
Cesario et al. Journal of Software Engineering Research and Development
 (2017) 5:5
DOI 10.1186/s40411-017-0039-8
RESEARCH Open Access
DyeVC: an approach for monitoring and
visualizing distributed repositories

Cristiano Cesario, Ruben Interian and Leonardo Murta*
* Correspondence:
leomurta@ic.uff.br
Instituto de Computação,
Universidade Federal Fluminense
(UFF), Niteroi, RJ, Brazil
©
L
p
i

Abstract

Software development using distributed version control systems has become more
frequent recently. Such systems bring more flexibility, but also greater complexity to
manage and monitor multiple existing repositories as well as their myriad of branches.
In this paper, we propose DyeVC, an approach to assist developers and repository
administrators in identifying dependencies among clones of distributed repositories. It
allows understanding what is going on around one’s clone and depicting the
relationship between existing clones. DyeVC was evaluated over open source projects,
showing how they could benefit from having such kind of tool in place. We also ran an
observational and a performance evaluation over DyeVC, and the results were
promising: it was considered easy to use and fast for most repository history
exploration operations while providing the expected answers.

Keywords: Distributed version control, Monitoring, Visualization, Awareness
1 Background
Version Control Systems (VCS) date back to the 70s when SCCS emerged (Rochkind

1975). Their primary purpose is to keep software development under control (Estublier

2000). Along these almost 40 years, VCSs have evolved from a centralized repository

with local access (e.g., SCCS and RCS (Tichy 1985)) to a client-server architecture

(e.g., CVS (Cederqvist 2005) and Subversion (Collins-Sussman et al. 2011)). More

recently, distributed VCSs (DVCS) arose (e.g., Git (Chacon 2009) and Mercurial

(O’Sullivan 2009a)) allowing clones of the entire repository in different locations.

According to a survey conducted by the Eclipse community (2014), Git and GitHub

combined usage increased from 6.8 to 42.9% between 2010 and 2014 (a growth

greater than 500%). During this same period, Subversion and CVS combined usage

decreased from 71 to 34.4%. This clearly shows momentum and a strong tendency

in the adoption of DVCSs in the open source community.

Besides these changes from local to client-server and then to a distributed architec-

ture, the concurrency control policy adopted by VCSs also changed from lock-based

(pessimistic) to branch-based (optimistic). According to Walrad and Strom (Walrad

and Strom 2002), creating branches in VCSs is essential to software development be-

cause it enables parallel development, allowing the maintenance of different versions

of a system, the customization to different platforms/customers, among other features.

DVCSs include better support for working with branches (O’Sullivan 2009b), turning
The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
icense (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
rovided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
ndicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-017-0039-8&domain=pdf
http://orcid.org/0000-0002-5173-1247
mailto:leomurta@ic.uff.br
http://creativecommons.org/licenses/by/4.0/

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 2 of 34
the branch creation into a recurring pattern, no matter if this creation is explicitly done

by executing a “branch” command or implicitly when a repository is cloned.

However, distributed software development, especially from the geographical perspec-

tive (Gumm 2006), brings a set of risk factors, and Configuration Management (CM) is

affected by them. The increasing growth of development teams and their distribution

along distant locations, together with the proliferation of branches, introduce additional

complexity for perceiving actions performed in parallel by different developers. Accord-

ing to Perry et al. (1998), concurrent development increases the number of defects in

software. Besides, da Silva et al. (2006) say that branches are frequently used for pro-

moting isolation among developers, postponing the perception of conflicts that result

from changes made by co-workers. These conflicts are noticed only after pulling

changes in the context of DVCSs. Moreover, Brun et al. (2011) show that even using

modern DVCSs, conflicts during merges are frequent, persistent, and appear not only

as overlapping textual edits (i.e., physical conflicts) but also as subsequent build (i.e.,

syntactic conflicts) and test failures (i.e., semantic conflicts).

By enabling repository clones, DVCSs expand the branching possibilities discussed by

Appleton et al. (1998), allowing several repositories to coexist with fragments of the

project history. This may lead to complex topologies where changes can be sent to or

received from any clone. This scenario generates traffic similar to that of peer-to-peer

applications. In practice, projects impose some restrictions on this topology freedom.

However, it can be still much more complex than the traditional client-server topology

found in centralized VCS.

With this diversity of topologies, managing the evolution of a complex system be-

comes a tough task, making it difficult to find answers to the following questions:

� Q1: Which clones were created from a repository?

� Q2: What are the communication paths among different clones?

� Q3: Which changes are under work in parallel (in different clones or different

branches) and which of them are available to be incorporated into others’ clones?

Most of the existing works, such as Palantir (Sarma and van der Hoek 2002), FASTDash

(Biehl et al. 2007), Lighthouse (da Silva et al. 2006), CollabVS (Dewan and Hegde 2007),

Safe-Commit (Wloka et al. 2009), Crystal (Brun et al. 2011), and WeCode (Guimarães

and Silva 2012), deal with question Q3, giving to the developers awareness of concurrent

changes. However, they do not provide an overview of the topology of repositories, indi-

cating which commits belong to which clones. This overview is essential to understand

the distributed evolution of the project.

To answer the questions above, we propose DyeVC,1 a novel monitoring and

visualization approach for DVCS that gathers information about different repositories

and presents them visually to the user. DyeVC allows developers to perceive how their

repository evolved over time and how this evolution compares to the evolution of other

repositories in the project. DyeVC’s main goal is two-fold: increasing the developers’

knowledge of what is going on around their repository and the repositories of their

teammates, and enabling repository administrators to visualize the relationship between

existing clones. DyeVC was evaluated over open source projects, showing how they

could benefit from having such kind of tool in place. We also ran an observational and

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 3 of 34
a performance evaluation over DyeVC, and the results were promising: it was con-

sidered easy to use and fast for most repository history exploration operations while

providing the expected answers.

This paper extends a previous conference paper (Cesario and Murta 2016) by includ-

ing a more thorough discussion of our approach, including how DyeVC discovers the

topology and a formal definition of the process underneath DyeVC. Moreover, as the

previous version of DyeVC struggled when dealing with large repositories (over 6500

commits), we also added an automatic collapsing feature. This new feature provides a

dual contribution: it allowed DyeVC to deal with larger repositories and reduced clutter-

ing when presenting information to users. The performance evaluation was expanded to

present an assessment of the automatic collapsing feature. Finally, we included a deeper

comparison of DyeVC with its related work. This paper is organized as follows: Section 2

shows a motivational example. Section 3 presents the DyeVC approach. Section 4 presents

the technologies used in our prototype implementation. Section 5 describes the evaluation

of DyeVC. Section 6 discusses related work, and Section 7 concludes the paper and

presents some suggestions for future work.

2 Motivational example
Figure 1 shows a scenario with some developers, each one owning a clone of the reposi-

tory created at Xavier Institute. Xavier Institute acts like a central repository, where code

developed by all teams is integrated, tested, and released to production. There is a team

working at Xavier Institute, led by Professor Xavier, and a remote developer (Storm) that

periodically receives updates from the Institute. Outside the Institute, Wolverine leads a

remote team located in a different site, which is constantly synchronized with the Insti-

tute. Solid lines in Fig. 1 indicate data being pushed, whereas dotted lines indicate data be-

ing pulled. Thus, for example, Rogue can both pull updates from Gambit and push

updates to him, and Beast can pull updates from Rogue, but cannot push updates to her.
Fig. 1 Development scenario involving some developers

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 4 of 34
Each one of the developers has a complete copy of the repository. Luckily, this sce-

nario has a CM Plan in action. Otherwise, each one would be able to send and receive

updates to and from any other, leading to a total of n × (n − 1) different possibilities of

communication (where n is the number of developers in the topology). In practice,

however, this limit is not reached: while interaction amongst some developers is fre-

quent, it may happen that others have no idea about the existence of some coworkers.

It occurs with Mystique and Nightcrawler, for example, where there is no direct

communication.

As an example, from a developer’s point of view, like Beast, questions such as the

following can arise:

� How can he know at a given moment if there are commits in Rogue, in Gambit, or

in Nightcrawler clones that were not pulled yet? Suppose that Beast is working on a

feature that depends on a utility class developed by Gambit. If such class has a bug,

and Gambit is working to solve it, Beast would want to know when Gambit’s commit

is ready to be pulled. Moreover, if Gambit is evolving such class, and Beast has this

information, he could decide to anticipate a pull to incorporate Gambit’s changes in

his workspace.

� Would it be the case that local commits are pending to be pushed to Gambit? Beast

could certainly periodically pull changes from his peers, checking if there were

updates available, but this would be a manual procedure, prone to be forgotten. It

would be more practical if Beast could have an up to date knowledge of his peers,

warning him about any local or remote updates that had not been synchronized yet.

On the other hand, from an administrator’s point of view, questions such as the fol-

lowing are pertinent:

� How can she knows which are the existing clones of a project and how they relate

to each other? This is a common need to repository administrators. It helps not

only in identifying who must be notified regarding any news related to the repository

but also helps in visually verifying if pull/push policies are being followed by the team.

Having a map of all existing clones can help repository administrators in identifying

who is pushing to / pulling from each other. For instance, unauthorized access to

push to a production repository can be visualized, and the administrator can take

actions to revoke such access.

� How can she know if there are pending commits to be sent from a staging

repository to a production one? Having the ability to know how many commits are

pending and which commits are these can help administrators decide if this is the

right time to release a new version of the system to production.

3 DyeVC approach
Aiming at supporting both developers and repository administrators in understanding

the interaction among repository clones, the main features of DyeVC include: (1) a

mechanism to gather information from a set of clones (such as their relationships and

known commits) and (2) a set of extensible views with different levels of detail, which

let DyeVC users visualize this information. We detail in the following sub-section how

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 5 of 34
DyeVC gathers information from DVCSs. Next, we discuss how this information is pre-

sented using different levels of detail. Finally, we show what happens behind the scenes,

discussing the algorithm involved in the data synchronization process.
3.1 Information gathering

DyeVC continuously gathers information from interrelated clones, starting from clones

registered by the user. Figure 2 shows a deployment view of DyeVC’s architecture. For

each clone rep that the user registers to monitor, DyeVC transparently creates a local

clone rep’ in the user’s home folder to fetch data from all of the peers with which rep

communicates. Data is gathered by DyeVC instances running at each user machine and

is stored in a central document database. In this way, information from one DyeVC

instance is made available to every other instance in the topology.

DyeVC gathers information from registered clones in the user’s machine and also

from their peers, which are clones that communicate with them. Since there is a com-

munication path between a registered clone and its peers (either to push data or to pull

data), we can analyze the commits that exist in these peers. This allows us to present a

broader topology visualization that contains not only registered clones, but also those

that have a push or pull relationship with them. DyeVC finds out related clones by

looking at the remote repositories registered in the DVCS configuration. More details

on how data is gathered are explained in section 3.3.

Figure 3 shows how DyeVC discovers the topology from the nodes where it is run-

ning and the registered clones. Blue nodes represent registered clones where DyeVC is

running, yellow nodes represent known clones located at nodes where DyeVC is not

running, dashed nodes and dashed lines represent clones and communication paths, re-

spectively, that are not known yet. Suppose a scenario where the existing clones and

interdependencies are shown in Fig. 3a, which depicts the same scenario shown in Sec-

tion 2 but here represented by the first letter of each clone. After installing DyeVC and
Fig. 2 How DyeVC gathers information

Fig. 3 DyeVC discovering the topology: actual topology (a), discovered topology with X (b), discovered
topology with X and P (c), discovered topology with X P and G (d), final discovered topology (e)

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 6 of 34
registering clone X, DyeVC finds out that this clone communicates with clones W, P,

and S (either by pushing to or pulling from them), as shown in Fig. 3b. Later on, clone

P is registered and clones C, J and M are included as known clones in the topology

(Figure 3c). Clone G is the next to be registered, allowing DyeVC to discover that

clones R, N, and B also exist, as well as the communication between clone G and clone

W, which was already a known clone (Fig. 3d). Assuming that no other clones are regis-

tered, the known topology is shown in Fig. 3e. Notice that, although only clones G, P,

and X were registered, DyeVC is also aware of the existence of clones B, C, J, M, N, S

and W. Only some communication paths between clones will not be known (C-J, J-M,

S-M, R-B, R-N and N-B).

DyeVC finds out related clones by looking at the remote repositories, which are regis-

tered in Git’s config file of each clone. Figure 4 shows an example of this configuration,

taken from a local clone of the DyeVC project, where there is a remote named origin,

which is located at github.com/gems-uff/dyevc. This information is in the url parameter,

which indicates to Git that pushes and pulls use the same location. If there were a

pushurl parameter in the configuration, besides the url parameter, pulls would use the

location in the url parameter and pushes would use the location in the pushurl

parameter.

Data stored in the central database follows the metamodel presented in Fig. 5. A Pro-

ject groups repository clones of the same system. Clones are stored as RepositoryInfo

http://github.com/gems-uff/dyevc

Fig. 4 Remote repository configuration in Git’s config file

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 7 of 34
and are identified by an id and a meaningful clone name provided by the user (cloneName

attribute). A RepositoryInfo has a list of clones to which it pushes data and a list of clones

from which it pulls data. These lists are represented respectively by the self-associations

pushesTo and pullsFrom. Finally, a RepositoryInfo stores the hostName where it resides

(e.g., a server name or localhost), its clonePath (be it an operating system path or an URL)

and the set of DyeVC instances that have registered it to be monitored (monitoredBy

attribute).

Branches are part of a RepositoryInfo. A Branch has a name and a boolean attribute

isTracked, which is true if the branch tracks a remote branch. A RepositoryInfo may

have one or many branches (it must have at least one branch, which is the main one).

A Branch has two associations with CommitInfo: through the first association, a Branch

knows which commit is its head and, conversely, a commit knows which branches

point to it as a head (headOf association end). The second association represents which

commits are reachable from a given branch (reachableCommits association end)

and, conversely, the branches from which the commit is reachable (reachableFrom

association end).

The finer grain of information is the CommitInfo, which represents each commit in

the topology. A commit is identified by a hash code (hash attribute) and refers to its
Fig. 5 Metamodel used to store DyeVC data

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 8 of 34
parents (except for the first commit in the repository, which does not have any parent).

As each commit may not exist in all clones of the topology, we store the list of clones

where each commit can be found (foundIn association end). We also store the commit-

ter, the commit message (shortMessage attribute), and whether the commits belong to

tracked or non-tracked branches (tracked attribute).
3.2 Information visualization

DyeVC presents information at four different levels of detail: Level 1 shows high-level

notifications about registered repositories; Level 2 shows the whole topology of a given

project. Level 3 zooms into the branches of the repository, showing the status of each

tracked branch. Lastly, Level 4 zooms into the commits of the repository, showing a

visual log with information about each commit. The following sections discuss these

levels.

3.2.1 Level 1: Notifications

In Level 1, our approach periodically monitors registered repositories and presents notifi-

cations whenever a change is detected in any known peer. The period between subse-

quent runs is configurable, and notifications are presented in the system notification area,

in a non-obtrusive way. Figure 6 shows an example of this kind of notification, where

DyeVC detected changes in two different repositories. The notification shows the reposi-

tory id, the clone name, and the project (system) name. Clicking on the balloon opens

DyeVC main screen.

3.2.2 Level 2: Topology

Aiming at helping to answer questions Q1 and Q2, we present a topology view showing

all repositories for a given project (Fig. 7), where each node represents a known clone.

A blue computer represents the current user clone, and black computers represent

other clones where DyeVC is running. Servers represent central repositories that do

not pull from nor push to any other clone, or clones where DyeVC is not running. Both

kinds of nodes use the same representation because, once DyeVC is not running at a

given clone, we cannot infer the pushesTo and pullsFrom lists, which will thus be empty

as in a server. At first sight, this could be understood as a risk within topology view.

However, DyeVC considers servers as clones. The denomination “server” is just to visu-

ally differentiate it from other clones. We believe that plotting servers and clones where
Fig. 6 DyeVC showing notifications in notification area

Fig. 7 Topology view for a given project

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 9 of 34
DyeVC is not running with the same icons is not a risk because the topology view

brings more information about the clones (e.g., clone address and name). Thus, a re-

pository administrator can distinguish the servers among the plotted clones.

Each edge in the graph represents a relationship between two repositories. Continu-

ous edges mean that the source clone pushes to the destination clone, whereas dashed

edges mean that the destination clone pulls from the source clone. The edge labels

show two numbers separated by a dash. The first and second numbers represent how

many commits in tracked and non-tracked branches of the source clone are missing in

the destination clone, respectively. The edge colors are used to represent the

synchronization status: green edges mean that both clones are synchronized (i.e., the

destination clone has all the commits present in the source clone), whereas red edges

mean that the pair is not synchronized and indicates the direction that is missing

commits. For example, it is possible to observe in Fig. 7 that the current user clone

(blue computer) is hosted at cmcdell and is named dyevc. This clone pulls from

gems-uff/dyevc, which is located at github.com, and there are four tracked commits

ready to be pulled (i.e., commits that exist in the remote repository and do not exist

locally). It also pushes to the same peer, having five tracked commits ready to be

pushed. In this case, both edges are red, which raises attention to investigate further

what is happening, because such situation may lead to integration conflicts.

3.2.3 Level 3: Tracked branches

For helping answering question Q3, DyeVC’s main screen (see Fig. 8) shows Level 3

information, allowing one to view the status of each tracked branch in registered reposi-

tories regarding their peers. This information is complemented with that of Level 4,

shown in the next section.

The status evaluation considers the existing commits in each repository individually.

Due to the nature of DVCS, old data is almost never deleted, and commits are cumula-

tive. Thus, if commit N is created over commit N – 1, the existence of commit N in a

http://github.com

Fig. 8 DyeVC main screen

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 10 of 34
given repository implies that commit N – 1 also exists in the repository. In this way, by

using set theory, it is possible to subtract the set of commits in the local repository

from the set of commits in its peers, resulting in the set of commits not pulled yet. In

this case, local repository will be behind its peers (arrow down in Fig. 8). Conversely,

subtracting the sets in the inverse order will result in the set of commits not pushed

yet, meaning that local repository is ahead of its peers (arrow up). When both sets are

empty, local repository is synchronized (green checkmark in Fig. 8) and when both sets

have elements, it is both ahead and behind its peer (arrow up and down in Fig. 8).

Let us assume that each commit is represented by an integer number to illustrate

how our approach works. At a giving moment, the local repositories of each developer

have the commits shown in Table 1. Consider the synchronization paths presented in

the right-hand side of Fig. 1, where the perception of each developer regarding their

known peers is shown in Table 2. Notice that the perceptions are not symmetric. For

instance, as Gambit does not pull updates from Nightcrawler, there is no sense in giv-

ing him information regarding Nightcrawler. Furthermore, it is uncommon to have a

scenario where pushes are performed from a developer to another (such as the one

between Beast and Gambit). What happens is that a developer pulls from another (for

example, between Gambit and Nightcrawler), avoiding inadvertent inclusion of com-

mits inside others’ clones. Although infrequent, this scenario helps in understanding

the need to have awareness about who are the peers in a project and what are their

interdependencies.

3.2.4 Level 4: Commits

Level 4 complements information of Level 3 to provide an answer to Question Q3.

Differently from the usual repository version graph, it presents a combined version

graph of the entire topology (Fig. 9). Each vertex in the graph represents either a
Table 1 Existing commits in each repository

Repository Wolverine Gambit Rogue Nightcrawler Beast

Commits 10; 11 10; 11 10; 12 10; 11; 13 10

Table 2 Status of each repository based on known remote repositories

Repository Wolverine Gambit Rogue Nightcrawler Beast

Wolverine - - - - -

Gambit - - - -

Rogue - - - -

Nightcrawler - - -

Beast - -

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 11 of 34
known commit in the topology, which is named after its hash’s five first characters

(e.g., the node labeled 2e10a in Fig. 9), or a collapsed node, representing several com-

mits blended. We implement two ways of collapsing nodes to provide a better under-

standing over huge amounts of data: manual and automatic. Manually collapsed

nodes are named after the number of contained nodes, such as the white node con-

taining 118 commits and the green node containing 24 commits in Fig. 9). Automat-

ically collapsed nodes have ellipses before and after the number of contained nodes in

their names (if the first collapse of Fig. 9 were automatic, its name would be “…

118…”). Automatic collapsing is detailed in Section 3.2.5.

Thicker borders denote that the commit is a branch’s head (e.g., commit ea6a4).

Commits are drawn according to their precedence order. Thus, if a commit N is cre-

ated over a commit N – 1, then commit N will be located to the right of commit N – 1.

For each commit, DyeVC presents the information described in Fig. 5 (gathered from

the central database), along with information that is read in real time from the reposi-

tory metadata, such as branches that point to that commit and affected files (added,

edited, and deleted).

This visualization contains all commits of all clones in an integrated graph. Each

commit is painted according to its existence in the local repository and the peers’ re-

positories. Ordinary commits that exist locally and in all peers are painted in white.

Green commits are ready to be pushed, as they exist locally but do not exist in peers
Fig. 9 Collapsed commit history

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 12 of 34
on the push list. Yellow commits need attention because they exist in at least one peer

in the pull list, but do not exist locally, meaning that they may be pulled. Red commits

do not exist locally and are not available to be pulled, as they exist only in clones that

are not peers. Finally, gray commits belong to non-tracked branches, so they can nei-

ther be pushed nor pulled. Heads of these branches are not identified with thicker

borders.

This visualization can easily have thousands of nodes, one for each commit in the

topology. Nevertheless, despite the high number of nodes, users are usually interested

in the most recent commits. As we show the commits following a chronological order,

from left to right, most recent commits will be at the right part of the visualization.

DyeVC positions the graph so that these commits are shown when opening the

visualization.
3.3 Automatic collapsing

As previously discussed, the first version of DyeVC struggled when dealing with larger

repositories (over 6500 commits). This limitation was mainly due to the memory used

to represent commit nodes in the commit history graph. However, we observed that

many of the commit nodes are unnecessary for comprehending the evolution and, in

fact, were cluttering the visualization. For instance, a sequence of 20 commit nodes that

are ordinary revisions and that belong to all clones (i.e., all have the same white color)

could be collapsed into just one commit node, avoiding visualization cluttering and

boosting performance. This observation motivated us to design and implement an

automatic collapsing feature for DyeVC.

We identified two common node structures that can be automatically collapsed: se-

quential and parallel. The former contains a sequence of commits of the same type,

where each of them has degree two, i.e., nodes with just one ancestor and one succes-

sor. This kind of structure can be collapsed because it does not represent any additional

information besides the fact that some sequential work was performed. Figure 10 shows

examples of sequences of commits, highlighted in red, which could be collapsed, produ-

cing the graph shown in Fig. 11 (still in red). On the other hand, the later contains one

fork node and one merge node, with at most one (regular or collapsed) 2-degree node in

each branch, between the fork and the merge nodes. Figure 11 shows examples

highlighted in yellow of this parallel structure. The result of the collapse is shown in

Fig. 12. The numbers inside the red and yellow circles refer to the number of col-

lapsed nodes.

We implemented an iterative algorithm that works in phases to benefit from both

sequential and parallel collapse strategies together. The algorithm is shown in Fig. 13.
Fig. 10 Sequential structures before automatic collapsing

Fig. 11 Sequential structures after automatic collapsing and Parallel structures before automatic collapsing

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 13 of 34
The algorithm receives the commit graph and the number of iterations as parame-

ters. Each iteration is executed in linear time complexity. The first phase collapses se-

quential structures (lines 2–11). The set of visited nodes is initialized as an empty set

in line 2. Each node is inspected in a loop (lines 3–11). If the node is still not visited,

the presence of a linear commit chain is tested in line 5 by examining predecessors and

successors of the node. All found linear commit chain elements are marked as visited

in line 6. If the linear commit chain has more than one node, it is collapsed (lines 7–9).

The second phase of the algorithm collapses parallel structures (lines 12–28). The

visited set is reinitialized as an empty set in line 12. All nodes of the graph are exam-

ined again in a loop (lines 13–28). If the element is still not visited, and we are in the

presence of a fork node (condition in line 14), the parallel structure generated by this

fork is analyzed. Both nodes afterward the fork are saved in variables a and b (lines

15–16). Initially, a group set is initialized containing a single element, the fork node,

in line 17. If the parallel structure resembles the 4-node group highlighted in yellow

in Fig. 11, then the group to be collapsed is populated in lines 18–19. On the other

hand, if the parallel structure resembles the 3-node group highlighted in yellow in

Fig. 11, then the group to be collapsed is populated in lines 20–21. The visited set is

updated in line 23. If the created node group has more than one node, it is collapsed

in lines 24–26.

The phases of the algorithm can be repeated, as collapsing parallel structures may

lead to new sequential structures. For instance, after applying parallel collapses over the

graph shown in Fig. 11, a new sequential structure is formed, as illustrated in Fig. 12.

The iteration would lead to a new collapse, and so on. As previously discussed, collapses

are performed just for commits of the same type (same color, discussed in section 3.2.4),

reducing the size of the graph without compromising the quality of the information

shown in the graph.
Fig. 12 Parallel structures after automatic collapsing

Fig. 13 Automatic collapsing algorithm

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 14 of 34
3.4 Behind the scenes

The process underneath DyeVC can be formally defined using Set Theory, in order to

describe how the data is structured and how DyeVC can play with this data to identify

the repositories that are ahead or behind of other repositories, showing the commits

that are missing or that belong to specific branches. We can define a project p as a

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 15 of 34
tuple (R,C,Cdatabase), where R is the set of all cloned repositories of p monitored by

DyeVC, C is the set of all commits of p, and Cdatabase C is the set of commits of p in

the DyeVC database. Each repository ri ∈ R is a tuple Rpush
i ;Rpull

i ;Cprevious
i ;Ccurrent

i ;Bi

� �
,

where Rpush
i ⊆R is the set of repositories that ri is allowed to push to, Rpull

i ⊆R is the set

of repositories that ri is allowed to pull from, Cprevious
i ⊆C is the set of commits in ri in

the previous execution of DyeVC, Ccurrent
i ⊆C is the set of commits in ri in the current

execution of DyeVC, and Bi is the set of named branches of ri (Fig. 14a). It is worth

noting that, as C is the set of all commits of project p (i.e., the domain of commits

of p), any set of commits that belong to specific repositories ri ∈ R, such as Cprevious
i

and Ccurrent
i , should also belong to C.

Each commit cj ∈ C has a set of parent commits Cparent
j ⊂C . Commits are organized in

a directed acyclic graph (Fig. 14b), where the first commit of the project has no parent

(e.g., commit A in Fig. 14b), revision commits have only one parent (e.g., commit B in

Fig. 14b), and merge commits have two or more parents (e.g., commit I in Fig. 14b).

All reachable commits from cj form its history, including cj itself and the transitive

closure over its parents (e.g., {A, B, E, F, H, I, J} is the history of commit J in Fig. 14b).

The history of cj ∈ C is formally defined as:

Hj ¼ c∈Cjc ¼ cj∨∃ck : ck∈C
parent
j ∧c∈Hk

� �n o

At this point, it is important to notice that ordering is not important for accounting
which commits belong to each repository. The only situation in which ordering is im-

portant is when DyeVC plots the commit history graph. In this case, DyeVC accesses

the tip of the branches (fast operation, as each branch has a reference to its tip) and

traverses its transitive closure for plotting all previous commits (also fast, because each

commit has a reference to its parents). Note that the commit graph is a directed acyclic

graph (DAG), and this DAG is already represented in terms of pointers in C.

The sets of previous and current commits in a repository ri are updated periodically,

according to the monitoring frequency parameter defined by the DyeVC user. In the

first execution of DyeVC over ri, C
previous
i ¼ ∅ and Ccurrent

i is populated with all commits

obtained directly from Git. In the following executions, Cprevious
i is populated with the

commits in Ccurrent
i of the previous execution and Ccurrent

i is again populated with all

commits obtained directly from Git.

Each branch bk ∈ Bi is a tuple (name, ck), where name is the name of bk and ck ∈ C is

the tip (i.e., head) of bk. Consequently, Hk C contains all reachable commits of bk.
Fig. 14 UML class diagram representing the DyeVC formalization (a) and a directed acyclic graph of commits (b)

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 16 of 34
With this foundation established, we can now formalize the process of updating com-

mits in the topology. For a local repository ri ∈ R being monitored by DyeVC, the rare

situations where a commit is deleted can be formally defined as:

Deli ¼ Cprevious
i ∖Ccurrent

i

Each locally deleted commit c ∈Deli should be removed from Cdatabase if no other re-

pository r ∈ R still contains this commit. Conversely, the new commits in ri ∈ R since

the previous monitoring cycle can be formally defined as:

Newi ¼ Ccurrent
i ∖Cprevious

i

Each locally added commit that is not already in the database (c ∈Newi \ C
database)

should be inserted in Cdatabase. This verification is necessary because some of the locally

added commits might have already been inserted into the database by another instance

of DyeVC.

Moreover, we can formalize the identification of repositories that contain a specific

commit and the repositories that are ahead or behind of a given repository. This in-

formation is necessary for building some of our visualizations. We formally define the

repositories that contain a commit cj ∈ Cdatabase as:

Rj ¼ ri∈Rjcj∈Ccurrent
i

� �

We formally define from which repositories ri is ahead or behind as:

Aheadi ¼ rj∈R
push
i j∃c∈Ccurrent

i : c∉Ccurrent
j

n o

Behindi ¼ rj∈R
pull
i j∃c∈Ccurrent

j : c∉Ccurrent
i

n o

Finally, we can also formalize the commits that are ahead or behind two specific re-
positories and the branches in which a commit belongs. This relationship among

commits and repositories/branches is also necessary for some of our visualizations.

Considering two repositories ri , rj ∈ R, we formally define the commits ahead or be-

hind ri regarding rj as:

Aheadi;j ¼ Ccurrent
i Ccurrent

j

Behindi;j ¼ Ccurrent
j Ccurrent

i

Considering a given repository ri, we formally define the branches that a commit cj ∈
C belongs to as:

Bi;j ¼ bk∈Bijcj∈Hk
� �

The computation of Rj, Aheadi and Behindi is not expensive. The set of repositories

R is usually small (one or few repositories per developer) and the complexity of the

operation for checking if a commit belongs to a specific repository is O(1) (i.e., the

complexity of checking if an element belongs to a hash-based set). So, we can say that

the complexity of obtaining the relationship of commits and repositories is O(n),

where n is the number of repositories in the project.

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 17 of 34
4 Implementation
We implemented our approach as a Java application launched via Java Web Start Tech-

nology. It currently monitors Git repositories, as it is the most used DVCS nowadays

(Eclipse Foundation 2014). The source code and the link to download the tool via Java

Web Start can be found at https://github.com/gems-uff/dyevc. The tool gathers infor-

mation from repositories using JGit library,2 which allows using our approach without

having a Git client installed.

Gathered information is stored in a central document database running MongoDB.

We hosted our database on a free MongoDB instance provided by MongoLab. We did

not use MongoDB proprietary API, which would demand opening specific ports to

connect to MongoDB. Instead, we opted to use MongoLab’s RESTful (Representational

State Transfer) API. RESTful APIs (Fielding 2000) have the advantage of being available

using standard HTTP and HTTPS protocols. In this way, our approach can be used in

environments protected with firewalls without major problems. We implemented a

MongoLab Provider to use this RESTful API, which translates the application methods

into RESTful commands and vice-versa. It also serializes/deserializes the application

objects to/from JSON (JavaScript Object Notation) representations to be used through

the RESTful commands.

A central document database was chosen because this way DyeVC instances can eas-

ily send and gather information. MongoDB was the chosen database because it is free,

open-source and cross-platform. Besides, it has many features to improve performance

and availability, such as document indexing, replication, and load balancing. Further-

more, it provides RESTful APIs, as cited before.

We present the gathered information as a series of graphs by using the JUNG (Java

Universal Network/Graph) library,3 from which DyeVC inherits the ability to extend

existing layouts and filters. All graphs present similar behavior, allowing the window to

be zoomed in or out, whether the user wants to see details of a particular area or an

overview of the entire graph. By changing the window mode from transforming to pick-

ing, it is possible to select a group of nodes and collapse them into one node, or simply

drag them into new positions to have a better understanding of parts with too many

crossing lines.
5 Evaluation
To evaluate our approach, we first conducted a posthoc evaluation over the JQuery

project,4 an open-source project, aiming at checking if DyeVC can help answering

questions Q1-Q3. Next, we conducted an observational evaluation involving four par-

ticipants that used DyeVC. This evaluation also used the JQuery project. Finally, we

ran DyeVC over some open-source projects of different sizes and from different

sources, aiming at evaluating the scalability of our approach.
5.1 Posthoc evaluation

We conducted a posthoc evaluation using a real open source project to demonstrate

that our approach can help in answering questions Q1-Q3. The selected project,

JQuery, began in 2006 and had 6222 commits by the time of the evaluation. We re-

constructed the repository history, simulating the actions that occurred in the past.

https://github.com/gems-uff/dyevc

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 18 of 34
We do not replicate the repository history here, due to its size, but it is publicly available

on GitHub. Automatically generated comments helped us to depict specific flows. For ex-

ample, the comment “Merge branch ‘master’ of https://github.com/scottjehl/jquery into

scottjehl-master” tells us that there was a user named “scottjehl” and that the merge oper-

ation was done at a branch called “scottjehl-master”. Although one might perform a merge

manually and insert a different text in the comment, this did not compromise our analysis

because we had a focus on depicting some of the merge situations, and not all of them.

Due to the operating mode of Git, some details are missing, but these details do not

compromise our analysis. The first one is the moment when a clone arises or deceases.

This information does not exist anywhere in the repository. We inferred the creation of

clones by looking at the commit messages (a commit by developer X led to the creation

of a clone named X). Clones created at a given time stayed alive for the rest of the

analysis.

The second missing detail is that, although we had the commit dates and times in

the repository history, these dates and times were not guaranteed to be correct. This

occurs because DVCSs do not have a central clock. Each commit is registered with the

local time on the machine where the clone is located, which could lead to commits in

the history with a predecessor in the future, depending on when and where each com-

mit was performed. This missing detail is not relevant, because the order of commits is

not depicted using their times, but using the pointers that Git maintains from a commit

to its parents, as discussed in section 3.1. We can use these dates, but not as an au-

thoritative information.

Finally, if rebases were conducted at the repository, this posthoc evaluation had no

means to detect it, once a rebase consists on rewriting the local history for placing par-

allel commits on top of existing commits, consequently leaving no trail of the parallel

work. This missing detail is not important for our evaluation as well, because this oper-

ation is done solely with the purpose of cleaning the repository, leaving its history eas-

ier to understand. However, other posthoc studies that intend to use DyeVC for finding

all cases of parallel work should consider rebase as a potential threat to validity.

We chose a moment in time when three developers were involved, performing com-

mits and merging changes in the repository. We created three clones for these devel-

opers, named after their usernames: jeresig, adam, and aakosh. Figure 15 shows the

topology view on Sep 24 20105 when aakosh had 121 commits pending to be pushed to

the central repository (hereafter called central-repo). Figure 16 shows part of aakosh’s

commit history and how DyeVC represents commits pending to be pushed (green

nodes).

Later on, aakosh pushed his commits to central-repo. In the meantime, both adam

and jeresig committed some changes. Before they pushed their work to central-repo,

adam’s last commit was on Jun 21, 2010, and jeresig’s on Sep 27 2010. At this moment,

we registered them to be monitored by DyeVC. Figure 17 shows the topology view after

this registration on Sep 27 2010.6 Here, we can see that aakoch was synchronized with

central-repo, whereas adam and jeresig had pending actions.

At this point, we can revisit questions Q1 and Q2:

Q1: Which clones were created from a repository? DyeVC’s topology view (Fig. 17)

shows all the clones where it is running, and also discovers other clones connected to

them, even if it is not running there.

https://github.com/scottjehl/jquery

Fig. 15 First monitored repository in Topology view (Sep 24 2010)

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 19 of 34
Q2: What are the communication paths among different clones? DyeVC’s topology

view (Fig. 17) shows the dependencies between peers in the topology, as well as the

number of commits ahead or behind in each of these clones.

Adam had 121 commits to pull from central-repo, what is corroborated by the details

of his tracked branches (master branch in Fig. 18a). He also had a non-tracked commit

pending to be pushed. Non-tracked commits are not shown in the tracked branches

view, but we can see them in gray in the commit history views. Fig. 18b shows the col-

lapsed commit history for jeresig, where we can see adam’s non-tracked commit with

hash a2bd8.

The repository history leads us to think that jeresig is a core developer of this project

because he performed most of the merges to the master branch. Looking at Fig. 17, we

see that he had 26 commits pending to be pushed to central-repo. These 26 commits

can be seen at aakoch’s commit history (Fig. 19) as red commits since they could not

be pulled by aakoch until jeresig has pushed them to central-repo. There was also a

commit in central-repo pending to be pulled by jeresig. If we look back at Fig. 18b, we

see that the only yellow commit is a0887, made by aakoch. This tells us that jeresig

pulled changes from central-repo just before aakoch pushed commit a0887. If we look

at Fig. 20, we see that all pending commits (those that were pending to be pushed and

pulled) are related to the same branch (master). This tells us that, if jeresig wanted to

push these commits to central-repo, he would have to perform a pull operation before.

This analysis helps us revisit and answer Q3:
Fig. 16 aakoch’s commit history showing commits pending to be pushed

Fig. 17 Three monitored repositories in Topology view (Sep 27 2010)

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 20 of 34
Q3: Which changes are under work in parallel (in different clones or different

branches) and which of them are available to be incorporated into others’ clones? New

commits in tracked branches of peers can be easily found by looking at Level 3 infor-

mation (tracked branches, shown in Fig. 18a and Fig. 20). This view shows to which

branch these commits are related and how many new commits exist. If we want to look

at each commit individually, we can look at Level 4 information (commit history,

shown in Fig. 16 and Fig. 19) and notice the yellow nodes. Additionally, Level 4 infor-

mation can be used to find new commits in repositories that are not peers (red nodes),

or new commits in non-tracked branches (gray nodes).
Fig. 18 Adam’s tracked branches (a) and collapsed commit history for repository jeresig (b)

Fig. 19 Aakoch’s commit history

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 21 of 34
5.2 Observational evaluation

We conducted an observational evaluation over the same project used in the posthoc

evaluation (JQuery) to assess the capability of the visualizations provided by DyeVC in

supporting developers and repository administrators. The evaluation was conducted

with four volunteers, which had previous experience with DVCS. They were graduate

students from the Software Engineering research area at Universidade Federal Fluminense

(UFF). Four sessions were conducted, each of them with one subject.

The goal of this observational evaluation was to analyze when DyeVC helps on un-

derstanding the project history better than existing tools. The evaluation was divided

into two phases (without and with DyeVC), each one with two scenarios, where the

subject had to answer questions related to usual work with DVCS. In Scenario 1, the

subject played the developer role, working in a clone named aakoch. In Scenario 2, the

subject played the repository administrator role. The following questions were posed:

Q1.1 What is the status of your clone, compared to the central repository? Q1.2 Who

else is working in the JQuery project (other clones)? Q1.3 Which files were modified in

commit 5d454? Q2.1 What are the existing clones for JQuery project? Q2.2 Which
Fig. 20 Jeresig’s tracked branches

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 22 of 34
clones are synchronized with the central repository? Q2.3 How many commits in

tracked branches are pending to be sent to the central repository? Q2.4 Is there any

commit in non-tracked branches? Where?

In Phase 1 (without DyeVC), DyeVC was not in place, and the subject answered the

questions using any desired DVCS client among the ones available in the computer

used in the evaluation: gitk, Tortoise Git, Git Bash, and SourceTree. Participants were

allowed to access the Internet and search any other procedure or tool that could help

in answering the questions. After that, the subject watched a 10-min video presenting

DyeVC and started Phase 2 (with DyeVC), which consisted of answering the same ques-

tions with the help of DyeVC. The possible answers in Phase 2 were either “keep the

answer of Phase 1”, meaning that using DyeVC did not change the subject perception,

or a different answer, otherwise.

Table 3 presents the time spent by each subject to answer each question in both sce-

narios and both phases. The values include the time to understand the question, inves-

tigate repositories with available tools, look for the answer, and write down the answers

in the form. However, the values do not include the time spent filling the consent form

and the characterization form, watching the video about DyeVC, and filling the exit

questionnaire. It is possible to notice, by looking at Table 3, that all subjects took less

time to complete Scenario 1 (developer role) in Phase 2 (with DyeVC). For Scenario 2

(admin role), none of the subjects managed to answer the questions in Phase 1 (without

using DyeVC). For this reason, times shown in Phase 1 are the times spent by the sub-

jects until they gave up finding an answer.

In Phase 1, each subject used different ways to look for the answers. In Phase 2, sub-

jects correctly used DyeVC to find the answers. Question 1.1 was answered using

DyeVC Level 3 visualization (Tracked branches). Question 1.3 was answered using

Level 4 visualization (Commit History). Finally, questions 1.2 and 2.1 through 2.4 were

answered using Level 2 visualization (Topology). Almost all subjects answered all the

questions similarly, except for subject P4 in question 1.2 from Phase 1.

Subject P1 answered questions 1.1 and 1.3 in Phase 1 using the command line inter-

face. To answer question 1.1, she looked at the log for both local and remote repositor-

ies, counted down how many hashes there were in each log and subtracted these

numbers to find the answer. Question 1.3 was answered with git show command, which

shows, for each affected file in the commit, what has changed. The answer to this ques-

tion was easy to find because only one file was affected, but if many files had been af-

fected, the subject would have trouble finding all affected files using this procedure. For

questions 1.2 and 2.1 through 2.4, the subject tried to find a way to discover related

clones by searching the Internet. After a few searches with no promising results, the
Table 3 Time spent (in minutes) to answer each question

Subject Scenario 1 Scenario 2

Phase 1 Phase 2 Phase 1 Phase 2

P1 14 5 10 6

P2 13 6 4 5

P3 3 2 2 4

P4 10 2 6 10

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 23 of 34
subject gave up, and her answer was “I don’t know”. Once there was no answer to

question 2.1, next questions in Scenario 2 could not be answered as well.

Subject P2 answered question 1.1 by issuing the git status command. To answer

question 1.3, she used Tortoise Git and walked through the commit tree until finding

the desired commit. For questions 1.2 and 2.1 through 2.4, the subject answered that

she did not know a way to find an answer. When answering question 2.1, the subject

commented that, as a repository manager, she should know which were the existing

clones and their relationships, but she did not have any resources available to accom-

plish that.

Subject P3 answered question 1.1 by issuing a git status command (same as subject

P2). To answer question 1.3, she used Tortoise Git but found the desired commit using

the search feature of the tool, instead of walking through the commit tree. For ques-

tions 1.2 and 2.1 through 2.4, the subject answered that it was not possible to find an

answer.

Subject P4 answered questions 1.1 and 1.3 using SourceTree. This subject answered

question 1.2 differently from the others. She wrote down each different author of each

commit as if it was a different clone. Although this is a valid interpretation, it may hap-

pen that authors commit changes in the same clone, and this would lead to a wrong

answer for this question. For questions 2.1 through 2.4, the subject answered that it

was not possible to find an answer.

The overall results of this evaluation were positive. In Phase 1 (without DyeVC), sub-

jects were able to correctly answer questions Q1.1 and Q1.3 whether using DyeVC or

not. Also, further questions were answered correctly only by using DyeVC.

The subjects also answered an exit questionnaire7 (Cesario 2015). All subjects found

easy to interact with DyeVC, to identify related repositories, and to use the operations

available. They consensually elected the topology visualization as the most helpful

visualization in DyeVC. Also, by using Product Reaction Cards, three out of the four

subjects stated that DyeVC is helpful and easy to use. Product Reaction Cards (Benedek

and Miner 2003) have a large set of words, both positive and negative, used to check

the emotional response of a product or design.
5.3 Performance evaluation

We measured the time spent to perform the most common DyeVC operations to evalu-

ate the scalability of our approach. We used projects of different sizes and hosted in

different Git servers. Table 4 shows the monitored projects (name and hosting service),

the repository metrics (the number of commits, disk usage, and the number of files)

and the time spent to run some background and foreground operations in DyeVC. All

measurements were taken in the same period of the day and from the same machine, a

Core Duo CPU at 2.53 GHz, with 4GB RAM running Windows 8.1 Professional 64

bits, connected to the internet at 35 Mbit/s. Each operation was performed once for

each repository, except for the repository registration, which was executed twice

(“Insert 1st” and “Insert 2nd”), as detailed below.

We measured the main operations of our approach: “Insert 1st”, invoked when the

user registers the first repository of a given system to be monitored; “Insert 2nd”, in-

voked when the user registers a repository to be monitored in a system that already has

Ta
b
le

4
Sc
al
ab
ili
ty

re
su
lts

of
D
ye
VC

fo
r
re
po

si
to
rie
s
w
ith

di
ffe
re
nt

si
ze
s

Re
po

si
to
ry

H
os
tin

g
Re
po

si
to
ry

m
et
ric
s

Fo
re
gr
ou

nd
op

er
at
io
ns

Ba
ck
gr
ou

nd
op

er
at
io
ns

tim
es

(s
)

N
um

be
r
co
m
m
its

Si
ze

(M
B)

N
um

be
r
fil
es

C
om

m
it
H
is
to
ry

To
po

lo
gy

In
se
rt
1s
t

In
se
rt
2n

d
C
he

ck
Br
an
ch
es

U
pd

at
e
To
po

lo
gy

Ti
m
e
(s
)

M
em

or
y
U
sa
ge

a
Ti
m
e
(s
)

D
ye
VC

gi
th
ub

.c
om

18
7

1.
0

53
9

3.
5

15
2.
7

12
.4

16
.1

1.
7

4.
4

SA
PO

S
gi
th
ub

.c
om

70
2

7.
0

68
5

5.
6

19
3.
2

20
.8

22
.6

1.
8

5.
2

JG
gi
t

ec
lip
se
.o
rg

29
79

10
.0

15
95

18
.4

51
2

3.
4

42
.4

46
.0

5.
9

6.
8

EG
it

ec
lip
se
.o
rg

37
75

27
.0

14
78

21
.3

55
9

3.
7

49
.6

46
.6

4.
2

7.
3

jQ
ue
ry

gi
th
ub

.c
om

55
18

20
.0

25
3

65
.0

11
21

4.
1

40
.0

37
.4

1.
4

9.
4

To
rt
oi
se

G
it

co
de

.g
oo

gl
e.
co
m

61
66

85
.0

32
20

68
.0

49
2

4.
2

39
.0

36
.0

1.
6

9.
6

G
it
Ex
te
ns
io
ns

gi
th
ub

.c
om

64
17

44
8.
0

15
49

73
.0

15
29

17
.0

15
5.
8

12
9.
0

1.
6

10
.6

D
ru
pa
l

dr
up

al
.o
rg

23
,9
22

84
.4

92
90

-
-

18
.0

10
2.
0

95
.0

2.
0

18
.0

Ex
pr
es
so
Li
vr
e

gi
to
rio

us
.o
rg

25
,8
22

14
1.
0

20
,7
29

-
-

18
.2

11
0.
0

10
2.
0

2.
1

19
.3

G
it

gi
th
ub

.c
om

35
,2
60

98
.0

26
56

-
-

19
.4

19
6.
0

15
8.
6

3.
4

40
.0

a M
em

or
y
us
ag

e
w
as

m
ea
su
re
d
in

M
B
du

rin
g
th
e
ex
ec
ut
io
n
of

“C
om

m
it
H
is
to
ry
”
op

er
at
io
n

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 24 of 34

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 25 of 34
registered repositories; “Commit History”, invoked when the user requests to see the

commit history of a given repository; “Topology”, invoked when the user wants to see

the topology of repositories of a given system; “Check Branches”, invoked periodically

to check all monitored repositories, searching for ahead or behind commits; and

“Update Topology”, invoked periodically to update topology information in the cen-

tral database. This last operation updates the existing repositories, their peers, and

the existing commits, marking in which repositories each commit is found.

It may be noted that the “Commit History” operation has no values for the last three

repositories. This occurs because, as the number of commits increases, more memory

is used to calculate the commit history graph. The current algorithm has an O(x2) space

complexity (being x the number of commits). The computer used in this evaluation

was configured with a 2 GB maximum Java Heap Size, which let us analyze repositories

with up to 6 K commits. This limitation occurs mainly because of JUNG.

Table 5 shows the correlation between each repository size metric and the DyeVC op-

erations’ execution time, according to the Spearman’s rank correlation coefficient

(Spearman 1904). This correlation coefficient measures the monotonic relation between

two variables and ranges from −1 to 1. Values of 1 or −1 mean that each variable is a

perfect (increasing or decreasing) monotone function of the other. A value of 0 means

that there is no correlation between the variables.

Looking at Table 5, it is possible to notice that, except for the “Check Branches” oper-

ation, all other operation times are strongly correlated to the number of commits and re-

pository size. This is due to the nature of these operations, which update or show

information about all commits in the repository. On the other hand, except for the

“Commit History” operation, all other operation times correlate with the number of

files. This is also expected due to the nature of “Commit History” operation, which

does not dig into the changed files.

However, it is possible to find some more tricky situations, which demonstrate that

all three variables (number of commits, size, and number of files) should be taken into

consideration when analyzing the performance of each DyeVC operation. One such

situation is the one that occurs with Git Extensions, which has significantly fewer com-

mits than repositories such as Git, but presents times for “Topology”, “Insert 1st” and

“Insert 2nd” operations in the same level of magnitude. This is because these opera-

tions are very I/O intensive. When a repository is registered to be monitored, DyeVC

creates the working copy for that repository, as discussed in Section 3.1. Larger reposi-

tories will then take more time to perform these actions. Note in Table 4 that the size
Table 5 Spearman’s rank correlation coefficient between repository size metrics and DyeVC
operations time

Operation Number commits Size Number files

Insert 1st 0.85 0.83 0.76

Insert 2nd 0.85 0.83 0.76

Check Branches 0.07 −0.05 0.72

Update Topology 1.00 0.88 0.52

CommitHistory 1.00 0.96 −0.04

Topology 1.00 0.88 0.52

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 26 of 34
of Git Extensions is notably bigger than any other of the repositories used in the

evaluation.

Finally, it is worth mentioning that, even with all measurements taken in the same

period of the day and from the same machine, short network latencies and processor

usage peaks may have occurred, which affect the results.

All in all, although we cannot affirm that DyeVC is scalable to all possible repositor-

ies, our evaluation helped us to identify the scalability limits of DyeVC. Without auto-

matic collapses, DyeVC was able to process repositories with around 6500 commits. To

put this number in perspective, 99% of 50,012 projects analyzed by Rainer and Gale

(2005) had less than 3137 commits. Moreover, Kalliamvakou et al. (2014) indicate that

90% of the projects in GitHub have less than 50 commits. This shows that DyeVC is

scalable for a large number of projects, although we still see space for improvements,

as presented in the following section.
5.4 Automatic collapsing evaluation

We also studied the impact of the automatic collapsing algorithm in the “Commit

History” operation performance. This evaluation was performed at a later time in

comparison with the results obtained in the previous section. Consequently, the re-

pository metrics are slightly different. The repository size, number of commits, and

number of files are higher, as shown in Table 6.

The design of the evaluation was as follows. First, the “Commit History” operation

was performed without using the automatic collapsing. Afterward, sequential and paral-

lel collapse strategies described in Section 3.2.5 were used to simplify the structure of

the commit graph, collapsing the corresponding node structures. The execution of the

sequential strategy was the first stage, and the parallel strategy was the second stage of

each iteration of the automatic collapsing algorithm. Moreover, after each stage, run-

ning time and memory consumption were measured. The evaluation was executed in a

Core i7 CPU at 2.00 GHz, with 16GB of RAM running Windows 7 64 bits.

We evaluated the capability of the automatic collapsing algorithm to reduce the num-

ber of nodes in the commit graph without compromising the quality of the information
Table 6 Characterization of the repositories used in the evaluation of the automatic collapsing
algorithm

Repository Characteristics

Size (MB) Number files Number commits

DyeVC 3.2 745 228

SAPOS 18.8 668 1245

JGit 39.3 1902 4741

EGit 63.6 1779 4983

jQuery 29.2 296 7291

Git Extensions 94.9 1710 8146

Tortoise Git 168 3518 8442

Drupal 176 10,285 38,047

ExpressoLivre 366 21,592 27,079

Git 104 3026 46,794

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 27 of 34
shown in the graph (collapses are performed just for commits of the same type, i.e.,

same color, as discussed in section 3.2.4).

Table 7 shows the reduction achieved after two iterations of the algorithm. The num-

ber of iterations was set to two due to empirical observation that there was almost no

reduction after a second iteration. With two iterations, the algorithm can reduce the

number of nodes by an average of 73% compared to the original graph. In some cases,

such as Drupal or ExpressoLivre, which are repositories that we could not analyze be-

fore, the nodes reduction surpassed 90%, allowing us to visualize their commit history

graph after the automatic collapsing process.

Furthermore, we analyzed the running time and memory consumption of the “Com-

mit History” operation. In particular, data collected for repositories that were visualized

before and after collapse are represented in Fig. 21 and Fig. 22 using boxplots. The fig-

ures show that the more collapse stages we execute, the less time is needed to represent

the commit history, and the less memory is consumed for this purpose. This can be ex-

plained by the fact that the automatic collapsing algorithm is linear and very fast com-

paring to the subsequent visualization process, and speeds up the presentation of the

commit graph. Using this method, significantly lower running times and memory con-

sumption values are obtained, compared with values before the automatic collapsing. It

was possible to visualize repositories with tens of thousands of nodes (Drupal and

ExpressoLivre), which could not be represented before, without applying automatic col-

lapsing process.

Git was the only repository that was not represented visually, even after the auto-

matic collapsing. The main contributing reasons for this fact are its high number of

nodes, its low nodes reduction rates, and its inherent complexity.

In the case of Drupal and ExpressoLivre repositories, high nodes reduction rates

seem to be influenced by a somewhat more linear structure of the commit graph. There

are long chains of 2-degree nodes, corresponding to sequential work stages performed

by one contributor. Instead, Git repository showed resistant to collapse. To explain

what we mean by “intrinsic complexity” of Git, we identified some structures that pre-

vent commit graph’s reduction. An example is shown in Fig. 23. Given the current def-

inition of the collapse operations, the whole structure cannot be reduced because the
Table 7 Reduction of the number of nodes by the automatic collapsing algorithm

Repository Before
Collapse

Iteration 1 Iteration 2

1st stage 2nd stage Reduction (%) 1st stage 2nd stage Reduction (%)

DyeVC 228 73 47 67.98 32 32 85.96

SAPOS 1245 456 404 63.37 378 375 69.88

JGit 4741 3015 2751 36.41 2635 2635 44.42

EGit 4983 3007 2564 39.65 2347 2329 53.26

jQuery 7291 867 709 88.11 609 603 91.73

Git Extensions 8146 4083 3833 49.88 3702 3684 54.78

Tortoise Git 8442 1466 945 82.63 497 482 94.29

Drupal 38,047 903 697 97.63 563 557 98.54

ExpressoLivre 27,079 3008 2792 88.89 2669 2669 90.14

Git 46,794 24,459 24,216 47.73 24,094 24,094 48.51

Average 66.23 73.15

Before Collapse I1 S1 I1 S2 I2 S1 I2 S2

20
40

60
80

Collapse Iteration (I) and Stage (S)

T
im

e
(s

ec
on

ds
)

Fig. 21 Boxplot showing the running time of “Commit History” operation depending on the number of
executed collapse stages

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 28 of 34
branches are not sequential chains of commits. Additional automatic collapsing heuris-

tics that consider the possible dependencies between different branches seem necessary

to accommodate these cases.
5.5 Threats to validity

While we have taken care to minimize threats to the validity of the evaluations, some

factors can influence the results. The usage of a posthoc evaluation to assess a real pro-

ject may not reflect the exact sequence of events that occurred, although the outcome

did not change. For example, when we say that aakosh, at some moment, had 121 com-

mits pending to be pushed to the central repository, these commits could have been

pushed at once or by a series of smaller pushes. Moreover, only one project was se-

lected to perform the analysis, what imposes limitations from a generalization
Before Collapse I1 S1 I1 S2 I2 S1 I2 S2

0
50

0
10

00
15

00
20

00
25

00

Collapse Iteration (I) and Stage (S)

M
em

or
y

(M
B

)

Fig. 22 Boxplot showing the memory consumption of “Commit History” operation depending on the
number of executed collapse stages

Fig. 23 Example of a structure that prevents automatic collapsing

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 29 of 34
standpoint. Furthermore, we used an open source project to perform the posthoc evalu-

ation, but the modus operandi of peers may be different in academic or industrial

contexts.

In the observation evaluation, the selection of subjects was made by asking for volun-

teers from students in the same research group of the author. This was necessary due

to time and people restrictions. Therefore, this group might not be representative and

can be biased. Moreover, there were few subjects in this evaluation. Thus, the results

may have been influenced by the size and by specific characteristics of the group. Fur-

thermore, subjects performed tasks involving DyeVC right after knowing the approach,

giving no time to subjects to assimilate the tool. Results may have been influenced by

this lack of time to mature the necessary knowledge to use the approach efficiently.

Also, subjects could have answered questions in Phase 2 faster than in Phase 1 due to

their learning regarding the scenario.

Finally, there is a risk regarding the instrumentation used to measure the response

times during the performance evaluation. As we used a database stored over the Inter-

net, connectivity issues and network instability may have affected the response times.

6 Related work
According to Diehl (2007), software visualization can be separated into three aspects:

structure, behavior, and evolution. DyeVC relates primarily to the evolution aspect,

more specifically with studies that aim at improving the awareness of developers that

work with distributed software development. Steinmacher et al. (2012) present a sys-

tematic review of awareness studies, which we used to perform a forward and backward

snowballing. The approaches obtained after the snowballing were divided into four

groups. The first group (“Commit notification”) includes approaches that notify commit

activities. The second group (“Awareness of concurrent changes”) comprises approaches

that not only give the developer awareness of concurrent changes but also inform them

about conflicts. The third group (“Repository visualization”) includes approaches that

visualize repository information. Finally, the fourth group (“DVCS clients”) contains

commercial and open source DVCS clients.

The first group contains tools such as SVNNotifier,8 SCMNotifier,9 Commit Moni-

tor,10 SVN Radar,11 Hg Commit Monitor12 and Elvin (Fitzpatrick et al. 2006). The pri-

mary focus of these approaches is on increasing the developer’s perception of

concurrent work by showing notifications whenever other developers perform actions.

The approaches in this group do not identify related repositories and do not provide in-

formation on different levels of details, such as status, branches, and commits. DyeVC

provides these different levels of details, as shown in Section 3.2.

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 30 of 34
The second group comprises approaches that give the developer awareness of concur-

rent changes, sometimes informing them if conflicts are likely to occur. This group in-

cludes tools such as Palantir (Sarma and van der Hoek 2002), CollabVS (Dewan and

Hegde 2007), Crystal (Brun et al. 2011), Lighthouse (da Silva et al. 2006), FASTDash

(Biehl et al. 2007), and WeCode (Guimarães and Silva 2012). Among these, only Crystal

and FASTDash work with DVCSs. Crystal detects physical, syntactic, and semantic con-

flicts in Mercurial and Git repositories (provided that the user informs the compiling and

testing commands), but does not precisely deal with repositories that pull updates from

more than one peer. FASTDash does not detect conflicts directly, as the previously cited

studies, but provides awareness of potential conflicts, such as two programmers editing

the same region of the same source file in repositories stored in Microsoft Team Founda-

tion Server. Although DyeVC primary focus is not to detect conflicts, it can be combined

with such approaches to allow conflicts and metrics analysis over DVCS.

The third group includes approaches that visualize repository information. Each ap-

proach has a different visualization focus, such as program structures (Collberg et al.

2003), classes (Lanza 2001), lines (Voinea et al. 2005), authors (Gilbert and Karahalios

2006), and branch history (Elsen 2013)13,.14 The latter have the same focus of DyeVC’s

Commit History visualization, but dealing only with the local repository, not showing,

for example, where a given commit can be found in related repositories.

Finally, the fourth group includes commercial/open source DVCS clients, which al-

lows one to execute operations on repositories/clones (push, pull, checkout, commit,

etc.) and also visualizing the repository history, i.e., the commits, along with their

attributes (comment, date, affected files, committer, etc.). For example, some Git cli-

ents include gitk,15Tortoise Git,16 EGit for Eclipse,17 and SourceTree.18 The data about

commits shown by these tools varies, but usually involves the committer name, mes-

sage, date, affected files, and a visual representation of the history. These tools,

though, have no knowledge regarding peers. For this reason, they do not present com-

mits from other clones and do not include information about where each commit can

be found. It is worth noticing that we could not find any similar work showing the de-

pendencies among several clones of a DVCS.

Table 8 compares DyeVC with each group used to classify related work presented in

this section, according to the following features: notifications (Which types of notifica-

tion the approach supports?); CVCS (Does the approach support CVCS?); DVCS (Does

the approach support DVCS?); related repositories (Does the approach identifies related

repositories?); levels of detail (Does the approach present information in different levels

of detail?); multiple peers (Does the approach support repositories with multiple peers,

i.e., multiple pull / push destinations?); commits in peer nodes (Does the approach de-

tects commits in peer nodes, i.e., nodes that have a direct communication path to each

other?); commits in non-peer nodes (Does the approach detect commits in non-peer

nodes, i.e., nodes that do not have a direct communication path to each other?); mul-

tiple branches (Does the approach support multiple branches in DVCS?); topology

(Does the approach supply any topology visualization that shows dependencies among

repositories?); and, finally, commit History (Does the approach allow visualizing only a

partial commit history, showing only local commits, or does it allow visualizing a full

commit history, including commits in other repositories that were not synchronized

yet, or that are in non-tracked branches?).

Table 8 Comparing DyeVC features with related work

Feature Commit
notification

Awareness of concurrent
changes

Repository
visualization

DVCS
clients

DyeVC

Notifications New commits Conflicts No No Status change
against peers

CVCS Yes Yes Yes No No

DVCS Somea Someb Somec Yes Yes

Related repositories No No No No Yes

Levels of detail No No No No Yes

Multiple peers No No No No Yes

Commits in peer nodes No Somed Somee No Yes

Commits in non-peer
nodes

No No No No Yes

Multiple branches No No No Yes Yes

Topology No No No No Yes

Commit history No No Somef / Partialg Partialg Full
aExceptions are SCM Notifier and Hg Commit Monitor
bException is Crystal
cExceptions are VisGi, Visugit, and GitHub’s Network Graph
dException is Lighthouse
eException is GitHub’s Network Graph
fVisugit and GitHub’s Network Graph
gApproaches allow visualizing only local commits. Commits in other repositories that were not synchronized yet, or that
are in non-tracked branches, are not shown

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 31 of 34
All in all, among related work, Crystal is the most similar to DyeVC and deserves a

deeper comparison. Both approaches work with DVCSs (besides Git, Crystal also sup-

ports Mercurial) and use working copies to perform analyses, but there are major dif-

ferences between them. Crystal’s goal is to identify conflicts among pairs of

repositories, whereas DyeVC’s goal is to provide awareness regarding the existing peers

and their synchronization, at different levels. To identify repositories, Crystal demands

the user to point out all repositories they want to compare, whereas DyeVC requires

that some of the repositories be registered and it automatically looks at configuration

files to discover all the repositories that one pushes to or pulls from. The repository

comparison in Crystal is from one repository against all the other together, whereas

DyeVC analyzes each repository against each other, providing a pairwise view and a

combined view of the history. Finally, the allowed actions in Crystal include the ability

to push, pull, compile, and test a repository, whereas DyeVC allows one to visualize

branches status, topology, and history. In this way, we see potential to have both tools

working together to provide awareness and safety better when working with DVCS.
6.1 Trace reduction methods and automatic collapsing

Trace reduction is the compression of traces in some manner (either lossless or lossy)

so that they can be stored and processed efficiently (Kaplan et al. 1999; Mohror and

Karavanic 2009). The process of collapsing the commit graph can be seen as a particu-

lar case of trace reduction.

Program analysis and software visualization communities have already proposed trace

reduction methods (Kuhn and Greevy 2006; Cornelissen et al. 2008; Noda et al. 2012;

Jayaraman et al. 2017). In (Kuhn and Greevy 2006) and (Cornelissen et al. 2008), a trace

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 32 of 34
reduction technique is mentioned, which assigns consecutive events that have equal or

increasing nesting levels to the same group. Particularly, method call sequences are

summarized in one method-call chain (Kuhn and Greevy 2006).

Also, compact sequence diagram generation is studied in (Noda et al. 2012) and

(Jayaraman et al. 2017). To have a better sequence diagram representation of the pro-

gram execution, Noda’s method (Noda et al. 2012) abstracts the history of object

interaction by grouping strongly correlated objects. These objects are compacted,

achieving an appropriate reduction in the number of objects appearing in the se-

quence diagram, which results in compression of this diagram along the horizontal

axis. Also, (Jayaraman et al. 2017) presents vertical and horizontal sequence diagram

compaction techniques. For this end, one-to-one correspondence between call trees

and sequence diagrams is used. A maximally compacted tree is obtained, generating

smaller and more useful diagrams.

These approaches work with method-call sequences and sequence diagrams, both

having a tree structure. Unlike these works, when applying automatic collapsing, we

deal with a commit graph, which is a DAG, with a high number of commit nodes. The

structure of a graph is more rich and complex than the structure of a tree.

7 Conclusion
In this paper, we presented DyeVC, an approach that identifies the status of a reposi-

tory in contrast with its peers, which are dynamically found in an unobtrusive way. We

have evaluated DyeVC on a real project, showing that it can be used to answer ques-

tions that arise when working with DVCSs. The observational evaluation results were

promising: DyeVC was considered easy to use and fast for most repository history ex-

ploration operations while providing the expected answers. This provides initial evi-

dence that DyeVC could effectively help developers and repository administrators by

saving time and by supporting answering questions regarding DVCS usage that could

not be answered before. We have also evaluated DyeVC’s performance over repositories

of different sizes, and we found out that the time and space complexity of the approach

are directly related to the number of commits in the repository, especially in the view

levels with finer granularity.

Some future research topics arise from this work. DyeVC could gather additional

metadata, for example, to create a visualization showing conflicts that would happen

when merging two or more branches. This data could also be used to mine information

in the repositories, revealing usage patterns or presenting metrics. Moreover, the

formalization of DyeVC mechanics could be used to prove correctness properties of

our implementation. Finally, some optimization should be done to allow DyeVC work

with larger repositories with more complex branch structures.

8 Endnotes
1Dye is commonly used in cells to observe the cell division process. As an analogy,

DyeVC allows developers to observe how a Version Control repository evolved over

time.
2http://www.eclipse.org/jgit/
3http://jung.sourceforge.net/
4https://github.com/jquery/jquery

http://www.eclipse.org/jgit/
http://jung.sourceforge.net/
https://github.com/jquery/jquery

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 33 of 34
5Considering the scenario just after commit a088751a1b2c5761dab8de9d7da8602def

b45b11.
6Considering the scenario just after commit ea6a4813b7d996f6f7af0b61a5f1bf4ab80b

291d.
7The exit questionnaire can be found in Appendix G of the referenced Master’s

Thesis, which can be found at https://github.com/gems-uff/dyevc/blob/master/docs/

dissertation.pdf.
8http://svnnotifier.tigris.org/ (2012)
9https://github.com/pocorall/scm-notifier (2012)
10http://tools.tortoisesvn.net/CommitMonitor.html (2013)
11http://code.google.com/p/svnradar/ (2011)
12https://bitbucket.org/dun3/hgcommitmonitor (2009)
13Visugit: https://github.com/hozumi/visugit
14GitHub’s Network Graph: https://github.com/blog/39-say-hello-to-the-network-

graph-visualizer
15http://git-scm.com/docs/gitk
16https://tortoisegit.org/
17http://eclipse.org/egit/
18http://www.sourcetreeapp.com/

Abbreviations
API: Application programming interface; CM: Configuration management; CPU: Central processing unit;
CVCS: Centralized version control systems; DAG: Directed acyclic graph; DVCS: Distributed version control systems;
HTTP: Hypertext transfer protocol; HTTPS: HTTP secure; JSON: JavaScript object notation; JUNG: Java Universal network/
graph; MB: Megabyte; RAM: Random access memory; RESTful: Representational State transfer; UML: Unified modeling
language; VCS: Version control systems

Acknowledgements
We thank CNPq and FAPERJ for the financial support.

Funding
CNPq and FAPERJ sponsored this work.

Availability of data and materials
The source code and the link to download DyeVC via Java Web Start can be found at https://github.com/gems-uff/
dyevc. All projects used in the evaluations are available in their respective repositories, described in Table 4.

Authors’ contributions
CC contributed in the design and implementation of DyeVC and the design of the automatic collapsing algorithm
and was responsible for running the posthoc, observational, and performance evaluations. RI contributed in the design
and implementation of the automatic collapsing algorithm and was responsible for running the automatic collapsing
evaluation. LM contributed in the design of DyeVC, the automatic collapsing algorithm, and the evaluations, and was
responsible for the DyeVC formalization. All three authors contributed to writing the paper. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

9 Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 January 2017 Accepted: 14 July 2017

References

Appleton B, Berczuk S, Cabrera R, Orenstein R (1998) Streamed lines: branching patterns for parallel software

development, Pattern languages of programs conference (PLoP), p 98
Benedek J, Miner T (2003) Measuring desirability: new methods for evaluating desirability in a usability lab setting.

In: Proceedings of usability professionals association (UPA), Orlando, p 57

https://github.com/gems-uff/dyevc/blob/master/docs/dissertation.pdf
https://github.com/gems-uff/dyevc/blob/master/docs/dissertation.pdf
http://svnnotifier.tigris.org/
https://github.com/pocorall/scm-notifier
http://tools.tortoisesvn.net/CommitMonitor.html
http://code.google.com/p/svnradar/
https://bitbucket.org/dun3/hgcommitmonitor
https://github.com/hozumi/visugit
https://github.com/blog/39-say-hello-to-the-network-graph-visualizer
https://github.com/blog/39-say-hello-to-the-network-graph-visualizer
http://git-scm.com/docs/gitk
https://tortoisegit.org/
http://eclipse.org/egit/
http://www.sourcetreeapp.com/
https://github.com/gems-uff/dyevc
https://github.com/gems-uff/dyevc

Cesario et al. Journal of Software Engineering Research and Development (2017) 5:5 Page 34 of 34
Biehl JT, Czerwinski M, Smith G, Robertson GG (2007) FASTDash: a visual dashboard for fostering awareness in software
teams. In: ACM conference on human factors in computing systems (CHI). ACM, San Jose, pp 1313–1322

Brun Y, Holmes R, Ernst MD, Notkin D (2011) Proactive detection of collaboration conflicts. In: ACM SIGSOFT symposium
and European conference on foundations of software engineering (ESEC/FSE). ACM, Szeged, pp 168–178

Cederqvist P (2005) Version management with CVS. Free Software Foundation
Cesario C (2015) Awareness over distributed version control systems. Master’s thesis, Universidade Federal Fluminense - UFF
Cesario CM, Murta LGP (2016) Topology awareness for distributed version control systems. In: Proceedings of the 30th

Brazilian symposium on software engineering (SBES). ACM, Maringá, pp 143–152
Chacon S (2009) Pro Git, 1st edn. Apress, Berkeley
Collberg C, Kobourov S, Nagra J, Pitts J, Wampler K (2003) A system for graph-based visualization of the evolution of

software. In: ACM symposium on software visualization (SOFTVIS). ACM, San Diego, pp 77–ff
Collins-Sussman B, Fitzpatrick BW, Pilato CM (2011) Version Control with Subversion. Compiled from r4849. O'Reilly Media,

Stanford
Cornelissen B, Moonen L, Zaidman A (2008) An assessment methodology for trace reduction techniques. IEEE

International Conference on Software Maintenance, In, pp 107–116
Dewan P, Hegde R (2007) Semi-synchronous conflict detection and resolution in asynchronous software development.

In: European conference on computer-supported cooperative work (ECSCW). Springer London, Limerick, pp 159–178
Diehl S (2007) Software visualization: visualizing the structure, behaviour, and evolution of software. Springer, Berlin,

New York
Eclipse Foundation (2014) 2014 annual eclipse community report. Eclipse Foundation, San Francisco
Elsen S (2013) VisGi: Visualizing Git branches. In: IEEE working conference on software visualization (VISSOFT). IEEE,

Eindhoven, pp 1–4
Estublier J (2000) Software configuration management: a roadmap. In: International conference on software

engineering (ICSE). ACM, Limerick, pp 279–289
Fielding RT (2000) Architectural styles and the Design of Network-Based Software Architectures. Thesis, University of

California
Fitzpatrick G, Marshall P, Phillips A (2006) CVS integration with notification and chat: lightweight software team

collaboration. In: ACM conference on computer-supported cooperative work (CSCW). ACM, Banff, pp 49–58
Gilbert E, Karahalios K (2006) LifeSource: two CVS visualizations. In: ACM conference on human factors in computing

systems (CHI). ACM, Montreal, pp 791–796
Guimarães ML, Silva AR (2012) Improving early detection of software merge conflicts. In: Internation conference on

software engineering (ICSE). IEEE Press, Zürich, pp 342–352
Gumm D-C (2006) Distribution dimensions in software development projects: a taxonomy. IEEE Softw 23:45–51
Jayaraman S, Jayaraman B, Lessa D (2017) Compact visualization of java program execution. Softw Pract Exp 47:163–191.

doi:10.1002/spe.2411
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils of mining GitHub. In:

Proceedings of the 11th working conference on mining software repositories. ACM, New York, pp 92–101
Kaplan SF, Smaragdakis Y, Wilson PR (1999) Trace reduction for virtual memory simulations. In: Proceedings of the 1999

ACM SIGMETRICS international conference on measurement and Modeling of computer systems. ACM, New York,
pp 47–58

Kuhn A, Greevy O (2006) Exploiting the analogy between traces and signal processing. In: 22nd IEEE international
conference on software maintenance, pp 320–329

Lanza M (2001) The evolution matrix: recovering software evolution using software visualization techniques. In:
International workshop on principles of software evolution (IWPSE). ACM, Tokyo, pp 37–42

Mohror K, Karavanic KL (2009) Evaluating similarity-based trace reduction techniques for scalable performance analysis.
In: Proceedings of the conference on high performance computing networking, storage and analysis. ACM, New York,
pp 55:1–55:12

Noda K, Kobayashi T, Agusa K (2012) Execution trace abstraction based on meta patterns usage. In: 19th working
conference on reverse engineering, pp 167–176

O’Sullivan B (2009a) Mercurial: the definitive guide, 1st edn. O’Reilly Media, Sebastopol
O’Sullivan B (2009b) Making sense of revision-control systems. CACM 52:56–62
Perry DE, Siy HP, Votta LG (1998) Parallel changes in large scale software development: an observational case study. In:

International conference on software engineering (ICSE). IEEE Computer Society, Kyoto, pp 251–260
Rainer A, Gale S (2005) Evaluating the quality and quantity of data on open source software projects. Proceedings of

the 1st international conference on open source software
Rochkind MJ (1975) The source code control system. IEEE Trans Softw Eng 1:364–470
Sarma A, van der Hoek A (2002) Palantir: coordinating distributed workspaces. In: 26th computer software and

applications conference (COMPSAC). IEEE, Oxford, pp 1093–1097
da Silva IA, Chen PH, Van der Westhuizen C, Ripley RM, van der Hoek A (2006) Lighthouse: coordination through

emerging design. In: Workshop on eclipse technology eXchange (ETX). ACM, Portland, pp 11–15
Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101.

doi:10.2307/1412159
Steinmacher I, Chaves A, Gerosa M (2012) Awareness support in distributed software development: a systematic review

and mapping of the literature. In: ACM conference on computer-supported cooperative work (CSCW). ACM,
Seattle, pp 1–46

Tichy W (1985) RCS: a system for version control. Soft Pract Exp 15:637–654
Voinea L, Telea A, van Wijk JJ (2005) CVSscan: visualization of code evolution. In: ACM symposium on software

visualization (SOFTVIS). ACM, Saint Louis, pp 47–56
Walrad C, Strom D (2002) The importance of branching models in SCM. IEEE Comput 35:31–38
Wloka J, Ryder B, Tip F, Ren X (2009) Safe-commit analysis to facilitate team software development. In: International

conference on software engineering (ICSE). IEEE Computer Society, Vancouver, pp 507–517

http://dx.doi.org/10.1002/spe.2411
http://dx.doi.org/10.2307/1412159

	Abstract
	Background
	Motivational example
	DyeVC approach
	Information gathering
	Information visualization
	Level 1: Notifications
	Level 2: Topology
	Level 3: Tracked branches
	Level 4: Commits

	Automatic collapsing
	Behind the scenes

	Implementation
	Evaluation
	Posthoc evaluation
	Observational evaluation
	Performance evaluation
	Automatic collapsing evaluation
	Threats to validity

	Related work
	Trace reduction methods and automatic collapsing

	Conclusion
	Dye is commonly used in cells to observe the cell division process. As an analogy, DyeVC allows developers to observe how a Version Control repository evolved over time.
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

