficul-
ties on software comprehension by reading lines of code. Using the SourceMiner, software
structure and size and coupling attributes are observed through the graphical resources.
The SourceMiner has five visualizations, divided into two groups. The first group is

composed of three software coupling visualizations. They show different types of depen-
dency among entities, like direct access to attributes or method calling, for instance.
They also show the direction of the coupling. The coupling views are based on radial
graphs (Fig. 2a), relationship matrix (Fig. 2b), and tabular view (Fig. 2c). As an exam-
ple for comparison with the use of the traditional Eclipse IDE, lets look the view based
on radial graphs (Fig. 2a). Circles represent classes, and arrows represent dependencies
among classes. A tool-tip, informing data about the class, appears when the cursor is posi-
tioned over the class. Moreover, double click opens the code of the class on the Source
Code Editor. It is possible to observe coupling attribute for all classes looking the radial
graph view (and the other coupling views of SourceMiner). The tool also has interaction
resources enhancing comprehension of the code design (Carneiro et al. 2010; Carneiro
and Mendonça 2014). Using the traditional Eclipse IDE setup, it is necessary to read the
source code of each class in order to identify coupling.
The second group is composed of two hierarchical visualizations. The Treemap view

(Fig. 2d) shows the hierarchy of package-class-method of the software. A Treemap is a
hierarchical 2D visualization that maps a tree structure into a set of nested rectangles
(Johnson and Shneiderman 1991). In SourceMiner, rectangles representing methods of
the same class are drawn together inside the rectangle of the class. Likewise, the rectan-
gles of the classes that belong to the same package are drawn together inside the rectangle
of the package. Lines of code (LOC) or cyclomatic complexity are associated to the area
and colors of the rectangles. Thus, it is possible to observe classes with higher LOC
value easier than opening and reading the classes, such as using the traditional Eclipse
IDE. The Polymetric view (Fig. 2e) shows the hierarchy between classes and interfaces. A
Polymetric view uses a forest of rectangles to represent the inheritance trees formed by
classes and interfaces in a software system (Lanza and Ducasse 2003). In SourceMiner,

Fig. 2 SourceMiner views
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rectangles are linked by edges representing the inheritance relationship between them.
The length and width of the rectangles are used to represent the size and number of
methods of a class.
FinG 4. In FinG 4, we adopted only the Eclipse IDE tool. We did not adopt the software

visualization infrastructure.

3.3 Forms and docs

Five forms were used in total. During the training, participants filled a Consent and a
Characterization form. The Consent form was adopted because of ethic issues: the par-
ticipants had to consent publishing results of the experiment. The characterization form
was mainly adopted to group the participants in our analyses.
Except for FinG 4, where we did not adopt software visualization, the participants also

received a SourceMiner exercise guide. The adoption of this form supports the use of the
tool by the participants.
During the experiment itself, they filled in an Answer formwhere participants had to fill

in: i) initial and end time of the each smell detection task, and ii) identify each candidate
god class. This was the data form.
At the end of the experiments, the participants filled a Feedback form. On it, we asked

the participants to classify the training and the level of difficulty performing the detec-
tion tasks. It was also possible to write down suggestions and observations about the
experiment. We adopted a Feedback form to better learn about the experiments.
Besides these forms, we used two other documents, during experiments themselves.

One of them presented an overview of the software artifacts adopted in each experiment.
The other was a Support Question guide used to steer the participants in the search for
god classes. The questions were the same ones used by Schumacher et al. (2010). We
presented them in the very end of Section 2.1.

3.4 Software artifacts

FinG 1 and FinG 2. Six programs were used in these experiments. All of them implement
simple applications or games in Java. We chose Java language because the experience
of the participants and oracle researchers. Chess, Tic Tac Toe, Monopoly and Tetris
implement well known games. Solitaire-Freecell (Solitaire) is a framework for card games
with Solitaire and Freecell. Jackut is a very simple social network application. Table 1
characterizes the programs in terms of the number of packages, classes and LOC.
FinG 3 and FinG 4. Four programs were used in these experiments. We adopted more

complex software than in FinG 1 and FinG 2. The software were also implemented in
Java: i) Quilt is a software development tool that measures test coverage; ii) JMoney is a
personal finance (accounting) manager; iii) jParse is an Eclipse plugin in which you can
parse XML returned from an Ajax request; and iv) SQuirrel SQL Client is a graphical Java
program that allows one to view the structure of a JDBC compliant database, browse the

Table 1 Software objects for FinG 1 and FinG 2 experiments

Software Chess Jackut Tic Tac Toe Monopoly Solitaire Tetris

Packages 5 8 2 3 6 4

Classes 15 19 5 10 23 16

LOC 1426 978 616 2682 1758 993
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Table 2 Software objects for FinG 3 and FinG 4 experiments

Software Quilt JMoney Squirrel jParse

Packages 20 4 3 4

Classes 104 79 73 69

LOC 8020 8197 6944 24796

data in the tables, and issue SQL commands, among other functions. Table 2 characterizes
the programs in terms of number of packages, classes and LOC.

3.5 Task

FinG 1 and FinG 2. In these experiments, we asked participants to detect god classes in
the software. We provided only a set of Support Questions as a guide. Each participant
was free to use her/his own strategy to do the task.
FinG 3 and FinG 4. In these experiments, as in FinG 1/FinG 2, we gave the software

and the Support Questions as a guide. However, we did not ask participants to detect
god classes on all classes of the software. We selected 12 candidate classes in each soft-
ware application, because the analysis of the whole software, during the experiments, was
impractical. The 12 classes chosen are those with the highest LOC. This number is simi-
lar on average to the total number of classes in the small programs used in FinG 1/FinG 2.
Moreover, this approach did not impact in the evaluation of the software size variable.
Considering the classes observed by the participants of FinG 1 and FinG 2, the LOC value
average is 93. Considering the classes observed by the participants of FinG 3 and FinG 4,
the LOC value average is 684. The participants were free to define their process for
detecting god classes.

3.6 Design

We consider the design of the experiments as the laboratory settings and the distribution
of participants among the workstations. All experiments were carried out in a labora-
tory at UFBA. Participants had about three hours to carry out the task. Each participant
worked at an independent workstation.
FinG 1 and FinG 2. In these experiments, the workstations were divided into two

groups. In FinG 1, there were six participants in the Group 1 and five participants in the
Group 2. In FinG 2, there were 13 participants in the Group 1 and 11 participants in the
Group 2. At each workstation, we set up two Eclipse IDEs.We fitted the SourceMiner only
for one of the Eclipse installations in the workstation. Each installation had three of the
six programs in their workspace. The programs in the workspaces were rotated between
the groups. Table 3 presents this design.

Table 3 Design of FinG 1 and FinG 2

Group With Without Participants’ Participants’
SourceMiner SourceMiner ID (FinG 1) ID (FinG 2)

1 Chess, Monopoly, 14, 21, 1, 3, 4, 7, 9, 11,

Jackut and Tetris and 32, 35, 13, 15, 17, 19

Solitaire Tic Tac Toe 42 and 44 21, 23, 25 and 27

2 Monopoly, Chess, 13, 15, 5, 6, 8, 10

Tetris and Jackut and 25, 31 and 12, 14, 16, 18

Tic Tac Toe Solitaire 41 20, 22 and 26
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Table 4 Design of FinG 3

Group With SourceMiner Without SourceMiner Participants’ ID (FinG 3)

1 jParse and JMoney and 1, 2, 3, 6, 7, 10, 11,

Quilt Squirrel 12, 13, 21, 23, 24 and 25

2 JMoney and jParse and 9, 14, 15, 16, 17, 18,

Squirrel Quilt 19, 20, 27, 28, 29

FinG 3. The only difference in the design of FinG 3 compared with FinG 1 and FinG
2 was the number of programs in the workspace of each Eclipse IDE. In FinG 3, there
was two medium sized, instead of three small sized, software in each Eclipse workspace.
There were 13 participants in Group 1 and 11 participants in Group 2. Table 4 presents
this design.
FinG 4. In FinG 4, we adopted the same medium sized software as FinG 3, but had only

the basic setup of one Eclipse at each workspace. In this case, each participant always
detected god classes without SourceMiner. In all, 17 participants performed the task for
the four programs. Table 5 shows this design.
The participants were free to choose the order of the programs during the task. Thus,

they also were free to choose the order of use of the visualization tool, when it was
available.

3.7 The oracle

We adopted two different approaches to define the oracle in FinG 1-2 and FinG 3-4. We
did this because the software used in FinG 1-2 are simpler than the software used in FinG
3-4. We detail the approaches as follows.
FinG 1 and FinG 2. The oracle of FinG 1 and FinG 2 was based on two experi-

enced researchers from academia and industry. Both researchers had at least seven
years working on different software companies and five years lecturing and research-
ing in software engineering area. During the definition of the oracle answers, the
researchers did not have any access to the answers of the participants. Each of the
researchers did the god class detection task independently, based on their skills and
experience. Then, they met to discuss their disagreements and to define the final
oracle for the experiments. The two activities are important to bring confidence to
our oracle process: 1) independent god class detection and 2) meetings for group
discussion.
Table 6 shows the oracle of Fing 1 and FinG 2. First column shows the programs. Second

column shows the number of classes observed by the researchers, which is the total num-
ber of classes of the programs. Third column shows the agreement among the researchers
before their meeting (note that, there were few cases where the researchers disagreed on
evaluation of candidate god classes). The last column shows the name of the candidate
god classes as the oracle for FinG 1 and FinG 2.

Table 5 Design of FinG 4

Group Without SourceMiner Participants’ ID (FinG 4)

1 jParse, Quilt, 1, 2, 3, 4, 5, 6, 7, 8, 9,

JMoney and Squirrel 10, 11, 12, 13, 14, 15, 16 and 17
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Table 6 The orcale of FinG 1 and FinG 2

Program Total number of classes Agreement before meeting God class candidate

Tic Tac Toe 5 5 (100%) -

Monopoly 10 9 (90%) Jogo

Chess 15 14 (93%) Chess

Tetris 16 16 (100%) -

Jackut 19 19 (100%) -

Solitaire 23 22 (96%) -

FinG 3 and FinG 4. The oracle of FinG 3/FinG 4 was defined by three researchers, two
of them with years of experience in academia and industry. The first researcher is one of
the researchers of FinG 1 and FinG 2. The second researchers had at least 5 years working
on different software companies and 4 years lecturing and researching in software engi-
neering area. The third research was a graduate student that had five years working in
software engineering area.
After identifying the twelve largest classes for each of the four programs, the following

strategy was adopted to classify them:

1. To evaluate the name of the class, understanding its role on the software;
2. To evaluate the name of each method, understanding their role on the class;
3. For large or suspect methods, reading code;
4. If the method is considered out of scope (considering the role of the class), then to

mark it as such;
5. If two methods are considered out of scope, then the class should be classified at

least as a “maybe” god class (this threshold is defined to mark the class for further
discussion among the oracle researchers);

6. If more than two methods are considered out of scope, the class is a “yes” god class;
7. If doubts remain, considers size and readability to determine if the class is a god

class.

The experimenter, who was one of the oracle researchers, defined the god class detec-
tion strategy. It is important to highlight that the strategy above is presented to harmonize
the perception of the oracle researchers, instead to be considered a definitive approach to
detect god class. The main aspect of the oracle definition was the group discussion, as we
present below.
Alone, the first researcher classified the 12 classes selected for each program as a sure or

may be god class. The other two researchers were trained on the proposed strategy using
an independent set of classes. Together, they investigated pairwise the 12 selected classes.
After that, the three researchers met to compare and discuss their answers. During the
meeting, the discussion among the researchers focused on how flexible they should be
considering size and methods out of scope for the classes, such as the oracle researchers
of FinG 1/FinG 2.
Table 7 shows as the oracle researchers agreed on the identification of the candidate

(and not candidate) god classes. The table has the same structure as Table 6.
It is important to note that we did not use any automatic detection strategy because all

heuristics are based on metrics and thresholds. Once we were interested in investigation
of factors affecting the human perception of god classes, we did not provide any metrics
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Table 7 The oracle of FinG 3 and FinG 4

Program Total number of classes Agreement before meeting God class candidate

JMoney 12 10 (83%) MainFrame

JParse 12 8 (67%) Type

Squirrel 12 12 (100%) -

Quilt 12 12 (100%) -

values, avoiding to influence the participant answers. Moreover, we adopted the general
concept of god class, which involves concepts of god class, brain class and large class, as
discussed in Section2.1. Our analyses are not affected by the programs with no candidate
god classes. We grouped the results for each investigated factor, considering the agree-
ment among the participants and between the participants and the oracle (we detail our
strategy of analysis in Section 4.3).

3.8 Execution

The standard experimental setup took four days, in a span of three weeks. Two days for
training, one day for a pilot and one day for running the experiment itself. In the exper-
iment day, all participants performed the task for all programs, using and not using the
visualization tool, when it was permitted. The training was performed in two days due to
the quantity of activities. We performed a motivational presentation in the first day of the
training. In this presentation, we discussed the experimental software engineering scene
and tied it with discussions about code smells because we noted that some participants
had few knowledge on the topic. At the end of the first day, we asked the participants to fill
out the Consent and Characterization forms. On the second day of training, we focused
in the visualization tool. We performed the activity in a lab, introducing SourceMiner
and running a practical exercise. The practical exercise focused on the use of the tool and
how it could help on perception of differences on size, complexity and coupling among
classes. The last activities of the exercise asked the participants to search for god classes
using SourceMiner. For these activities, we did not influence the participants on their
evaluation.
As discussed earlier, there were variations on the standard setup of the experiments.

Table 8 shows the schedule and variations for each experiment. In the motivational pre-
sentation of FinG 1, we discussed shortly the concepts of code smell, large class, god class
and brain class. We did this because the participants were undergraduate and had lim-
ited software development experience. For FinG 2, FinG 3 and FinG 4, we did not discuss

Table 8 The schedule and variations of the experiments

Day Activity FinG Local Time (Hour)

1 2 3 4

1 Motivational presentation • • • • Classroom 1.0

Code smell concept presentation • Classroom 0.25

2 Questionnaire after reading • • Lab 0.25

SourceMiner presentation • • • Lab 0.5

SourceMiner exercise • • • Lab 2.0

Training based on examples • Lab 2.5

3 Pilot • • • • Lab 2.5

4 Execution • • • • Lab 2.5
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the god class or code smell concepts. We simply asked the participants to read parts of
Fowler (1999) and Lanza and Marinescu (2005)’s books, instead. They received a doc-
ument explaining which pages of the books they had to read. From Fowler’s, they read
about refactoring, smells and large classes. From Lanza and Marinescu’s, they read about
disharmony, god class, brain methods and brain classes.
In the following week, before starting their training on SourceMiner, participants of

Fing 2 and FinG 3 were given a 15 min questionnaire. The questions (three in total)
addressed concepts of refactoring, large class, god class and brain class. This requirement
motivated the participants to read the training material more carefully and was later used
to measure developer knowledge (one of our independent variables). FinG 4 training was
different. There was no SourceMiner training. Instead, we performed a training based on
examples. First, we showed examples of classes with different size, complexity and cou-
pling, discussing why we consider them as candidate or not candidate to be a god class.
We based on the process that we defined in Section 3.7. Then, we asked the participants
to perform the same activity looking other classes and identifying if they were god class
candidate or not. They answered in a WEB form that we created. In the final part of the
day training, we (the experimenters and participants) discussed about the differences on
the answers. The aim of this discussion was to align the personal thresholds and rigor on
the evaluation of god classes in order to support us on the evaluation of the developer
training factor (another of our independent variables).

3.9 Deviations and non-conformities

We discarded some data points in each of the first three experiments. FinG 1 started with
17 participants, but we used only 11 data points; FinG 2 started with 28 participants, but
we used only 25; and FinG 3 started with 29, but we used only 25. For all cases, the results
were discarded because, or the participants participated of the pilot, or they missed, at
least, one of the experiment’s activities. FinG 4 started with 17 participants, all completed
the experiment.
Except for FinG4, we performed a pilot with two participants. In FinG 1, the pilot helped

us to evaluate the use of the Answer form, in paper or electronic format, and to evaluate
the time needed to complete the experiment. In FinG 2, the pilot did not indicate any
problem, probably because its setup is very similar to FinG 1. The pilot was useful in FinG
3 because it helped us to adjust the Answer form, which was different from FinG 1 and
FinG 2, and to evaluate the time, because we asked the participants to analyze 12 classes of
four medium size programs (more complex that those used in FinG 1/FinG 2). Finally, the
pilot in FinG 4 used two independent researchers. It helped us to evaluate and to perform
some adjustments in the training on god class concept, which was based on examples.

4 Evaluation of five factors affecting god class detection
In this section, we discuss our approach to address five factors affecting the human
perception on god class detection. We detail the analyzed factors, variations in the
experimental setup and the analysis procedure.
Figure 3 summarizes our approach. We measured the human perception as the agree-

ment among developers detecting god classes: low agreement indicating that the factor
significantly impacts the human perception on god class detection. Thus, we defined
“agreement” on god class detection as the dependent variable (the arrow on the right side
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Fig. 3 The investigated factors

of the figure). We discuss our definitions of agreement later on. We evaluate the impact
of the following factors as the independent variables of our experiments (the arrows on
the left side of the figure): design comprehension tool support, developer knowledge and
experience, software size, and developer training.

4.1 The choice of the investigated factors

In order to investigate the factors, we define them as the independent variables of our
controlled experiments. Constraints on carrying out controlled experiments force us
addressing a limited number of variables. The choice of input variables was based on
insights gained after the analysis of other empirical works on the subject, or the analysis
of the previous experiment in the FinG family. We based the choice of the variables on the
context definitions proposed by Dybå et al. (2012). They define three dimensions for the
discrete context, which is focused on variables directly affecting the behavior in software
engineering. The dimensions are technical, social and environmental. In this paper, we
address two types: technical (size of software and tools adopted) and social (knowledge,
experience and training). As previously discussed, we did not find other study analyzing
such extensive set of independent variables with respect to smell detection agreement.
Below, we explain and motivate the choice of the variables in more detail:

• Design comprehension tool support. One of our first ideas to explore factors
affecting smell detection was based on the nature of the concept. As the code smell
concept is intrinsically related to the quality of design, we decided to investigate the
impact of the overall comprehension of the design on human evaluation of god class,
one of he most known smells. To do this, we considered the use of software
visualization. We found some studies addressing software visualization tools and
code smell detection (Simon et al. 2001; Van Emden and Moonen 2002; Parnin et al.
2008; Murphy-Hill and Black 2010), but their focus was on the evaluation of the
tools. None of them focused on discussing how a better comprehension of the design
(acquired by the use of visual resources) affects the human perception of a code smell.

• Developer knowledge. Dybå et al. (2012) highlighted individual skills when
discussed the importance of context in experimentation. They consider individual
skill as a variable that directly might influence behavior or moderate relationships
between other variables. We investigated if extensive reading about god classes and
code smell would impact on god class detection agreement. We did not find other
studies addressing this variable.

• Developer experience. The experience is an important contextual aspect in the
software engineering discipline (Höst et al. 2000; Carver et al. 2003; Höst et al. 2005).
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An evidence of the importance of experience in smell detection is noted in Kreimer
(2005)’s statement: “depending on the perception and experience of the searching
engineer, design flaws are interpreted in a different way”. Despite the importance, the
topic is lightly addressed in code smell evaluations. Even Kreimer’s work did not
explore the impact of the experience on code smell detection. He proposed a method
to find code smells.

• Software size. In FinG 1 and FinG 2, we looked at simple and familiar applications to
minimize the effort of participants during the inspection of code. Our argument was
that the human evaluation is affected by subjectivity for any type of software. We felt
the need to assess if software size, an important factor, plays a role in smell detection
agreement. FinG 3 was used to investigate this subject.

• Developer training. This variable emerged from the analysis of FinG1, FinG 2 and
FinG 3. We found out that inconsistencies on code smell detection were not
mitigated by the use of tool support, such as using metrics or visualization resources.
We then hypothesized that, in order to mitigate subjectivity, it is important to teach
people about the conceptualization of smells. We decided to use training, based on
golden examples4 of smells and group discussions, as one of the independent
variables in our work.

4.2 Variations in the experimental setup

This section shows how we controlled the independent variables, varying some attributes
of the experiments. The experimental variation in a family of controlled experiments, to
expand and to evolve the knowledge on a topic, is proposed by Basili et al. (1999) and
Juristo and Vegas (2009). Figures 4 and 5 show how we controlled the addressed variables
from two approaches: i) in some cases, we investigated the variables independently for
each experiment; ii) in the other cases, the investigation was based on the comparison
among the experiments’ results.
In Fig. 4, we show variables that were investigated independently for each experiment.

In these cases, we used two experiments to strength our analysis of each variable. In other
words, we performed our analysis based on two different and independent set of evi-
dences. We chose the two experiments with the closest experimental setup in order to
perform these analyses. This was the case of the design comprehension tool support and
developer knowledge variables:

• Design comprehension tool support. Participants detected god classes with and
without the use of software visualization tool support, in FinG 1 and FinG 2 (Fig. 4,
left side). In these experiments, we evaluate the results of the agreement in both cases
with and without visualization.

Fig. 4 Independent analysis for each experiment
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Fig. 5 One experiment against the other

• Developer knowledge. During the training, participants received a questionnaire,
where they answered conceptual questions about code smell and god class, in FinG 2
and FinG 3 (Fig. 4, right side). We evaluate the agreement among participants with
“good” and “bad” knowledge rating, independently, for each experiment.

In Fig. 5, we show variables that were investigated from the comparison between the
experiments’ results. In these cases, we considered results of one experiment against the
other experiment in order to analyze if the experimental setup changing affected the par-
ticipants answers. It was the case of the developer experience, software size and developer
training variables:

• Developer experience.
The main difference on the experimental setup of FinG 1 and FinG 2 was the
experience of the participants (Fig. 5, top left side). While FinG 1 was carried out
with undergraduate students, FinG 2 only had graduate students and professionals.
We then compared results of FinG 1 against results of FinG 2 to investigate the
impact of experience on smell detection agreement.
It is important to highlight that there is another difference among FinG 1 and FinG 2,
which is the training. We present it in Section 3.8 and summarize in Table 9. In
FinG 1, the training was based on a presentation, while in FinG 2 the training was
based on book reading. We consider that this difference does not impact our analysis.
We argue that in both FinG 1 and FinG 2 cases, the training approaches just
shallowly exposed the participants to a quite simple and intuitive concept, which is
god class. The reasons about why we switched the training are discussed in Section 7
(Threats to validity).
We disregarded the results of FinG 3 and FinG 4 in this analysis because, despite
similar participants’ experience, the inspected software were different.

• Software size. The main difference on the experimental setup of FinG 2 and FinG 3
was the size of the analyzed software (Fig. 5, top right side). We considered line of
code (LOC) as the measure of software size. FinG 2 was carried out with six small
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Table 9 Summary of experimental setup of FinG’s experiments

Experiment Participants Software Design Training

FinG 1 Undergraduate Six small Two groups: Presentation
students software with and without

artifacts visualization tools

FinG 2 Graduate Six small Two groups: Reading
students/ software with and without books and
professionals artifacts visualization tools questionnaire

FinG 3 Graduate Four medium Two groups: Reading
students/ software with and without books and
professionals visualization tools questionnaire

FinG 4 Graduate Four medium One group: Reading and
students/ software without training based
professionals visualization tools on examples

programs, while FinG 3 used four medium size programs. Thus, we compared the
results of FinG 2 against the results of FinG 3 to investigate the impact of software
size on smell detection agreement.
We highlight that there is another difference among FinG 2 and FinG 3, which is
related to the task performed by the participants (see Section 3.5). The participants of
FinG 2 were asked to detect god classes inspecting all software, while the participants
of FinG 3 were asked to detect god classes for specific classes. We consider that this
difference does not impact our analysis, because the participants inspected a quite
similar number of classes in both FinG 2 and FinG 3 experiments (around 12). The
reasons for task changing are discussed in Section 7 (Threats to validity).
We disregarded results of FinG 1 because the participants were undergraduate
students. In the same way, we disregarded results of FinG 4 in this analysis because
its training was significantly modified as it is one of the variables we investigate.

• Developer training. The main difference on the experimental setup between FinG 3
and FinG 4 was the training of the participants (Fig. 5, bottom). The participants of
FinG 3 just read a set of training material and answered an evaluation questionnaire,
while the Participants of FinG 4 read the training material, had a training lecture with
examples and group discussion about smells. We then compared results of FinG 3
against results of FinG 4 to investigate the impact of training on smell detection
agreement.
We highlight that there is another difference between FinG 3 and FinG 4, which is
related to the use a support visualization tool (see Section 3.2 and Table 9). The
participants of FinG 3 used a visualization tool, while the participants of FinG 4 did
not use a visualization tool. We consider that the absence of a visualization tool in
FinG 4 does not impact our analysis because this was one of our findings
investigating the independent variable “design comprehension tool support”. This
analysis is presented in Section 5.1.3.
We disregarded results of FinG 1 and FinG 2 because the software used in these
experiments were different. We detail type of software for each experiment in
Section 3.4.

Table 9 summarizes the variations between the experiments. The first column contains
the name of the experiments, while the other columns summarize the participants, the
software, the experimental design and the training for each FinG experiment.
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4.3 Analysis procedure

Our analysis considered two perspectives: agreement among the participants and agree-
ment between each participant and the oracle.
Agreement among the participants. We adopted the Finn coefficient (Finn 1970),

as opposed to the Kappa coefficient (Cohen 1960; Fleiss and et al 1971), used in other
works addressing code smells (Schumacher et al. 2010; Fontana et al. 2012; Yamashita and
Counsell 2013). These studies adopted Cohen’s Kappa coefficient, which is an index of
inter-rater reliability used to measure level of agreement among two raters. Fontana et al.
(2012) also adopted Fleiss’ Kappa, which is a coefficient used to measure level of agree-
ment for more than two raters. As the Fleiss’ Kappa, Finn coefficient is used for more than
two raters.
We adopted Finn coefficient because of problems identified in Kappa coefficient, by

data analysis researchers (Whitehurst 1984; Feinstein and Cicchetti 1990; Gwet 2002;
Powers 2012). The Kappa test is done in two phases. First, an agreement rate is calculated
and, then, this value is used to calculate the coefficient. Feinstein and Cicchetti (1990)
show that one can have high agreement rate and low values of the Kappa coefficient when
the variance on values of raters is low. We noted this situation in the work of Schumacher
et al. (2010). The Finn coefficient is recommended when variance between raters is low
(Finn 1970). Whitehurst (1984) suggests Finn as an alternative to problems with Kappa,
and affirms that it is the most reasonable index for agreement.
Our analyses were based on the evolution of the agreement level between the different

groups analyzed (with and without visualization support, more and less experienced par-
ticipants, small and medium software size, knowledge level, and training). We adopted
classification levels to make it easier the comparison between the agreement values. Like
Schumacher et al. (2010) and Zhang et al. (2011), we used the agreement classification
levels defined by Landis and Koch (1977). The classification is as follows: slight, for val-
ues between 0.00 and 0.20; fair (between 0.21 and 0.40); moderate (between 0.41 and
0.60); substantial (between 0.61 and 0.80); and almost perfect (between 0.81 and 1.00)
agreement level.
A problem occurs with the use of agreement coefficients when there is a high number

of items that have a sure negative classification. In these cases, the agreement coefficient
tends to be very high, hiding disagreements on the items with possible positive classifica-
tions. This occurs in FinG 1 and FinG 2, where most of the classes are small and clearly are
not god classes. To mitigate this problem, we considered that the total number of classes
to be used in the agreement test was twice the total number of god class candidates. We
defined a candidate god class as class chosen by, at least, one participant. If this number
was higher than the total number of classes of the software under analysis, we considered
the total number of classes of the software. This problem did not occur in FinG 3 and
FinG 4, because we selected the biggest 12 classes of medium sized software, most of them
good god class candidates.
Agreement between the participants and the oracle. To evaluate participant success

with respect to the oracle, we adopted an accuracy measure. The confusion matrix shown
in Table 10 captures the idea of our analysis. The top columns values represent candidate
god classes selected by the participants. The left column values represent candidate god
classes indicated by oracle. True positives represent the case where the participant and
oracle agree on a candidate god class. False positives occur when participants marked a
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Table 10 Confusion matrix

Predicted (participant)

God class No god class

Actual (oracle) God class True positive (TP) False negative (FN)

No god class False positive (FP) True negative (TN)

god class in disagreement with the oracle. False negatives occur when the participant did
not mark a god class in disagreement with the oracle. Lastly, true negatives are the cases
where the participant and the oracle agreed on a negative.
The accuracy measure captures all these cases. The formula is given below.

accuracy = number of : TP + TN
number of : TP + FP + FN + TN

(1)

After calculate accuracy values, we statically compared the different groups analyzed
(with and without visualization support, more and less experienced participants, small
and medium software size, knowledge level, and training). We adopted the Shapiro-Wilk
normality test, which is considered the most powerful normality test by some authors
(Kitchenham et al. 2017). For all cases, there was, at least, a group of the samples in which
the distribution was not normal. Due to this, we adopted the Mann-Whitney, a non-
parametric alternative to t-test, with a 0.05 p-value, to statistically test our hypotheses,
which we present in the next section.
We also evaluated our results in terms of magnitude, testing the effect size mea-

sure. We adopted the non-parametric Cliff ’s Delta test (Cliff 1996) to evaluate the effect
size. Cliff ’s Delta test is also recommended by Kitchenham et al. (2017). In order to
assess the magnitude on effect size, we used the classification presented by Romano
et al. (2006). The classification is as follows: negligible, for |d| < 0.147; small (|d| <

0.33); medium (|d| < 0.474); and large, otherwise. We considered Cliff ’s Delta values
on small (or higher) classification as evidences of differences on the sample values.
We did this because our samples had a small number of data points, which is com-
mon for controlled experiments in software engineering involving humans as participant
subjects.

4.4 Hypotheses

Our hypotheses were based on the discussion about the independent variables, presented
in Section 4.1.
Design comprehension tool support. Our hypothesis is: developers detecting god class

using visual resources to enhance their overall comprehension of the design agree and
succeed (agreeing with oracle) more than developers not using any visual resource. This
hypothesis is based on the fact code smells represent “bad” design decisions and the
visualization tool we adopted enhances the comprehension of the design.
Developer knowledge. The hypothesis is: developers who have better knowledge on code

smell agree and succeedmore than the others. We used a questionnaire, where participants
answered simple questions about concepts related to god class to group the participants:
those with “bad” and those with “good” knowledge on code smell concepts.
Developer experience. The hypothesis is: more experienced developers agree and suc-

ceed more than less experienced developers. We used the participants of FinG 1 and FinG
2, who had different experience profile, to test this hypothesis.
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Software size. Our hypothesis is: developers agree and succeed more if they are
looking at simpler software. We compared the results of FinG 2 and FinG 3, which
had similar design and participant profile, but different software size, to test this
hypothesis.
Developer Training. The hypothesis is: better trained developers agree and suc-

ceed more than the others. We compared the results of FinG 3 and FinG 4, which
had similar participant profile and software size, but different training procedures,
to test this hypothesis. Here it is important to observe that FinG 4 did not use
the visualization tool in any treatment, while FinG 3 did that for half of its tri-
als. This raises the concern that Design Comprehension Tool Support, an important
confounding factor, was not considered in the analysis of the Developer Training
variable. However, as will be presented in Section 5.1, FinG 1 and FinG 2 experi-
ments showed that Design Comprehension Tool Support does not affect the agreement
results.

5 Results
In this section, we present the results of our analyses for all independent variables we
address.

5.1 Design comprehension tool support

To analyze how design comprehension impacts agreement on god class detection, we
considered FinG 1 and FinG 2 experiments, independently. We grouped the partici-
pants using and not using visualization, because we consider that the visual resources of
SourceMiner enhance overall comprehension of the program design (Carneiro et al. 2010;
Carneiro and Mendonça 2013).

5.1.1 Agreement among the participants

Table 11 contains the agreement coefficient values for each program, considering both
with and without visualization cases in FinG 1. The visualization column indicates if
the experiment was realized with or without visualization tools. The other columns are
the total number of classes (#class) considered in the agreement test, the number of
participants (#part), the Finn coefficient value (Finn), the p-value and the agreement level.
In order to analyze the evolution of the agreement coefficient, from the case without

visualization to the case with visualization, we used classification defined by Landis and
Koch, as explained in Section 4.3.
In the second line (Table 11), the level of agreement related to Tetris programwas “mod-

erate” in both without and with visualization cases. The evolution value was filled with
the term “SAME”, indicating there was no evolution in the agreement level. For the Jackut
program, the evolution value indicates the agreement level increased when participants
used visual support.
Some agreement values are not filled in the table because the p-value is out of the signif-

icance range (> 0.05). This indicates that we cannot be confident about these coefficient
values and these cases were removed from the analysis. Overall, considering the FinG 1
experiment, the agreement among the participants using visualization was better in one
case. Three cases were not considered. And, the agreement level was the same in the other
two cases.
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Table 11 Finn agreement test for FinG 1 with and without visualization tool
Program Visualization #class #part Finn p-value Agreement level

Monopoly Without 4 6 0.567 0.0135 Moderate

With 2 5 0.4 0.221 -

Fromwithout visualization to with visualization evolution -

Tetris Without 4 6 0.567 0.0135 Moderate

With 6 5 0.467 0.0307 Moderate

Fromwithout visualization to with visualization evolution SAME

Tic Tac Toe Without 4 6 0.567 0.0135 Moderate

With 2 5 0.6 0.0788 -

Fromwithout visualization to with visualization evolution -

Chess Without 6 5 0.467 0.0307 Moderate

With 6 6 0.6 0.0014 Moderate

Fromwithout visualization to with visualization evolution SAME

Jackut Without 6 4 0.5 0.0403 Moderate

With 6 6 0.667 0.000226 Substantial

Fromwithout visualization to with visualization evolution INCR

Solitaire Without 4 5 0.4 0.113 -

With 8 6 0.617 0.000147 Substantial

Fromwithout visualization to with visualization evolution -

Table 12 presents the same structure of Table 11, but with the results of the FinG
2 experiment. In FinG 2, the agreement was worse when participants used the visual
resources in two cases, and it was the same in the other four cases.
For the Jackut program, the result was the opposite of the result found for FinG 1

(Table 11). In FinG 1, the agreement level increased when the participants used visual
support, while in FinG 2, the agreement level decreased.

Table 12 Finn agreement test for FinG 2 with and without visualization tool

Program Visualization #class #part Finn p-value Agreement level

Monopoly Without 8 14 0.717 3.68e-14 Substantial

With 6 11 0.636 1.44e-06 Substantial

Fromwithout visualization to with visualization evolution SAME

Tetris Without 6 14 0.758 5.19e-13 Substantial

With 8 11 0.636 2.94e-08 Substantial

Fromwithout visualization to with visualization evolution SAME

Tic Tac Toe Without 4 13 0.667 3.73e-06 Substantial

With 5 11 0.68 1.17e-06 Substantial

Fromwithout visualization to with visualization evolution SAME

Chess Without 8 11 0.755 4.2e-13 Substantial

With 8 14 0.739 1.67e-15 Substantial

Fromwithout visualization to with visualization evolution SAME

Jackut Without 6 11 0.612 4.98e-06 Substantial

With 4 14 0.516 0.000604 Moderate

Fromwithout visualization to with visualization evolution DECR

Solitaire Without 6 11 0.745 7.38e-10 Substantial

With 6 14 0.579 1.54e-06 Moderate

Fromwithout visualization to with visualization evolution DECR
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5.1.2 Agreement between the participants and the oracle

As discussed in Section 4.3, we calculated the accuracy of the participants’ answers, con-
sidering our oracle. We expected higher accuracy values for the cases where participants
had a better comprehension of the design. Based on discussion about our hypothesis in
Section 4.4, we defined the null hypothesis as:

• H0: there is no difference of accuracy values between the cases where participants
were using and not using visualization tool

Table 13 shows the statistical tests. In the first line, we considered results for FinG 1.
In the second line, we considered results for FinG 2. In both cases, we could not reject
the null hypothesis using the Mann-Whitney non-parametric test (notice that the distri-
bution is not normal according to the Shapiro-Wilk test). The final columns of the table
show the Cliff ’s Delta effect size. The magnitude on the effect size, for both experiments,
was negligible.

5.1.3 Analysis

We found a design comprehension tool support does not improve agreement on god class
detection. The following highlights the evidences. First, the level of agreement among the
participants for both using and not using visualization groups was the same for the most
cases. Second, the hypothesis test and effect size were not conclusive. Besides, there were
some contradictory results. In some cases, participants of FinG 1 had better results using
visualization (case of the Jackut program in Table 11), and participants of FinG 2 had bet-
ter results not using visualization (cases of the Jackut and Solitaire programs in Table 12).
We have to consider the experience of the participants as a potential confounding factor
in this analysis.
We conjecture that god class detection is more related to personal conceptualization

than to design comprehension, and that technical support does not affect the con-
ceptualization of the smell. We believe this is transversal to other kinds of technical
support. Metric-based tools, for example, are dependent on heuristics and value thresh-
olds, which are dependent on human definition anyway. Fontana et al. (2012) discuss
some inconsistencies in heuristics using metrics-based tools.

5.2 Developer experience

To evaluate how experience impacts agreement on god class detection, we compared
results of FinG 1 against results of FinG 2. The experiments had similar setup and themain
difference between them was the participants’ profile. We captured experience based on
two questions of the Characterization form. The first question asked how long the partic-
ipant worked professionally (even as a researcher) on software development. The second

Table 13 Hypothesis test for analysis of design comprehension tool support, considering FinG 1 and
FinG 2

Shapiro-Wilk Mann-Whitney Cliff’s Delta effect size

FinG Without vis With vis

W p-value W p-value W p-value Delta Magnitude

1 0.8045 4.953e-05 0.7688 8.641e-06 478 0.4884 0.09 Negligible

2 0.7723 2.34e-09 0.7867 4.619e-09 3070 0.2283 0.11 Negligible
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question asked how long they had programmed using the object oriented paradigm,
considering course work in this case. We present distribution of the answers in Fig. 6.
The participants of FinG 2 had two years or more of experience than the participants
of FinG 1.
Due to this difference, we grouped participants of FinG 1 and FinG 2 in different classes.

We adopted the classification presented by Höst et al. (2005). They addressed experience
as context variable in empirical studies and proposed a classification, which we show in
Table 14. The scale in the table is ordinal, a higher value corresponds to more experience
than a lower value (E1< E2, E2< E3, and so on). It is important to note the authors did not
present the classes as a rigid classification, but as a starting point to analysis of experience.
As all participants of FinG 1 were undergraduate students, they are all in the E1 class.
Participants of FinG 2 were classified in-between the E2 and E5 classes. In spite being
graduate students, their profiles indicated most of them were or had been professionals.

5.2.1 Agreement among the participants

Table 15 shows agreement coefficient values for FinG 1 and FinG 2 for each program. In
most of the programs, the agreement is the same for FinG 1 and FinG 2, except for Chess
program. In this case, the agreement is higher in FinG 2 (INCR). For the Jackut program
in FinG 1, and Tic Tac Toe in FinG 2, the number of participants is different of the other
cases. This happened because the participants marked in the form a class as a candidate,
but they did not fill the name of the classes. We removed these data to avoid affecting the
test.

5.2.2 Agreement between the participants and the oracle

To perform statistical tests comparing accuracy values of FinG 1 and FinG 2, we defined
the null hypothesis. We expected more experienced participants succeed more than less
experienced participants. Then, our null hypothesis is:

• H0: there is no difference of accuracy values between participants of FinG 1 and
FinG 2

Table 16 shows statistical tests. We highlighted Mann-Whitney p-value because we
rejected the null hypothesis. We also highlighted the magnitude of the Cliff ’s Delta value
because it showed some magnitude (despite small) on the effect size.

Fig. 6 Years of experience, for FinG 1 and FinG 2’s participants
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Table 14 Class of experiences of participants (Höst et al. 2005)

Category Description

E1 Undergraduate student with less than 3 months recent industrial experience

E2 Graduate student with less than 3 months recent industrial experience

E3 Academic with less than 3 months recent industrial experience

E4 Any person with recent industrial experience, between 3 months and 2 years

E5 Any person with industrial experience for more than 2 years

5.2.3 Analysis

From the results, we consider that the experience impacts agreement on god class detec-
tion, but not definitively. The hypothesis test and the magnitude of the effect size5

confirmed that there was a difference on the accuracy values with respect to the oracle for
both more and less experienced participants groups. However, most cases of agreement
among the participants were classified as the “same” for both groups. Only in one case the
agreement level was higher for more experienced developers. These findings may suggest
that there are other human aspects affecting god class detection.

5.3 Developer knowledge

In this section, we present the results related to developer knowledge variable. In this case,
we based our analysis on a questionnaire applied during the training of FinG 2 and FinG 3.
We discussed the questionnaire in Section 3.8. To evaluate the knowledge, we analyzed
answers of the questionnaire. We defined a template, before reading the answers. Then,
we classified the answers as follows:

1. Wrong answer (distant of the central idea)
2. Some correct propositions, but without capturing the main idea

Table 15 Finn agreement test for FinG 1 and FinG 2 experiments

Program Experiment #class #part Finn p-value Agreement level

Monopoly FinG 1 4 11 0.636 7.4e-05 Substantial

FinG 2 8 25 0.732 2.51e-26 Substantial

Evolution of agreement level from FinG 1 to FinG 2 SAME

Tetris FinG 1 8 11 0.682 8.12e-10 Substantial

FinG 2 10 25 0.78 2.56e-40 Substantial

Evolution of agreement level from FinG 1 to FinG 2 SAME

Tic Tac Toe FinG 1 4 11 0.691 7.94e-06 Substantial

FinG 2 5 24 0.713 3.12e-15 Substantial

Evolution of agreement level from FinG 1 to FinG 2 SAME

Chess FinG 1 10 11 0.716 1.22e-13 Substantial

FinG 2 10 25 0.803 8.14e-45 Almost perfect

Evolution of agreement level from FinG 1 to FinG 2 INCR

Jackut FinG 1 8 10 0.722 1.67e-10 Substantial

FinG 2 6 25 0.66 5.65e-15 Substantial

Evolution of agreement level from FinG 1 to FinG 2 SAME

Solitaire FinG 1 10 11 0.702 7.3e-13 Substantial

FinG 2 6 25 0.649 2.61e-14 Substantial

Evolution of agreement level from FinG 1 to FinG 2 SAME
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Table 16 Hypothesis test for analysis of developer experience, considering FinG 1 and FinG 2

Shapiro-Wilk Mann-Whitney Cliff’s Delta effect size

FinG 1 FinG 2

W p-value W p-value W p-value Delta Magnitude

0.8419 8.066e-07 0.7807 1.163e-13 3974.5 0.02735 0.18 small

3. Capturing main idea, but without a good explanation
4. Capturing main idea, with a good explanation (perfect answer)

From our template, we scored the answers of each participant from 3 (three wrong
answers) to 12 (three perfect answers). We grouped the participants according to three
different thresholds scores: i) 70%, ii) 80% and, iii) the median. All results impacted our
analysis in the same way. In this paper, we show results considering the threshold score
as 70%. We consider 70% as a good score to indicate the participants have an appropriate
knowledge on the code smell subject.
We considered participants with scores equal or above 70% as with “good” knowledge.

In opposition, we considered participants with scores under 70% as “bad” knowledge. In
FinG 2, there were 15 participants with “good” knowledge, and nine participants with
“bad” knowledge. Note that, the total of participants considered was 24: one of them did
not send us his/her questionnaire. Due to this, we removed the participant from this anal-
ysis. In FinG 3, there were nine participants with “good” knowledge, and 16 participants
with “bad” knowledge.

5.3.1 Agreement among the participants

Table 17 shows agreement coefficient values for FinG 2 according to the knowledge of the
participants. There were two cases where the agreement level decreased, when partici-
pants had “good” knowledge: Tic Tac Toe and Chess programs. For the other four cases,
the agreement level was the same.
Table 18 has the same structure of the previous table, but it shows the agreement values

among participants of FinG 3. The main difference on the setup of Fing 2 and FinG 3 is
the software size. FinG 3 used four medium size programs. In two cases, the agreement
level among the participants with “good” knowledge increased. For the other two cases,
the agreement level was the same.

5.3.2 Agreement between the participants and the oracle

We expected that participants with “good” knowledge succeeded more than participants
with “bad” knowledge. Then, we defined the null hypothesis as:

• H0: there is no difference of accuracy values between participants with “good”
knowledge and “bad” knowledge

In Table 19, we show statistical tests for both FinG 2 and FinG 3 experiments. In both
cases, we could not reject the null hypothesis. The magnitude on the effect size, for both
experiments, was negligible.

5.3.3 Analysis

We highlight conflicting results in FinG 2. There were two cases where the agreement
level was lower for participants with “good” knowledge in FinG 2. However, we had oppo-
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Table 17 Finn agreement test for FinG 2, grouped by participants’ knowledge

Program Knowledge #class #part Finn p-value Agreement level

Monopoly Bad 8 9 0.681 4.02e-08 Substantial

Good 8 15 0.757 6.88e-18 Substantial

From bad knowledge to good knowledge evolution SAME

Tetris Bad 10 9 0.756 3.71e-13 Substantial

Good 10 15 0.775 9.43e-24 Substantial

From bad knowledge to good knowledge evolution SAME

Tic Tac Toe Bad 5 9 1 0 Almost perfect

Good 5 15 0.611 9.02e-07 Substantial

From bad knowledge to good knowledge evolution DECR

Chess Bad 10 9 0.856 1.3e-20 Almost perfect

Good 10 15 0.779 3.7e-24 Substantial

From bad knowledge to good knowledge evolution DECR

Jackut Bad 6 9 0.63 2.02e-05 Substantial

Good 6 15 0.683 2.94e-10 Substantial

From bad knowledge to good knowledge evolution SAME

Solitaire Bad 6 9 0.63 2.02e-05 Substantial

Good 6 15 0.657 2.66e-09 Substantial

From bad knowledge to good knowledge evolution SAME

site findings in FinG 3, where there were two cases in which the agreement was higher for
participants with “good” knowledge. Besides, the hypothesis test and effect size were not
conclusive.
The dependent variable, in this case, might be affected by the different types

of software used in FinG 2 and FinG 3. Remember that the software used in
FinG 3 is more complex than the software used in FinG 2. Clearly, software size
is an important confounding factor, but the findings also indicate that the devel-
oper knowledge is more relevant on evaluation of more complex software. Due to
this, although we do not consider the evidences are very strong, we believe knowl-
edge also impacts agreement to a certain level, and the subject should be further
analyzed.

Table 18 Finn agreement test for FinG 3, grouped by participants’ knowledge

Program Knowledge #class #part Finn p-value Agreement level

JMoney Bad 12 16 0.506 1.39e-09 Moderate

Good 12 9 0.556 4.78e-07 Moderate

From bad knowledge to good knowledge evolution SAME

JParse Bad 12 16 0.381 1.51e-05 Fair

Good 12 9 0.481 2.54e-05 Moderate

From bad knowledge to good knowledge evolution INCR

Quilt Bad 12 16 0.593 7.65e-14 Moderate

Good 12 9 0.611 1.04e-08 substantial

From bad knowledge to good knowledge evolution INCR

Squirrel Bad 12 16 0.501 2.04e-09 Moderate

Good 12 9 0.574 1.46e-07 Moderate

From bad knowledge to good knowledge evolution SAME
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Table 19 Hypothesis test for analysis of developer knowledge, considering FinG 2 and FinG 3

Shapiro-Wilk Mann-Whitney Cliff’s Delta effect size

FinG Bad knowledge Good knowledge

W p-value W p-value W p-value Delta Magnitude

2 0.7147 7.807e-09 0.7995 1.002e-09 2673.5 0.1921 0.12 Negligible

3 0.892 4.049e-05 0.896 0.002658 1080.5 0.6025 0.06 Negligible

5.4 Software size

In this section, we present results related to our analysis of how software size impacts
agreement on god class detection. We compared agreement of FinG 2 against FinG 3.
We did this because the main difference on experimental setup was the type of software
adopted. In FinG 2, we used simple software; in FinG 3, we used medium sized – more
complex – software.

5.4.1 Agreement among the participants

Table 20 shows results of agreement among the participants of FinG 2. In the same way,
we show results for FinG 3, in Table 21. Once software adopted in the experiments were
different, we did not analyze the evolution. Instead, we compared the general tendency of
agreement level in both FinG 2 and FinG 3 experiments. In FinG 2, there was one almost
perfect level of agreement for Chess software. For all other values, agreement level was
substantial. In FinG 3, there was one substantial agreement level, for Quilt software. For
all other values, agreement level was moderate.

5.4.2 Agreement between the participants and the oracle

We consider that participants detecting god class on simpler software succeed more than
participants detecting god class on more complex software. The null hypothesis is:

• H0: There is no difference of accuracy values between participants of FinG 2 and
FinG 3

Table 22 shows statistical test. In this case, we rejected the null hypothesis. We high-
lighted the Cliff ’s Delta value because it showed some magnitude (medium) on the effect
size.

5.4.3 Analysis

All analysis procedure we adopted indicates that software size impacts agreement on god
class detection. In our experiments, participants agreed and succeed more detecting god
class in simpler software (FinG 2) than in more complex software (FinG 3). We found
strong evidences of this. First, most of the level of agreement was substantial in FinG 2

Table 20 Finn agreement test and level for FinG 2

Program #class #part Finn p-value Agreement level

Monopoly 8 25 0.732 2.51e-26 Substantial

Tetris 10 25 0.78 2.56e-40 Substantial

Tic Tac Toe 5 24 0.713 3.12e-15 Substantial

Chess 10 25 0.803 8.14e-45 Almost perfect

Jackut 6 25 0.66 5.65e-15 Substantial

Solitaire 6 25 0.649 2.61e-14 Substantial
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Table 21 Finn agreement test and level for FinG 3

Program #class #part Finn p-value Agreement level

JMoney 12 25 0.511 1.04e-14 Moderate

JParse 12 25 0.43 4.14e-10 Moderate

Quilt 12 25 0.608 1.63e-22 Substantial

Squirrel 12 25 0.529 6.29e-16 Moderate

(one almost perfect) and just moderate in FinG 3 (one substantial). Second, it was possible
to reject the null hypothesis. Third, the magnitude of the effect size (which was classified
as medium) reinforced our idea that participants succeed more detecting god classes in
simpler software. This set of evidences reinforces our previous conjecture about software
size as a confounding factor in the analysis of the developer knowledge.

5.5 Developer training

The main difference between the experimental setup of FinG 3 and FinG 4 was the train-
ing. After the analysis of the other variables, we concluded that the conceptualization of
god class is more dependent of human traits than of technical aspects. Due to this, we
conjectured if it would be possible to affect the agreement aligning the personal thresh-
olds on god class detection. In order to test this idea, the training of FinG 4 went beyond
reading, including training with golden examples and live discussions.

5.5.1 Agreement among the participants

Table 23 shows the agreement coefficient among participants of FinG 3 and FinG 4. In
three cases, the agreement level in FinG 4 was higher than in FinG 3.

5.5.2 Agreement between the participants and the oracle

According previous discussion, we expect participants who are trained with “golden”
examples, discussing personal thresholds, succeed more than participants trained only
reading books. Due to this, the null hypothesis is:

• H0: There is no difference of accuracy values between participants of FinG 3 and
FinG 4

Table 24 shows the statistical test. As in our previous analysis, we rejected the null
hypothesis and the Cliff ’s Delta value showed some magnitude (despite small) on the
effect size.

5.5.3 Analysis

We found that participants discussing the conceptualization and personal thresholds
based on examples agree and succeed more than participants in a reading-based training.
First, the level of agreement increased for most cases in FinG 4. Only in one case the level

Table 22 Hypothesis tests for software size, considering FinG 2 and FinG 3 accuracy values

Shapiro-Wilk Mann-Whitney Cliff’s Delta effect size

FinG 2 FinG 3

W p-value W p-value W p-value Delta Magnitude

0.7807 1.163e-13 0.8934 6.978e-07 10183 4.424e-07 0.37 Medium
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Table 23 Finn agreement test for FinG 3 and FinG 4

Program Experiment #class #part Finn p-value Agreement level

JMoney FinG 3 12 25 0.511 1.04e-14 Moderate

FinG 4 12 17 0.64 8.12e-18 Substantial

From FinG 3 to FinG 4 evolution INCR

JParse FinG 3 12 25 0.43 4.14e-10 Moderate

FinG 4 12 17 0.515 1.61e-10 Moderate

From FinG 3 to FinG 4 evolution SAME

Quilt FinG 3 12 25 0.608 1.63e-22 Moderate

FinG 4 12 17 0.841 1.41e-43 Almost perfect

From FinG 3 to FinG 4 evolution INCR

Squirrel FinG 3 12 25 0.529 6.29e-16 Moderate

FinG 4 12 17 0.718 7.86e-25 Substantial

From FinG 3 to FinG 4 evolution INCR

of agreement was the same in FinG 3 and FinG 4. And even in this case, the Finn coeffi-
cient was higher in FinG 4 than in FinG 3 (see values for the JParse software in Table 23).
Second, it was possible to reject the null hypothesis. Third, the magnitude of the effect
size reinforced our idea that the training impacts on god class detection. We conjecture
that this finding reinforces our beliefs that conceptualization of code smells is the main
cause of inconsistencies of empirical studies on the topic. We believe that the training
based on examples and discussions is the best approach to control human traits, which
significantly affects the agreement on god class detection.

6 Discussion
In this section, we present our main findings considering all previous analyses of the
current paper and of other papers based on FinG family. First, we summarize all main
findings considering each factor analyzed in the current paper. Second, we present pre-
vious findings from other papers based on FinG family. Finally, we present an overall
discussion considering all results.

6.1 Findings from the analyses presented in the current paper

Developer’s experience, training and even knowledge impacted the agreement, but the
use of software visualization did not. These evidences show that god class detection is
more related to human traits than to an overall understanding of the code design. We
believe this finding is transversal to other types of code smell, because the human aspects
are related to subjective evaluation of the design quality, which occurs with other types of
smell, in different level of intensity. Based on this, we consider studies focused on smell
detection that disregard human aspects might be misdirected. Sjøberg et al. (2013) also
agree with this perception.

Table 24 Hypothesis tests for analysis of developer training, considering FinG 3 and FinG 4

Shapiro-Wilk Mann-Whitney Cliff’s Delta effect size

FinG 3 FinG 4

W p-value W p-value W p-value Delta Magnitude

0.8934 6.978e-07 0.8367 3.531e-07 2392 0.0008652 0.3 Small
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Software size also did affect the agreement. Agreement was lower in medium size than
in small size software. This is evidence that context factors, other than human traits, affect
the conceptualization of code smells. This dimension must also be further explored in
future experiments.

6.2 Findings from other papers based on FinG family

We presented a preliminary analysis of FinG 1 based on different type of data (Santos et al.
2013) and (Santos et al. 2014). Despite we asked participants to indicate their candidate
god classes, we also asked them to indicate why they think a class is a god class. More-
over, we logged the actions they realized on the Eclipse IDE. We then investigated: i) the
agreement (based on the god classes indicated by the participants and the oracle); ii) the
strategies adopted by participants identifying a god class (based on the log of actions real-
ized on the Eclipse IDE); and iii) decision drivers indicating why participants consider a
class as a god class. The other papers we had presented deep the analysis of the strategies
adopted by the participants and the decision drivers: Santos and Mendonça (2014) con-
sidered the results of FinG 1 and FinG 2; and (Santos andMendonça 2015) considered the
results of FinG 1, FinG 2 and FinG 3.
We highlight the main findings related to the agreement, strategies and decision drivers

as follows. From the analysis of the agreement in FinG 1, we noted low level of agree-
ment. We also noted that the use of the visualization tool did not impact FinG 1 results.
This finding is reinforced by the analysis that we present in the current paper, Section 5.1.
These findings motivated us to deep the analysis performing the other controlled exper-
iments of FinG family, up to now. From the analysis of the strategies adopted by FinG
1/FinG 2’s participants, we found that the observation of coupling is more relevant than
the observation of attributes like LOC or complexity and the hierarchical relation among
classes on god class detection. We also noted that reading source code is important,
even with visual resources enhancing the general comprehension of the software. From
the analysis of the decision drivers, we found that “class is high complex” and “method
is misplaced” are the stronger drivers. We also found the agreement on drivers’ choice
is low. Another finding is: some important drivers are dependent of alternative sup-
port. In our case, “dependency” was an important driver only when visual resources
were permitted.

6.3 Overall discussion

Overall, the results presented in the previous and current paper about FinG family evi-
dence the relevance of subjectivity on god class detection. We believe this finding is
transversal to other types of code smells. The absence of an extensive set of empirical
evidence on the topic might misdirect some researches that consider software quality is
mainly related to measurable attributes.
For example, the use of heuristics for automatic detection of smells, which are created

by humans, should be adjusted for specific contexts. The proposition of new heuristics
should be presented after the evaluation of the relationship between the current heuris-
tics and the context in which the smells are used (human traits there included). This
does not seem to be the current trend on the subject. In their systematic mapping study,
Zhang et al. (2011) noted that the most of studies in code smells focus on tools and meth-
ods for automatic detection. Evaluating some of these and other more recent studies, we



Santos et al. Journal of Software Engineering Research and Development  (2017) 5:8 Page 33 of 39

noted that they propose heuristics for automatic detection of code smells disregarding
the context where apply them.
To get a better comprehension of the smell effect, it is necessary to get a better com-

prehension of how human evaluate design quality. We call this issue the “code smell
conceptualization problem”. The code smell conceptualization problem involves the dis-
cussion about ensuring same comprehension of the smell concepts and similar personal
criteria or thresholds. We consider that two main trails should be followed to solve this
problem: i) to deepen the evaluation of the human aspects and how they affect smell
detection; and ii) to evaluate cognitive aspects on smell detection, which is related to pro-
gram comprehension, and requires knowledge both in computer science and cognitive
psychology (Jonathan and Maletic 2008).
Table 25 summarizes the main findings presented in this paper. At the top of the table,

we present the main findings related to the addressed factors by FinG. At the bottom, we
summarize the overall discussion that we propose.

7 Threats to validity
Our analysis of threats to validity of the study was based on the classification adopted by
Wohlin et al. (2012).
External validity. Our first threat fits in the “interaction of selection and treatment”

subcategory and is related to the fact that the experiments were carried out in an in-
vitro setting. Participants of FinG 2, FinG 3 and FinG 4 were graduate students; and
participants of FinG 1 were undergraduates. One aspect mitigates the threat: most par-
ticipants of FinG 2, FinG 3 and FinG 4 had some professional software development
experience. Moreover, our focus was the investigation of the impact of human traits on
smell detection, as opposed to the quality of the evaluation of the smell detection, which
would arguably be more affected by the profile of the participants.
Other threat to external validity fits in the “interaction of setting and treatment” sub-

category. In this case, the threat is the type of software used in FinG 1 and FinG 2. We

Table 25 Summary of the main findings

Factor Findings

Design comprehension A design comprehension tool support does not improve agreement on god
class detection

Developer experience The experience impacts agreement on god class detection, but not definitively

Developer knowledge It should be further analyzed

Software size Software size impacts agreement on god class detection

Developer training Participants discussing the conceptualization and personal thresholds based
on examples agree and succeed more than participants in a reading-based
training

Overall discussion God class detection is more related to human traits than to an overall under-
standing of the code design

Other context factors not related to the human traits, such as software size,
also affect human conceptualization of smells. This issue should be further
investigated

New heuristics for smell detection should be presented after the evaluation
of the relationship between two aspects: 1) the current heuristics and 2) the
context in which the smells are used (human traits there included)

The area should addresses the code smell conceptualization problem, which
involves the discussion about ensuring same comprehension of the smell
concepts and similar personal criteria or thresholds
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adopted six small programs. We mitigated this threat by using medium programs in FinG
3 and FinG 4. In the same subcategory, we also highlight that the participants identified
bad smells in an unknown family of software, which is not the common. We empha-
size that this is an important threat impacting our conclusion because it is much harder
to find bad smells in an unknown software. To mitigate the threat, we argue that: i) the
domain of all software objects adopted in our study are well known; and ii) all participants
were impacted in the same way by it (none of participants previously knows the software
objects adopted in the experiments).
Internal validity. There is a threat of “ambiguity about direction of causal influence”. In

FinG 1, the training on god class was influenced by the view of the experimenter (also the
trainer). To minimize this effect, we limited the time of training in the god class concept
and adopted the support questions used in the Schumacher’s experiment (Schumacher
et al. 2010) to guide participants on the god class detection during the experiment. We
also mitigated this threat in FinG 2, FinG 3 and FinG 4. Instead of a presentation by the
experimenter, participants read reference books to acquire or improve their knowledge
on the topic. Another threat in same subcategory was the training in the visualization
tool in FinG 1 and FinG 2. In our feedback form, participants indicated that the quality of
training was good, in general. However, we cannot confirm that it was sufficient to prepare
participants in the use of visualization. We consider this a weak empirical evidence of
the validity of the training. However, we are confident about the answers because the
software visualization tool is very simple and some participants gave positive comments
after the experiments. Finally, the last threat in the same subcategory is the use of different
researchers as the oracle of FinG 1-2 and FinG 3-4. One can argues that this might to
affect the god class detection. We consider this threat is not significantly impacting our
analyses because: i) we consider subjectivity is expected on code smell detection; ii) all
oracle researchers have experience on the topic; iii) the main experimenter is one of the
oracle researchers in both FinG 1-2 and FinG 3-4 experiments; and iv) the definition of
the oracle was mainly based on discussion between the researchers.
Another subcategory of the internal validity is “maturation”. Participants could be

affected because they did the same task over six programs, in FinG 1 and FinG 2, and four
“more complex” programs, in FinG 3 and FinG 4. They may have learned and worked
faster as they progressed on the experiments. On the other hand, they could be negatively
affected by boredom. We consider maturation a weak threat because the experiments
were performed in 2 hours, on average. We consider this a reasonable period of time to
do a task in a balanced way.
Conclusion validity. In the “reliability of treatment implementation” threat, we have to

consider that a participant who could have used visualization may have completely disre-
garded the resources, which would impact the analysis of FinG 1 and FinG 2. However,
we logged and checked actions performed in the Eclipse IDE. We observed that only one
participant in FinG 1, and two participants in FinG 2 did not use the visualization tool
resources when they were available. This was done by the participants own choice and did
not affect the results significantly. This issue is discussed in detail in Santos et al. (2014).
We also have to consider if the visualization tool was appropriated for the identification
of useful attributes for god class detection.We are confident about this, because of former
experiments with the tool (Carneiro et al. 2010; Carneiro and Mendonça 2013, 2014) and
the discussions that occurred during the training of FinG 1 and FinG 2. Another threat in
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the same subcategory was related to the evaluation of the questionnaire answers, which
was part of the training in FinG 2 and FinG 3. The evaluation of the answers of the par-
ticipants was subjective. We mitigated this threat comparing the answers with a template
defined previously. Moreover, the questions were very simple.
Another subcategory of the conclusion validity is “random heterogeneity of subjects”.

We analyzed how software size impacts agreement on god class detection comparing
results of FinG 2 and FinG 3. We have to consider that, despite differences on software
size, the population of the experiments was formed by different participants subjects. We
consider this a weak threat because the profile of the participants is similar. For both FinG
2 and FinG 3 experiments, most of the participants were graduate students with some
years working with software development in software industry or research projects. There
were few cases (six considering both experiments) where the participants had no profes-
sional experience on software development. Even in that case, the participants declared
to have knowledge about OO programming.
Construct validity. In the “inadequate preoperational explication of constructs”, we have

to consider the god class concept we adopted involves conceptual definitions of god class,
brain class and large class. In order to mitigate this threat, we considered the adoption of
the support questions and the effort on the training for all experiments. This was added
to the presentation, reading of books, and questionnaire answers. Moreover, on FinG 4
training, it was possible to discuss with participants their conceptualization about god
class.
Another threat that we found in the same subcategory is related to the material support

considered in the analysis of some factors. For example, the analysis of the level of knowl-
edge was based on the answers from a questionnaire defined by us. Due to the simplicity
of the questions, we defined the questionnaire based on our own perceptions about what
is important in order to capture the developer knowledge on the subject. In the same way,
we defined the questions of the characterization form used in the analysis of the developer
experience; and in the definition of the SourceMiner exercise, which trained the partici-
pants on the visualization tool. We mitigated this threat by adapting some of the material
from works previously published in the literature (Schumacher et al. 2010; Novais et al.
2012) and discussing about them with other researchers from our research community.

8 Conclusion
This paper aims to improve the understanding of factors affecting human evaluation of
code smells. To do this, we carried out a family of four controlled experiments. The exper-
iments were defined in an iterative process. Insights of one experiment were used in
definition of the next ones, in order to batter control factors and explore insights gained
in the previous experimental cycle (Mendonça et al. 2008). Specifically, we addressed
cause-effect relation between five factors and the agreement on god class detection. The
factors were: tool support for design comprehension, developer experience, developer
knowledge, size software and training.
Due to the difficulties of controlling factors affecting smell detection, the software

engineering community has more and more focused of the use of software metrics
for smell detection. The discussion we provided here, which we called the code smell
conceptualization problem, shows that the problem is complex and the community must
ensure similar personal criteria and thresholds on smell detection.
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Tool support for design comprehension (which was obtained by the use of software
visualization) was the only factor did not impact agreement on god class detection. Devel-
oper experience and training strongly impacted the agreement. This evidences god class
detection is more related to human traits than to an overall understanding of the code
design. We believe this finding is transversal to other code smells.
As smell detection is strongly affected by human aspects, and other context variables,

the heuristics based on metrics, that are being used by the software engineering com-
munity currently, should be always checked and adjusted for specific situations. This also
raises out the need for more studies focusing on the identification and characterization of
factors that affects the perception and impact of code smells, specially human aspects.
We showed that training impacts god class detection. As this is a controllable factor, we

propose training based on “golden” examples and discussions between developers to align
their conceptualization about code smells in software organizations. This way they may
seize some control over the smell conceptualization problem.
We also believe that the discussion on the effectiveness of adoption of code smell con-

cepts in software development needs to evolve. We have already published other partial
results of our work (Santos et al. 2013, 2014; Santos andMendonça 2014, 2015), exploring
detection effort, code smell decision drivers and detection strategies. To support repli-
cations of our experiments, we make our experimental package available to the software
engineering research community6.
To address the limitations of this study and to further develop it, we are planning other

experiments addressing other code smells. We are also performing a systematic review
on the subject to be published in another paper. This systematic review will address an
important aspect related to the set of empirical results now available in the area. The
aspect is related to difficulties in generalizing the findings because of: i) the variety of
factors being investigated and; ii) differences on the context in which the experiments
have been presented.

Endnotes
1 https://marketplace.eclipse.org/content/jdeodorant
2 https://marketplace.eclipse.org/content/incode-helium
3Eclipse IDE -http://www.eclipse.org/ and SourceMiner - http://www.sourceminer.org/
4We consider as a golden example a class that all developers consider as a god class,

because it has many lines of code or many methods addressing different issues on the
software.

5As discussed in Section 4.3, we are considering small magnitude on the effect size as
evidence reinforcing our hypothesis because of the small number of data points in our
samples.

6 http://wiki.dcc.ufba.br/LES/JoseAmancio
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