
Sielis et al. Journal of Software Engineering Research and
Development (2017) 5:2
DOI 10.1186/s40411-017-0036-y

RESEARCH Open Access

ArchReco: a software tool to assist
software design based on context aware
recommendations of design patterns
George A. Sielis1* , Aimilia Tzanavari2 and George A. Papadopoulos1

*Correspondence:
sielis@cs.ucy.ac.cy
1Department of Computer Science,
University of Cyprus, University of
Cyprus, P.O. Box 20537, 1678
Nicosia, Cyprus
Full list of author information is
available at the end of the article

Abstract

This work describes the design, development and evaluation of a software Prototype,
named ArchReco, an educational tool that employs two types of Context-aware
Recommendations of Design Patterns, to support users (CS students or professionals)
who want to improve their design skills when it comes to training for High Level
Software models. The tool’s underlying algorithms take advantage of Semantic Web
technologies, and the usage of Content based analysis for the computation of
non-personalized recommendations for Design Patterns. The recommendations’
objective is to support users in functions such as finding the most suitable Design
Pattern to use according to the working context, learn the meaning, objectives and
usages of each Design Pattern. The current work presents the Semantic Modeling of
the Software Design process through the definition of the context that defines the
Software Design process and in particular the representation of the Design Patterns as
Ontology model, the implemented Context Aware Recommendation Algorithms and
the evaluation results extracted from a user based testing for the ArchReco prototype.

Keywords: Software design, Context awareness, Semantic web, Recommendation
algorithms, Software engineering educational tools, Design patterns learning

Content
Methods

In this article, the ArchReco Software prototype tool is presented, which supports
Design Patterns learning and practicing through Semantic Web based Context Aware
Recommendations of Design Patterns.

Results

ArchReco provides a design environment where users can draw diagrams, with the use of
pre-defined shapes that exist in a palette. The description of the shapes and the purpose
of use for each shape, are used as part of a contextual elements set that is processed by
the system for the computation of the most suitable Context-based recommended Design
Patterns. The recommendedDesign Patterns are retrieved frommultiple data sources and
filtered based on the contextual information that is processed, when recommendations
are requested. The recommendation results can be used by users, to read the content
of the recommended Design Patterns and decide whether a Design Pattern should be

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-017-0036-y&domain=pdf
http://orcid.org/0000-0003-2139-3942
mailto: sielis@cs.ucy.ac.cy
http://creativecommons.org/licenses/by/4.0/

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 2 of 36

included in a Diagram or not. The tool was evaluated by users and the qualitative results
of the evaluation are presented in the article.

Conclusions

The evaluation results revealed the tool’s usefulness, usability and most importantly
proved the educational character of the Context Aware Recommendation tool regarding
the recommendation of Design Patterns.

Background
Design Patterns, as defined in (Alexander et al. 1977), are a well-known and frequently
used software engineering problem-solving discipline, which has emerged from the
object-oriented community. Design Patterns are “templates” that intend to solve partic-
ular problems in a specific context. The solution of such problems can adopt derived
models, provided by one ormore individual Design Pattern or their combination, depend-
ing on the kind or type of the designed module/component. Therefore, the satisfaction
of new software requirements and specifications, with the use of Design Patterns can
facilitate the overall Software Design.
Buschmann et al. (1996) states that “Patterns help you build on the collective experi-

ence of skilled software engineers. They capture existing, well-proven experience in software
development and help to promote good design practice”. Following this statement, the issue
that needs to be investigated is which patterns are the most suitable to use for the design
of a module/component under specific conditions. In reality, there is no single answer
since the selection of Design Patterns that can be applied in a design process depends
primarily on the subjective opinion of the designer, and it is based on which design pat-
terns better match the design requirements. The adoption of a design pattern or a set of
patterns relies on how knowledgeable the designer is, related to the existing designmodel.
The complexity of the Software Design process, in most cases is related to the

incomplete requirements specifications or the lack of knowledge in specific design and
programming methodologies, such as Design Patterns. In general, software designers can
be classified into beginners, with little experience all the way through to the very experi-
enced (Cross 2004; Walz et al. 1993). In order to target the fresh Software Engineers and
more specifically Computer Science or Engineering students, and assist them in over-
coming the feeling of uncertainty in designing software models using Design Patterns,
we have created ArchReco, a Software Architecture Design prototype tool, which sup-
ports Context-Aware recommendations for Design Patterns. Context as it is defined by
(Dey et al. 2001), is “any information that can be used to characterize the situation of an
entity. An entity is any information that is considered relevant to the interaction between a
user and an application including the user and applications themselves”. With ArchReco
prototype, the current research work foresees the examination not only of the impact
that the recommendations of Design Patterns may have on Software Design and more
specifically the High Level Software Design, but also in terms of the impact that Context
Awareness, as a recommendation mechanism, has on proposing Design Patterns. High
Level Software Design is defined in (Briand et al. 1999) as “a collection of module and
subroutine interfaces related to each other by means of USES and IS COMPONENT OF
relationships. Precise and formalized information on module or subroutine bodies is not
yet available at the stage of High Level Design”.

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 3 of 36

ArchReco is designed and implemented to be an educational tool that employs two
types of Context Aware Recommendations of Design Patterns, to support users (CS stu-
dents or professionals) who want to improve their design skills when it comes to training
for High Level Software models.
The motivation of this work is based on the lack of Software Design tools that support

new designers in finding and applying Design Patterns in High Level Software models
based on input requirements written in natural language and taking into account the rel-
evant context of a working problem. In the existing literature there are reported attempts
to produce recommendations for Design Patterns such as (Gomes et al. 2002; Guéhéneuc
and Mustapha 2007; Weiss and Birukou 2007) but none of them was taking into account
the context or has produced a complete prototype solution for specific target groups such
as CS or SE students which ArchReco supports.
The rest of the paper is structured as follows: Section Motivation presents the moti-

vation for the current work; Section ArchReco: a design patterns recommendation tool
presents the related work and how this work is different than the related work reported
in the literature; Section A use case scenario presents the ArchReco prototype, the con-
text analysis and its Architecture. It also presents the Semantic Web Interoperability
and Context Aware Recommendation components; Section Methods presents a Use
Case scenario describing how ArchReco can be used; Section Related work presents the
ArchReco prototype evaluation and presents the results through a qualitative analysis.
The article concludes with section Conclusions, where the conclusions and further work
are discussed.

Motivation
Over the last few years, research papers related to the Design Patterns and their applica-
tions to real life software tools were significantly increased. Design Patterns are examined
from many different perspectives such as the recovery of Design Patterns from exist-
ing software tools (Rasool and Streitferdt 2011), Formalization and Reasoning Design
Patterns (Bayley and Zhu 2008; Hou and Hoover 2006), or generate Design Patterns
repositories other than the well-known GoF patterns (Gamma et al. 1995) like for exam-
ple the yahoo design patterns repository https://developer.yahoo.com/ypatterns/. It is
worth noting that in publications related to the recommendation algorithms for Design
Patterns (Gomes et al. 2002; Guéhéneuc and Mustapha 2007; Weiss and Birukou 2007)
we have not found applied recommendation algorithms that were used in software tools.
It is also worth noting that there is not reported work where context was used as
part of the recommendation mechanisms for the computation of recommendations for
Design Patterns.
Moreover, in the last decades, a rapid growth of new design patterns is noticed. Studying

the Patterns Languages of Programs (PLOP) conferences proceedings, it is noticeable that
every year a huge number of Design Patterns are presented. In total, there are at least 10
PLOP conferences, which are organized every year (a full list of the PLOP conferences can
be found in http://hillside.net/conferences). Moreover, a big number of Design Patterns
can be found in repositories such as in https://sourcemaking.com/ where 101 Design
Patterns are presented or Enterprise Architecture Management Pattern (EAM). EAM
patterns catalog v1.0 that was published in 2008 contained approximately 154 Design Pat-
terns and more recently EAM Catalog V2 was published containing much more Design

https://developer.yahoo.com/ypatterns/
http://hillside.net/conferences
https://sourcemaking.com/

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 4 of 36

Patterns including all recent Enterprise Architecture Management patterns that were
defined until 2016. Undoubtedly, the number of Design Patterns increases every year and
it is almost impossible for Software Engineers, especially students without experiences
in the topic of Software Engineering to follow and learn all Design Patterns, existing or
new ones.
Based on the latter ascertainment and with the aim to identify additional needs that

Software Engineers may have in design andmodelling processes, we performed an on-line
survey with 28 participants from which 12 were Software Developers, 1 Software Archi-
tect, 3 Software Development Team Leaders, 2 Project Managers, 1 Manager of Software
Development Department, 5 Research Associates, 3 Academic Professors and 1 System
Administrator. The survey aimed to collect opinions from experts in Software Engi-
neering regarding the existing tools that they use, and the lack of such tools in terms
of Collaborative Design, Social Creativity Enhancement and the aiding mechanisms like
Recommendation Systems that the known tools could possibly support. The comprehen-
sive analysis of the survey is out of the scope of this work, but its results motivated the
current research. The survey results related to the needs they have in accessing helpful
resources and the accessibility to existing solutions that other people performed moti-
vated the study of Design Patterns as helpful resources and reusable components that
can be applied in new solutions. Design Patterns, as reusable components can be used
in the form of training resources. However, the plethora of Design Patterns and the lack
of a unified structured repository that all Patterns can be found, motivated the need for
the development of methodologies for finding and retrieving them from multiple data
sources in a structured form. Through the survey, Software engineers were also asked to
define the most well-known Software Design Tools that they use. Table 1 presents the list
of the tools that the participants defined. The examined tools shown in Table 1, lack of
recommendation mechanisms that would support the software design process. The tools
appeared in Table 1 are professional tools that consider existing knowledge as fact, which
is not always reflecting the reality. From the one hand, professionals usually have short
deadlines and do not have time to see all new patterns being proposed every year, and on
the other hand, students must learn existing Design Patterns and at the same time develop
the skills so they will become able to follow and learn new ones.
Therefore, this work attempts to examine the development of a High-Level Software

design tool which would provide existing Design Patterns during the design process,
enhanced by Context Aware recommendations. The tool aims to examine how users,
students and professionals, perceive the usage of Design Patterns recommendations dur-
ing the process of designing a High-Level software diagram, using recommended Design
Patterns from multiple heterogenous data sources, for learning or applying them in
High-level Software design diagrams.

ArchReco: a design patterns recommendation tool
For the appropriate design of ArchReco we have introduced a number of ontologies for
modelling the Design Patterns and the contextual elements in a uniformed way. A few
years ago, the most commonly used designed patterns were the GoF Design Patterns
(Gamma et al. 1995), which are still the fundamental Design Patterns that software engi-
neers use. Over the last few years, Design Patterns became a common practice for several
companies and individual engineers developed new Design Patterns and categorized

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 5 of 36

Table 1 Software engineering design tools attributes

Software C/OS Supported design
functionality

Supported
recommendations

Supported social
attributes

D/ W

Eclipse OS UML tools, EMF
based projects, OCL
expressions

Code Generation for
Java, C++ and C

Code Sharing between a
team

D

Microsoft Visio C Diagram design
with the use of
shapes

None None D

Enterprise Architect C UML, BPMN and
SysML, Enterprise
architecture
frameworks like
TOGAF and UPDM

None Team based repositories
and version control tools

D

Enterprise Architect C UML, BPMN and
SysML, Enterprise
architecture
frameworks like
TOGAF and UPDM

None Team based repositories
and version control tools

D

Magic Draw C UML 2 metamodel,
the latest XMI
standard for
data storage and
programming
languages
development,
database schema
modeling, DDL
generation and
reverse engineering
facilities

Data Definition Lan-
guage (DDL) genera-
tion

Server for real-time
modeling by team

D

ArgoUML OS UML for Class
diagrams, Statechart
diagrams, Activity
diagram, Use
Case diagrams,
Collaboration
diagrams,
Deployment
diagrams and
Sequence diagrams

Design Critics None D, W

IBM rational C UML based on role,
model, life-cycle
phase, and current
task, BPMN2, Model
reporting, etc.

None Hosted by IBM Cloud D, W

Yaoqiang BPMN C BPMN 2.0 diagrams Spell checks,
automatically
generates BPMN2.0
diagram interchange
information

None D

ER Studio C UML 2.0 diagrams Pre-defined patterns
and templates for
new projects

None D

them according to the domain the patterns are applied to. For example, repositories such
as the yahoo (https://developer.yahoo.com/ypatterns/) repository of Design Patterns for
the UI/UX domain contain a number of patterns that can be applied in web based inter-
faces. Additionally, there are specific Design Patterns related to Data collection, Web
Services, Mobile development and several other domain specific Design Patterns.
The coverage of all of the above domains within a unified model that would recog-

nize all Design Patterns for each domain, is done through the context analysis of the

https://developer.yahoo.com/ypatterns/

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 6 of 36

overall Software Design Process and the design of a Semantic Web Ontology model that
would make possible the collection of Design Patterns information from several sources,
in a structured way. At the same time, such a model would offer accessibility to specific
information for its usage for further computational analysis.

Software design process - context analysis

In the existing literature, several software development models can be found such as
the Waterfall (Balaji and Murugaiyan 2012), ETVX (Awais 2016), Prototype, Spiral
(Wagatsuma et al. 2016), V-model (Weilkiens et al.), Agile methodologies such as Scrum
(Rola et al. 2016) and Unified Process Model. Based on comparison of the existing soft-
ware development models in (Munassar and Govardhan 2010), the most commonly used
are the Waterfall and the Spiral models. However, the last years Agile models are increas-
ingly applied. The difference between models like Waterfall and Spiral in comparison
to Agile models is mainly on the sequence of applying the phases that are defining the
Software Design life-cycle. On the one hand, Waterfall and Spiral models use the strict
sequential completion of phases, setting as a necessary condition to proceed into a next
phase, the completion of the previous one. In Agile approaches there is more freedom in
the completion of tasks which belong to the several phases of a Software Design life-cycle.
For the modelling of the Software Design process, the Waterfall model was selected as a
guiding model for the specification of the process phases and the semantic representa-
tion of the Software Design life-cycle. The phases used and analyzed based on Waterfall
model are the Requirements specification, Design, Construction (implementation or
coding), Integration, Testing and debugging (validation), Installation and Maintenance
(Table 2).

Table 2 Software design phases contextual elements

Phase Users Types of ideas
expected

Resource material Tools

Requirements
specification

Individual or
Group

Text based ideas.
New ideas ormodified
ideas entered by other
team members.

Resources entered
by groupmembers.
Requirements from
similar projects.
Links, Videos,
Images

Resource repository, Chat,
Recommendations of
users, Recommendations
of related projects,
Recommendations of
related requirements.
Recommendation of
actions.

Design Individual or
Group

Schematic design
with comments e.g.
UML diagrams

Images, Tutorials,
White papers,
Design Patterns

Recommendations of
resources,
recommendation of
experts, Drawing tool, UML
editor, canvas designer
etc.

Coding Individual or
Group

Classes and methods
of implementation,
coding Design
Patterns

High Level Design,
Low Level Design,
Web

Programming language
IDEs.

Testing Individual or
Group

Testing
methodologies,
testing scenarios,
unit-tests

Revision of require-
ments

Maintenance Individual or
Group

Maintenance actions

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 7 of 36

Table 3 Semantic analysis of the software design model (triples)

Domain Property Range

ProjectCreator createProject Project

Project projectCreatedBy ProjectCreator

ProjectGroupMember isMemberOf ProjectGroup

Project isDividedInto Phases

RequirementsDefinition isPhaseOf Project

Design isPhaseOf Project

Implementation isPhaseOf Project

Project IsConsideredAs CreativityProject

RequirementsDefinition IsConsideredAs CreativityProject

As it is shown in Table 2, Design Patterns is an important resource for the design phase
and therefore a partial Ontology model specific for Design patterns was designed. Table 3
demonstrates a sample of the semantic relational triples that were applied for semantic
representation of the entities and relations of the Software Design process.
The ontology model defined and designed as a Contextual model using the following

contextual elements as the main “entities”/“concepts”:
“Project” - Project refers to the description of the project that a diagram is created for.

The project is defined by a “Title” and a “Description”. The definition of the project with
its title and description is a high level definition of the problem that the diagram solves.
“Application type” - The type of application is used for the selection of the most suitable

set of Architectural templates that can be applied in the diagram. The type is used for the
selection of the most suitable Architecture generic diagram that can be applied and the
Architectural layers are used as contextual filtering elements when a diagrammatic shape
is added in each layer.
“Architecture types” - Architecture types and their diagrammatic generic templates are

defined based on the application type they are usually applied for. For example, we iden-
tify four Architecture types based on the well known application types: Desktop, Mobile,
Service Oriented and Web Based applications. Each Architecture type can have one or
more architectures that can be applied for the development of each corresponding type.
For example, for web applications, the Architectural patterns of MVC, MVP, MVVM can
be applied, for Mobile applications, the MVVM pattern is too common and for web ser-
vices, the Model-Controller may be used. The Architectural patterns can be related with
more than one Software Architecture type.
“Diagram Shapes” - Each shape within a diagram may have specific type and purpose

of use. The description of a shape, the type of Design Patterns that are related to its
type as well as the connections with other shapes in the diagram, consist of contextual
information that can be analyzed and processed.
“User” - User is the main contextual entity of the system. User is the person who

defines the overall design of a diagram; gives the input text that is used for the recom-
mendation filtering; and is the entity that takes the decisions regarding the selection of a
recommended Design Pattern or not, to apply in the diagram.

Design patterns ontology model

The definition of the Design Patterns Ontology Model was done through the analysis of
the Design Patterns attributes as contextual elements that characterize and define the

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 8 of 36

Design Patterns. The design of the model is following the Design Patterns description
template as it is given by (Gamma et al. 1995) for the definition of the GoF Design Pat-
terns. In this template, each particular Design Pattern is described based on its Intent,
Consequences, Implementation, Known uses, Motivation and Collaborators attributes.
Additionally, in the designed model more features were added such as a descriptive image
that visually describes a Design Pattern, a generic descriptive UML diagram for the pat-
tern (as image), url’s with information for the pattern, documents related to the pattern.
Those attributes were added for the usage of Design Pattern as a training material if this
is needed by the applications that will apply the designed models. Figure 1 depicts the
Semantic Web Ontology Model representation.

ArchReco prototype - design patterns training tool

The objective that the ArchReco prototype aimed to meet is the training of Computer
Science and Computer Engineering students or professionals in learning new or existing
Design Patterns through practice. The Context Aware Recommendations is the aiding
tool that was used for achieving the task. The overall design of the prototype was done
based on the assumption that the users of the system do not know UML, since UML
design is used for functional design and demands a good level of programming language
knowledge and experience in similar modelling tools. Additionally, the tool is designed to
offer aiding tools other than the Context Aware recommendations for Design Patterns.
By the initialization of a diagram model/project users are able to define the problem they
want to transform into a model, define the type of application that the High Level Design
is about, such as Web, Mobile, Web Service or Desktop Application and the nature of the
application such as if it will be a static or dynamic content application. Using the input
given by the beginning of a new design, the initializing input is analyzed and a list of
Architectural templates for the defined application types is presented. For example, for
a dynamic Web-based application the list with the Architectural Patterns contains the
MVC (Model View Controller), MVVM (Model View - View Model), MVP (Model View
Presenter) and other Architectural Patterns that are commonly used forWebApplications

Fig. 1 Design Patterns Ontology Model Based on the GoF template Description of the ontology model
representing the semantic relations between the Design Pattern entity and its attributes as data objects

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 9 of 36

are presented. For each Architectural Pattern, there is a complete description coming
from the existing related literature and an image that describes its high level design.
The prototype consists of four areas/panels. In these panels the followingmodules exist:

A palette with custom shapes (not UML shapes), a canvas, the diagram model details
and panel with three tabs that contain the Design Patterns recommendation results, the
Architectural Patterns and a set of Design Principles. The shapes of the palette have
names that help the user to understand the purpose that they can be assigned for and
each shape triggers a specific semantic pre-filtering mechanism based on their usage.
The recommendation tabs on the right panel are automatically expanded and provide
information according to the performed actions. For example, when the user defines
the type of the application, the Architectural Patterns tab is expanded containing the
selected type related Architectural Patterns, and when a shape is dragged in the can-
vas, the Recommendations of Design Patterns tab expands, containing the recommended
patterns that are produced based on the user’s textual input. The automatic expan-
sion of the tabs aimed to attract the user’s attention when an action is performed, in
order to select the recommended patterns and study their provided content. An Archi-
tectural or Design Pattern, can be added to the canvas as individual shape or set of
shapes, with the corresponding labels, which describe the Pattern(s) that the shape(s)
refer to.
The ability to design diagrams on predefined Architectural diagrams over the canvas

in combination with the Context Aware Recommendations for the Design Patterns offer
the users an environment where they can design a high level software diagram based on a
given problem without the need for advanced knowledge in Software Design modelling.
The given environment offers accessibility to Design Patterns information for learning
without being necessary to search the web. Additionally, the use of context for the recom-
mendation of Design Patterns gives the opportunity to the users to examine a minimized
set of Design Patterns that is produced based on the problem description, the specific task
description and the type that a shape of the diagram has.
Shape type is used as context information and processed as semantic filtering informa-

tion using the Design Patterns Ontology model. A structured representation of Design
Patterns using categories and sub-categories of Patterns is described in the following
sample list:

• Classic (Gang of Four - GoF) hasSubcategories Behavioral, Creational, and
Structural

• Antipatterns hasSubCategories Software Design Antipatterns
• Enterprise Application Architecture Patterns hasSubcategories Data Source

Architectural Patterns, Object Relational Behavioural Patterns, Object Relational
Metadata Mapping Patterns, Object Relational Structural Patterns

• User Interface hasSubcategories Yahoo UI and similar repositories of UI Design
Patterns

The types of shapes that were defined and used for the ArchReco prototype are the
following:

• Server Side Requirement shape - Used to describe features that will run the server.
Recommended Design patterns are related design patterns used to implement
functions in the server plane as e.g. GoF Design patterns.

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 10 of 36

• UI Requirement shape - Is used to describe functions that will be performed in the
client. It may be a description of a simple user interface widget or module such as
horizontal menu.

• View Template shape - Used as a container for more than one UI Requirements. It
can be considered as a separate page which can contain many UI elements.

• Data Requirement shape - Used for requirement description related to data. The
system proposes patterns design on methods used to design databases or writing data
to static files. According to the given description, a list of Data related Design
Patterns is recommended.

• General shape - This shape can be used for the description of a general requirement
that is related to all types of design patterns such as Data, UI, Server Side related
Design Patterns.

System architecture

ArchReco prototype was implemented in Java programming language using the JSwing
framework. The application is developed as a desktop application that consists of three
parts: the Core, Integration Layer (Integration of the partial components) and the
presentation layer. The overall architecture is depicted in Fig. 2.
The Core layer contains the core functionality of the system, such as the data bus

of the system for transferring messages and data between the components or between
the layers. The Core also contains the Object Definitions for entities that exist in
the system.
The Integration Layer contains the Semantic Interoperability Component and

the Context Aware Recommendation component. Each component is responsible for
the processing of the data and the operations they perform according to the role they
have in the system. The Context Aware recommendation engine is also able to exchange
data between the view layer and the core, especially in the case of the post-filtering
process.

Fig. 2 ArchReco System Architecture Representation of the system architectural layer and the interaction
between them

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 11 of 36

The View layer contains the JSwing components that are used for the presentation of
the software to the user. With the presentation layer users are able to provide input to to
the system which then will be processed by the other two architectural layers.
In Fig. 3 the communication between the components is depicted. As it is shown, the

individual components or modules are able to exchange data between each other and all
functionality is passed through the ArchReco prototype. In this figure a database is also
used for the storage of persistent data related to the interaction between the prototype
and the users, but database is not a dependency for the software. Therefore, it can also
operate offline.

Semantic interoperability component

The implementation of the semantic analysis, data retrieval and filtering is done with the
implementation of the semantic interoperability component which was developped on
top of Jena framework (Jena 2015). The implementation mechanism is as follows. The
Designed ontologies described (Listing 1) above, are loaded in memory and a definition
of the vocabulary of the defined URIs are created internally using Java code. For all exter-
nal data-sources that contain data that can be retrieved for the aims of the system, an
endpoint URL is used to define the data source (i.e Web Services, XML files or external
Databases) internally. By accessing the data from external sources, the data retrieved are
loaded in the memory of the system and the data are transformed into in-memory mod-
els with the use of a “data to rdf” (Listing 2) mechanism that was implemented internally.
The created virtual rdf ’s are mapped to the Ontology model and the defined SPARQL

Fig. 3 ArchReco Prototype System Architecture The High Level Architecture of the prototype demonstrating
the lifecycle of the components communications. Demonstration of how the semantic module intersects
between the modules using the semantic mapping for the retrieval of data from multiple data sources

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 12 of 36

queries that parse the Ontology model are able to retrieve and filter the data from all the
defined external sources.
Listing 1 OWL Example
< rd f : RDF xmlns ="www. s c s t . com/ onto logy # "

xml : base="& s c s t ; on to logy "
xmlns : r d f s =" h t tp : / /www. w3 . org /2000 /01 / rdf−schema #"
xmlns : owl2xml =" h t tp : / /www. w3 . org /2006 /12 / owl2−xml # "
xmlns : s c s t =" h t tp : / / s c s t . com / "
xmlns : owl =" h t tp : / /www. w3 . org /2002 /07 / owl # "
xmlns : xsd =" h t tp : / /www. w3 . org /2001/XMLSchema#"
xmlns : r d f =" h t tp : / /www. w3 . org /1999/02/22− rd f−syntax−ns #"
xmlns : on to logy ="www. s c s t . com/www. s c s t . com/ onto logy # "
xmlns : on to logy2="& s c s t ; on to logy #" >

<owl : Ontology r d f : about =" " / >

<owl : Ob j ec tP rope r t y r d f : about ="# areConta inedBy " >
<owl : i n ve r s eOf r d f : r e sou r ce ="# con t a i n I d e a s "/ >

</ owl : Ob jec tProper ty >
<owl : Ob j ec tP rope r t y r d f : about ="# areCrea tedBy " >

<owl : i n ve r s eOf r d f : r e sou r c e ="# c r e a t e I d e a s "/ >
</ owl : Ob jec tProper ty >

Listing 2 Data to Rdf Example
wr i t e r . op en Ind i v i dua l (" " , id , " j " , " Person ") ;
i f (n u l l != userName)
{
w r i t e r . a d dL i t e r a l (" r d f s " , " l a b e l " , userName , " xsd : s t r i n g ") ;
w r i t e r . a d dL i t e r a l (" j " , " hasName " , userName , " xsd : s t r i n g ") ;
.
.
.

For the evaluation of the Semantic model and the usage of the multiple datasources, it
was necessary to import data from more than two sources and execute the implemented
SPARQL to make sure that data are retrieved properly. During the evaluation, a limita-
tion was extracted, the lack of open, public accessible web services for existing Design
Patterns repositories. To solve this problem and test the semantic model that was devel-
oped, we collected Data frommultiple Design Patterns repositories, either using crawling
functionality or by hand, and stored the collected data in local database and xml files. We
applied the created testing data sources in our model and we confirmed that the retrieval
of information using SPARQL queries through the designed model was properly deliv-
ering the expected results. For the release of the ArchReco software that was delivered
to users for evaluation, the collected data were all transferred in the ontology file that is
included in the release package, in order to avoid connectivity problems that would cause
cold-start problems.
Data may exist in different data repositories having different structure and identifica-

tion labels. The commonality between the data that exist in the repositories is the content
and more specifically the scope of the content. For the better understanding the following
example is given: Most of the systems have users registered in their databases. The name
used for the entity “Users” may differ between the systems and it depends on the devel-
oper who defined the corresponding table (if it is a relational DB), the collection (if it is
a NoSQL db), the tag (if it is an xml notation). Common names given to the entities are
“User” without the ending “s”, “SystemUsers”, “UsersData” etc. Independently to the stor-
age engine and the name that was used to define the Users, the content and the scope of
their existence is the same, they store the users’ data. Therefore, for the creation of a sys-
tem that collects the user data from all the repositories that contain users’ data this can be
achieved with the use of an ontology model, the data retrieval mechanism from the sev-
eral end-points and the corresponding mapping of the retrieved datasets to the unified
ontology model as it is shown in Fig. 4.
The example in Listing 3 shows that the data coming from external sources are trans-

formed into virtual models and for each one of them a URI is defined. A prefix for each

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 13 of 36

Fig. 4 Data retrieval and semantic mapping Communication of ArchReco with external Data Sources and the
Semantic Mapping to the Ontology Model for the retrieval of data from multiple data sources

URI is defined and it is used to map data objects and data properties to the ones that
the main ontology contains. Using the transformations and the corresponding mapping,
it is possible to create queries to the main ontology model, and through this, retrieve data
from the defined external or internal data sources.

Listing 3 Semantic Mapping Example
datafrommongo : hasName a owl : Da ta t ypeProper t y .
datafromxml : hasName a owl : Da ta t ypeProper t y .
d a t a f romsq l : Use r sDa t a rd f s : subClassOf myapp : Users .
da t a f romsq l : hasFirstName r d f s : subProper tyOf myapp : hasName .

The designed diagram then can be extracted in several formats from which one of them
is in *.MXE an XML based modelling language which can later be transformed into a
UML diagram. The transformation of the MXE language into UML is not included in the
scope of this work. A sample of the expected diagram is depicted in Fig. 5 while Fig. 6
depicts how the recommendations’ content is presented to user. A sample MXE exported
file is shown in Listing 4.

Listing 4MXE diagram
<mxGraphModel>

<root >
<mxCell i d ="0" / >
<mxCell i d = "1 " paren t ="0" / >
<mxCell i d ="Model " pa ren t = "1 " s t y l e =" shape=hexagon " v a l u e ="Model "
v e r t e x ="1" >

<mxGeometry as =" geometry " h e i gh t = " 1 00 . 0 " width = " 5 80 . 0 "
x = "40 . 0 " / >

</mxCell >
<mxCell i d ="View " paren t = "1 " s t y l e =" I n t e r f a c e ; swimlane " v a l u e ="View "
v e r t e x ="1" >

<mxGeometry as =" geometry " h e i gh t = " 1 80 . 0 " width = " 5 80 . 0 "
x = " 4 0 . 0 " y = "130 . 0 " / >

</mxCell >
</ root >

</mxGraphModel>

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 14 of 36

Fig. 5 Designed High Level Software Diagram with Design Patterns sample Sample of a designed High Level
software diagram designed by the ArchReco prototype. The sample diagram represents an MVC based
architecture where each layer of the architecture contains requirements description and the related Design
Patterns that were selected for the implementation of the Requirements

Context aware recommendations component for design patterns

Taking into account existing approaches (Gomes et al. 2002; Guéhéneuc and Mustapha
2007; Weiss and Birukou 2007), this work suggests two methodologies from which
one is a variation of an existing methodology and the other is used first time for the
recommendation of Design Patterns.
The common attribute of the two methods is the use of context as the decision fil-

tering factor but with different context elements in each case. Context Awareness in
Recommendation Systems involves the use of data that characterizes an entity to be used
as contextual information for the computation of recommendations, wherever this is
needed.

Fig. 6 ArchReco Prototype Sample of the ArchReco Interface with a Design Pattern content open after the
recommendation was produced

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 15 of 36

Text-based recommendations for design patterns

Text Based recommendations are triggered when the user writes a description into a dia-
gram shape. The input is natural language text which is processed in the following way:
the shape has a specific type such as Data operation, Server Side operation or User Inter-
face operation. Based on the shape’s type a pre-filtering (Codina et al. 2013; 2016) on
the Design Patterns is done with the use of SPARQL queries and the produced subset of
Design Patterns is processed into an indexing mechanism (using LUCENE Framework
(McCandless et al. 2010)) which handles each pattern’s attribute as indexed document.
Then with the use of the TF-IDF (Wu et al. 2008) algorithm and the cosine similarity the
input text is analyzed and compared with the indexed attributes of the Design Patterns
subset and produce the recommendation ranked list, based on the calculated similarity.

Utility based recommendation for design patterns

Similar to the first method, Utility-based Recommendation uses text filtering for the com-
putation of the recommendations. However, not only the text is taken as input for a shape,
but also the text of the connected parent shapes, the connected children shapes, the title
and the problem definition/description of the diagram. Additionally, the recommenda-
tions are computed and ranked based on the utility of each Design Pattern for the context
that it is retrieved. The utility is changing dynamically since its computation depends on
the weight of each contextual factor. The weights for each factor are defined by the user
and thus the user may adjust the recommendations on her own preferences.
For the Utility Based Algorithm, four contextual factors were selected; the given title of

the project, the general description (problem to solve), the parent shapes and the child
shapes of the selected shape that the recommendations refer to. For each contextual factor
the users are able to define weight of importance and also can modify the text for every
factor until the results satisfy the user’s preferences. The Utility function is computed
by Eq. 1 and the form by which the users can define the contextual factors weights of
importance is depicted in Fig. 7.

U =
N∑

i=1

wi ∗ fi
N

(1)

Where wi is the weight and fi is the factor.

Fig. 7 Utility Based Recommendation System Ű Weights for Contextual factors input form Filters form that it
is used for the definition of the Utility function input, defining the contextual elements and their importance
weight values

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 16 of 36

Pre-filtering

For the pre-filtering method the filtering factor that is taken into account is the type of the
shape that it is used for the description of a requirement within the diagram. Using a spe-
cific type for a shape defines which subset of Design Patterns categories or subcategories
should be retrieved using the Ontology model. For example for a “Server Side” require-
ment shape, after adding it to the canvas and giving to it a requirement description, a
SPARQL query is executed retrieving from all defined data-sources through the ontology
model all categories that contain Server Side Design Patterns, such as the “Classic (GoF),
the Antipatterns” and the “Enterprise Application Architecture Patterns” and their sub-
categories. The retrieved subset of Design Patterns is then indexed as virtual documents
having as content the descriptions of their attributes descriptions as they are defined
by the corresponding source of retrieval. Then, the provided requirement description is
processed and filtered by removing the stop words from the text and creating a words
vector. The created vector is used as input to the TF-IDF algorithm and using the cosine
similarity it returns the most relevant Design Patterns ranked based on the number of
common words found in each Design Pattern’s attributes. In the case of the Text-based
method the text that is taken into consideration during the computation is only the shape’s
description but in the case of Utility-based method additional text is used, taken from
the additional contextual elements that the user defined from the interface such as the
Title of the diagram, its description, the parent shapes text and the children shapes text.
For the Text-based filtering method the results are directly presented to the user, but for
the Utility-based method the results are passed into a post filtering mechanism that per-
forms additional filtering based on the weights of importance that user defined for each
participating contextual factor.

Post-filtering

The pre-filtering results in combination with the LUCENE indexing and the TF-IDF algo-
rithm return a list of results ranked based on the number of common words that were
found for each Design Pattern. With the Utility based method that is used in ArchReco
prototype the user is able to define for a set of pre-defined contextual factors the weight
of importance that each factor may have in the computation and if the factor should
be included in the computation or not. The weights of the context factors and their
text inputs are passed into the recommendation engine and then the content is used for
the pre-filtering and the weights are used for the post-filtering computations.The list of
Design Patterns results that is produced by the pre-filtering is now reranked based on the
weights of importance and thus the utility value of each Design Pattern. The computation
used for the utility given in Eq. 1 defines a new rank for the Design Patterns results which
reflect to the user’s opinion regarding the utility of each Design Pattern.

A use case scenario
The adoption of a Design Pattern or a set of patterns relies on how knowledgeable the
designer is regarding the existing design model. Based on the experience of designers, the
following two cases may occur:

• An experienced designer who has a good knowledge of Design Patterns uses solely
specific ones based on his prior knowledge. The designer applies patterns in the
designed model based on experience from previous work, but does not apply any

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 17 of 36

alternative patterns that might be better suited for the model that is being currently
developed.

• A junior designer without adequate knowledge of existing Design Patterns wants to
use them, but does not know where to start from or which pattern is the right one to
apply for a design model.

The usage of ArchReco prototype can be described through a use case scenario
describing how ArchReco can be used as a Design Patterns training tool.

A group of students attend the Software Engineering course, at the second year of
studies for the Computer Science Bachelor’s degree. The course tutor gives an
assignment to the students asking them to design a High Level Software Diagram for a
web based application for an electronic book store. The application will support the
books management (Add new book, edit existing books information and delete
books). Additionally, the user management mechanism should exist. The application
must be supported by a database for storing data as well as a logging mechanism for
the collection of warning and error logs. The assignment description asks from the
users to deliver a High Level Software design on which the Architecture should be
shown and described and for each Architectural layer a set of Design Patterns should
be defined and documented so the High Level software Design could be easily
analyzed in a Low Level Software design which would be the next assignment. A
student named Joe, uses the ArchReco software to produce the High Level software
design and use its produced model to write the assignment report.

As a second year student, Joe has little experience in web design or web applications
architecture models, and a very limited knowledge regarding Design Patterns. Joe
opens a new blank diagram project using ArchReco and configures the new project by
adding a general description that the model will be designed for. He defines the
application type as a dynamic web-based application and saves the given information.
By saving the configuration data Joe notices that on the right panel of ArchReco the
“Architectural Templates” tab is automatically collapsed and a set of Architectural
Pattern names are shown. The provided list contains Architectural patterns related to
web based applications, such as MVC, MVP, MVVM and other. Joe, clicks on each
name to read the content of the Architectural patterns, description, examples, images
with UML samples. He examines all provided patterns and he decides that MVC
Architectural Pattern is the most suitable for the aims of his assignment. He selects
the MVC pattern and he presses the button “Add to Canvas”. Automatically the MVC
Architectural template appears in the canvas. Three shapes appeared with the Model -
View - Controller names on each shape. Joe selects each shape-layer of the template
and by each selection a set of Design Patterns is shown on the right panel, under the
tab recommended Design Patterns. The recommended patterns at this stage are
produced by taking into account the type of the selected layer. For example, with the
selection of the View layer a set of UI Design Patterns is shown and with the selection
of Model layer, Data-related Design patterns are produced. Joe decides to start the
High Level design by the View layer. He double clicks on the View layer and writes a
general description for the View layer which generally describes the view requirement
for the assignment. Using the palette on the left side, Joe selects a View Template and
drags the shape in the diagram. He connects the shape to the View layer and double

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 18 of 36

clicks the shape to add a more specific description for the View Template shape. He
writes in the shape the phrase “Home Page”. A new set of recommended UI design
patterns appears. Joe examines one by one the recommended UI Design Patterns by
reading their description, their intent, their coding examples (if exists) and preview
the image with the UI Design Pattern as this is delivered from its source repository
(i.e. yahoo UI Design patterns repository). Then Joe selects from the palette a “UI
Requirement” shape and he adds it in the “Home Page” View Template. He double
clicks on the shape and write in it “Main Menu”. A set of Main Menu Design Patterns
is produced and Joe reviews the recommended patterns one by one. He concludes to
one of them and he adds the Design Pattern shape in the canvas by pressing the button
“Add to Canvas”. Automatically a new shape is added to the canvas and the new shape
is connected to the “Main menu” UI requirement.

Joe repeats the process for the other two Architectural layers and he creates a High
Level Diagram with the specified requirements described in natural language and a set
of Design Patterns associated with each requirement. Joe extracts the designed
diagram in .*png and *.xme file formats to use them in his report. The designed
diagram contains the selected Architecture, the requirements and the Design Patterns
that will be used for the Low-level analysis and later the development of the
application. Joe learned the web-application related Architectures and he also learned
about the Design Patterns he could use not only for the particular diagram but also
other Design Patterns that he did not use in the current design. Now he is able to write
his assignment report and explain his selections.

Using the above use-case scenario, the usefulness for a junior designer is obvious. How-
ever, the tool can also be useful for more experienced users since new Design Patterns can
be recommended and be selected for further study. Without ArchReco users must search
the web for examples and similar projects which in many cases becomes confusing and
time consuming.

Methods
The following section describes the methods used for the evaluation of the ArchReco
prototype. The development of the ArchReco prototype and its integration with the
Context-Aware Recommendations for Design Patterns was given to real users for eval-
uation aiming to collect feedback from them and at the same time be able to track
possible deficiencies for future improvements. Additionally, the evaluation’s objective was
to examine how the users perceive the prototype in terms of its educational character, the
usefulness and usability. Therefore, the software was given to users who were asked to
execute a specific task remotely, but during the execution of the task a screen capturing
video was running for further analysis regarding their actual activities, while they were
performing the task. In particular, with the evaluation process and the given question-
naires, the evaluation gave a significant set of results regarding the objectives that were
set by the evaluation planning and follow the directions from other relevant evaluation
methodologies (Chin et al. 1988; Davis 1989; Lund 2001; Lewis 1995).
The ArchReco prototype was developed and designed as a Software Engineering Edu-

cational and Training tool for the support of users in learning Design Patterns by practice
as part of the process of the design of high level software diagrammatic models. The eval-
uation of the prototype was setup as a remote evaluation and delivered to students and

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 19 of 36

researchers who are actively involved with Software Engineering and Software Design.
The prototype developed as a stand-alone application but that was not a restrictive factor
in executing the evaluation remotely. To make sure that the task given to the testers was
completed in a proper way and to be able to track their reactions while they were using
the software, a screen capturing of the evaluation sessions was running when the software
was starting until its closure. The participants were asked to deliver the created video by
the completion of their individual evaluation sessions. Additionally, related helping mate-
rial was provided to them such as tutorial for the prototype and also help functionality
such as “Help” button and “Information” links internally in the software. With the screen
capturing videos, it became feasible to measure times of reactions, possible difficulties
related to the interface design and examine the overall usage of the tool and the produced
Context Aware Recommendations in designing the High Level Software Diagram with
the usage of Design Patterns.
For the design and development of the evaluation, a number of related evaluation

frameworks were examined. The examined frameworks that guided the current evalua-
tion design are presented in the following subsection.

Evaluation frameworks
ResQue (Pu et al. 2011), is an evaluation framework that stands for recommender System’s
Quality of user experience. It is a complete evaluation framework for the evaluation of rec-
ommender systems from user’s perspective. It measures the quality of the recommended
items based on the system’s usability, usefulness, interface and qualities, user satisfaction
and the influence of these qualities on users’ behavioural intentions. The framework con-
tains 20 questions measuring the latter metrics and those questions are the result of a
large survey that determined them as the most important questions that user preferences
depend on.
Hayes et al. (2002) propose an evaluation framework which is based on the idea of sys-

tem utility by comparing how a recommendation strategy performs against another. With
this framework the setup evaluation presumes the existence of a common dataset, a com-
mon interface and the mechanism to change the recommendation strategy, aiming by this
to measure the user’s satisfaction according to the used recommendation strategy.
Knijnenburg et al. (2012), believe that user experience is an ill-defined concept that lacks

well-developed assessments methods and metrics. Therefore, they suggest an evaluation
framework which distinguishes between objective system aspects (algorithms, user inter-
face features etc.), subjective system aspects (user’s perceptions of the objective system
aspects) and interactions (user behavior). The subjective system aspects are measured
with questionnaires and they are expected to mediate the influence of the objective sys-
tem aspects on the user experience. The framework is focused on the distinction between
attitude and behavior and more specifically the experience and interaction. The expe-
rience signifies the users’ evaluation of the system and it is measured with the use of
questionnaires that are divided into the evaluation of the system, as system experience,
the evaluation of the decision process process experience and the evaluation of the final
decisions outcome experience. Interaction is the observable behaviour of the user.

Evaluation of the ArchReco prototype

The methodology used for the ArchReco prototype evaluation was mostly based on
the ResQue framework (Pu et al. 2011). The questionnaire presented in (Pu et al.

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 20 of 36

2011), was the most complete and relevant to the objectives set for the ArchReco
evaluation, due to the evaluation of the Context Aware Recommendations as indi-
vidual component of the system, but also the usage of the prototype as a complete
solution supported by the recommendation systems. The design of the evaluation ques-
tionnaires, for both, pre-test and post-test were designed using 5-likert scale type
questions (Lewis 1995), grouped based on the guidelines that were revealed from
(Pu et al. 2011).

Evaluation setup

The evaluation process was designed as follows: The participants were asked to sign a
Non-Disclosure form by adding their emails in an on-line form. The acceptance of the
terms was redirecting the users to the evaluation page where the evaluation was described
through the completion of a five steps process. 1.Complete the demographics data ques-
tionnaire, 2.Download and open the prototype, 3. Perform a given task with the prototype,
4. Answer a post-test questionnaire and 5. Send the screen capturing video to us. The
evaluation request was given to Computer Science and Computer Engineering students
of the Computer Science Department of University of Cyprus and the Computer Engi-
neering and Informatics of the University of Patras. Additionally, Computer Engineering
researchers of the Institute of Information Technology (ITI/CERTH) in Greece have also
participated. From the total of 28 responses were received, 23 (83.9%) were frommen and
5 (17.1%) were from women. The task that the participants were asked to perform was “to
design the high level diagram for a web based electronic bookstore showing the CRUD oper-
ations of the system using the MVC architecture and definition of the most suitable Design
Patterns at the three architectural layers”. The evaluation is still open and accessible at the
url: http://www.cs.ucy.ac.cy/~sielis.

Results and discussion
Pre-test questionnaire

Asmentioned above the evaluation was performed by 28 people from which 23 were men
and 5 were women. The responders were basically students and researchers with Com-
puter Science (75%) or Computer Engineering (25%) background from Cyprus (71.4%)
and Greece(28.6%). Their ages were between 22 and 38 years and more specifically 53.6%
had ages between 20-25, 35.7% between 26-31 years old, 7.1% between 32-37 years old
and 3.6% between 38-43 years old. More detailed descriptions for the participants are
shown in Table 4.
Before the execution of the task the participants were also requested to rate their expe-

rience in using relevant tools, Design Patterns knowledge and experience in using Design
patterns. A summary with the given responses and the standard deviations are depicted
in Table 5 and the corresponding chart is shown in Fig. 8. As it is shown in Table 5 the
experience in using relevant tools and in general their experience in Design Patterns and
Software Engineering design was low. The high standard deviation for the three ques-
tions lead to the conclusion that the responses were spread in relation to the calculated
mean value. Therefore, using the three questions we tried to correlate the responses with
some individual variables and explore how the results of these questions are correlated
and possibly influence results from the post test questionnaire that we analyze later in
this section. We examined the correlations between the questions from Table 5 based on

http://www.cs.ucy.ac.cy/~sielis

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 21 of 36

Table 4 Profile of participants (n=28)

Item Frequency Percentage

Gender Male 23 82.1%

Female 5 17.9%

Age 20-25 15 53.6%

26-31 10 35.7%

32-37 2 37.1%

38-43 1 3.6%

Profession Student (Bsc) / (Msc) 12 42.9%

Computer Scientist 6 21.4%

Computer Engineer 8 28.6%

Researcher 2 7.1%

Nationality Greek 8 28.6%

Cypriot 20 71.4%

Location Nicosia(CY) 16 57.1%

Patra(GR) 3 10.7%

Salonica(GR) 3 10.7%

Larnaca(CY) 4 14.3%

Limassol(CY) 1 3.6%

Leeds(UK) 1 3.6%

Educational Level Bsc Students 12 42.9%

Msc Students 11 39.3%

PhD Candidates & PhD holders 5 17.9%

the Individual grouping variables such as the gender, age, profession,nationality, location
and year of studies.

Post-task questionnaire

After the execution of the given task, the participants were asked to rate how they per-
ceived the given scenario, in order to reach into conclusions whether the task was easy
and understandable. The participants were asked to rate 5 questions regarding the given
task. The means and standard deviations for each question are shown in Table 6 (Fig. 9).
The post-task results give an initial indication of how the users perceived the task and

give the direction on how to proceed with the rest of the analysis taking into account the
pre-test and post-test data results. For more clarity in the analysis of the results the mode
values, the rate with the highest frequency for each question, is also depicted. From the
mean andmode values it becomes obvious that the ease of the task has amean value above
the average rating. The mode values give us a hint on what was the actual tendency of

Table 5 Pre-Test responses for the participants’ experience

Question Mean St. Deviation

PreTest-Q1. Please rate your experience with Software Design tooling, 1.75 0.441

understood as systems that promote,accelerate and facilitate the

design of Software Design Models?

PreTest-Q2. Please rate your level of experience in Software Design 2.821 0.8630

PreTest-Q3. Please rate your knowledge of Design Patterns 2.571 1.26

PreTest-Q4. Please rate your experience in using Design Patterns 2.821 1.105

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 22 of 36

Fig. 8 Pre-Test responses for the Experience. Responses based on the 5-likert scale questions (1-lowest
(negative) and 5-highest (positive) responses)

how the users perceived the task. In questions “for the satisfaction in completing the given
task” (Qa) and the “satisfaction with the amount of time needed for the completion of task”
(Qb), we notice that the average is 3.714 and the mode is 3. Having a standard deviation
close to 1, denote the existence of responses that have some distance from the mean value
and probably need further investigation. Responses for question Qa are dependent on the
experience and the confidence of the users in the Software Design topic and the knowl-
edge they have in Design Patterns. Therefore, an examination of the relation between the
Qa and profession or experience will be done. Question Qb has to do with the availability
of the users in time to execute the task. On the evaluation setup there was not a time lim-
itation since the evaluation was done remotely. But the completion of the task by reading
and understanding the content that is provided to the user for each particular Design Pat-
tern needs time. To reach into safe conclusions regarding the time and what was the mean
time of executing the tasks will be analysed in the rest of this section through the analysis
of the screen capturing videos that we received by the users. By the execution of a single
task it was not expected from the users to learn the Design Patterns but the evaluation
test was a mean to get familiar with the tool and identify its training character. The aver-
age mean value for the question “if participants learned new things for Design Patterns”
(Qe) was 3.324, with mode value 4 is very encouraging but the high standard deviation
attracts the attention for further analysis.

Table 6 Post-task questions

Question Mean St. Deviation Mode

Qa. Overall, I am satisfied with the ease of completing the task 3.714 1.013 3

Qb. Overall, I am satisfied with the amount of time it took to 3.250 1.076 3

complete the task

Qc. Overall, I believe I learned new Design Patterns with the use 3.286 0.089 4

of the software

Qd. Overall, I believe I learned where and how Design Patterns 3.536 0.838 4

can be used

Qe. I believe I learned new things for Design Patterns 3.321 0.9049 4

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 23 of 36

Fig. 9 Post-Task responses. Responses based on the 5-likert scale questions (1-lowest (negative) and
5-highest(positive) responses)

To reach into more safe conclusions that will help analysing the post-test results a
grouping of the users based on their profession was made. Due to the small sample of
users, for the analysis of the results, the users were grouped in students and profession-
als since the participants who declared profession other than students can be considered
as professionals. With this grouping, in commbination with the pre-test and post-test
questionnaires, it is possible to extract and compare the mean values of the partici-
pants’ experience. The same comparison is also used for the post-test questionnaire and
the evaluation of each particular question group that will be described for the post-test
questionnaire responses.
The results comparing the means of the corresponding groups, students and profes-

sionals, regarding their experience in using similar tools and the experience they have
in using Design Patterns in comparison to the post-task responses means are shown in
Table 7 and Fig. 10.

Post-test questionnaire

The post test questionnaire was organized to have questions, which would return results
related to the Usefulness, Satisfaction, Usability and the training of the Design Patterns
through the recommendations. The post-test analysis begins with the presentation of the
results regarding the Usefulness of the prototype in Table 8 (Fig. 11). From the results it
is shown that the general perception for the ArchReco is positive and the majority of the
users find the software Useful. From Table 8 it is shown that the tool was not evaluated
with high scores on questions related to its effectiveness in completing a task fast (“Using
the tool in Designing Software models would enable me to accomplish tasks more quickly”
(Q1) and “Using the tool to identify the most suitable Design Patterns would enhance my
effectiveness on the job” (Q4)). However, high scores received in questions such as “Using
the tool would improve my understanding in using Design Patterns in a high level software
design model” (Q2), “it would make easier the process of design process” (Q5) and “the
outcome of the tool would be benefic for the software developers who will implement the
diagram’s defined concepts” (Q7), where the users identified the usefulness in understand-
ing the Design Patterns and enhancement of the produced diagrams. High ratings for Q2,

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 24 of 36

Ta
b
le

7
Pr
e-
Te
st
an
d
Po

st
-T
as
k
m
ea
ns

co
m
pa

ris
on

ba
se
d
on

pr
of
es
si
on

Pr
of
es
si
on

Va
lu
e

Pr
e
Te
st
-Q
1

Pr
e
Te
st
-Q
2

Pr
e
Te
st
-Q
3

Pr
e
Te
st
-Q
4

Q
a

Q
b

Q
c

Q
d

Q
e

St
ud

en
ts

M
ea
n

1.
83
3

2.
50
0

2.
41
7

2.
33
3

3.
75
0

3.
25
0

3.
41
7

3.
58
3

3.
50
0

St
.d
ev
ia
tio

n
0.
38
9

0.
67
4

1.
08
3

0.
65
1

1.
21
5

1.
13
8

0.
90
0

0.
79
3

1.
00
0

Pr
of
es
si
on

al
s

M
ea
n

1.
68
7

3.
06
3

3.
18
8

2.
68
8

3.
68
8

3.
25
0

3.
18
8

3.
50
0

3.
18
8

St
.d
ev
ia
tio

n
0.
47
9

0.
92
9

0.
91
0

1.
40
0

0.
87
3

1.
06
5

0.
91
0

0.
83
4

0.
83
4

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 25 of 36

Fig. 10 Students & Professionals responses for pre and post-test questionnaires. Responses based on the
5-likert scale questions (1-lowest (negative) and 5-highest (positive) responses)

Q5 and Q7 are due to the flexibility that the tool offers to the user to add in the diagram
Design Patterns that go beyond the existing knowledge in the topic. The low scores in the
speed of completing tasks may be coused by three reasons. Firstly, due to the unfamiliarity
with the software, which may have caused delays in completing the task; secondly due to
the large amount of content that ArchReco provides for each Design Pattern that requires
time for reading it; and third due to the fact that in most of the cases, professionals who
have adequate background in Software Design and Design Patterns, prefer to apply the
known Design Patterns in a designed model instead of reading new Design Patterns. Tak-
ing into consideration the prototype’s training character and the usefulness questionnaire
results, it can be concluded that the prototype is generally perceived as useful as a train-
ing tool, but without the limitation to be used as a professional tool too. It is important to
see how the perception of the usefulness of the tool was rated by the two groups of users,
the students and the professionals which will declare the above-mentioned thoughts.
From Table 9 and Fig. 12 it is noticeable that both groups have similar mean values in

their responses. Small differences are noticed in questions about the effectiveness of the

Table 8 Post-Test questions for usefulness

Question Mean St. Deviation Mode

Q1. Using the tool in Designing Software models would enable 3.464 1.036 3

me to accomplish tasks more quickly

Q2. Using the tool would improve my understanding in using 3.643 0.911 4

Design Patterns in a high level software design model

Q3. Using the tool in Designing Software models would increase 3.643 0.869 4

my productivity

Q4. Using the tool to identify the most suitable Design Patterns 1.714 0.713

would enhance my effectiveness on the job 2

Q5. Using the tool would make easier the process of Software 3.643 0.989 4

Design

Q6. I would find the tool useful in Designing Software diagrams 3.929 0.940 4

Q7. The outcome of the tool would be beneficiary for the software 3.786 0.7868 4

developers who will implement the diagram into an actual

application

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 26 of 36

Fig. 11 Post-test responses for Usefulness. Responses based on the 5-likert scale questions (1-lowest
(negative) and 5-highest (positive) responses)

tool in work (Q4) and usefulness of the tool in designing software diagrams (Q6). For
Q4 the closeness in mean values from both groups shows that the low rating of the tool
as a mean for completing task faster is most probably because of the recognition of the
tool as training tool that takes time for studying the recommended content and not as a
productive tool that will limit the time for completing tasks. At the same time both teams
believe that ArchReco would be a useful tool for designing Software Design Models (Q6)
with the highest mean coming from the Students group.
Table 10 and Fig. 13 presents the results that were collected related to the functionality

supported by ArchReco and how the users rated the supported functionality. The most
important results from Table 10 are coming from two questions: “The context-sensitive
support (i.e. recommendations) is crucial to the ArchReco process” (Q10) and “I describemy
experience with ArchReco tool in general as positive” (Q13). The users are describing their
experience with ArchReco as positive while the context sensitive support is considered
crucial. Moreover the users believe that ArchReco supports them in being more creative
during the design process. In many cases during the design process users are searching
the web for finding content and documentation for the creation of their models. The rec-
ommendations offered by ArchReco reduce the time of searching by giving the necessary
knowledge material for well known design patterns within the environment and the users
can decide how to use them in a creative way within the working environment of the
software.
From the Table 11 and Fig. 14 the results show that the users recognized the training

value of the ArchReco prototype and the enhancement of the design process by the Con-
text Aware Recommendations support. This is tracked on Question “The recommender

Table 9 Usefulness means comparison for students and professionals

Profession Value Q1 Q2 Q3 Q4 Q5 Q6 Q7

Students Mean 3.417 3.583 3.583 1.833 3.833 4.000 3.833

St.deviation 0.900 0.793 0.668 0.834 1.029 0.954 0.577

Professionals Mean 3.500 3.687 3.687 1.625 3.500 3.875 3.750

St.deviation 1.155 1.014 1.014 0.619 0.966 0.957 0.939

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 27 of 36

Fig. 12 Students & Professionals responses for Usefulness. Responses based on the 5-likert scale questions
(1-lowest (negative) and 5-highest (positive) responses)

system is educational” (Q23), where almost all testers recognized the tool and the usage of
the recommender system as educational. Comparing the mean values between students
and professionals we notice that on Q23 there is an equality on their means (4.083 and
4.063 respectively). This shows that the tool is recognized as a training tool with train-
ing enhancements for the design process from all users experienced and not experienced.
We noticed though, some unexpected results by comparing the means between Students
and Professionals. The mean value for Students group (3.417) was lower than the Profes-
sionals (4.000) for question 15 where the same noticed for question “Recommendations
for Design Patterns helped me learn new patterns” (Q20), where Students mean value was
3.083 and the Professionals mean rating value was 3.438. One would expect the opposite
results. The most logical explanation on that result is maturity in recognizing new valu-
able knowledge due to the experience they have in working with similar tools. Moreover
the students in most of the cases need more multimedia designs to learn something fast
and less content to study. That was also part of the comments we received from some stu-
dents that we were able to talk with. ArchReco though is a research prototype and these
comments are tracked down to be taken into account for future releases of the software.

Table 10 Post-test questions for functionality

Question Mean St. Deviation Mode

Q8. Archreco can effectively support the creation of High Level 3.750 0.645 4

Software design model

Q9. ArchReco can effectively support the representation and management 3.643 0.869 4

of Software Design components

Q10. The context-sensitive support (i.e. recommendations) is crucial to 3.571 0.742 4

the ArchReco process

Q11. Using ArchReco tool supports me in being more creative during 3.536 0.838 4

the design process

Q12. ArchReco tool enhances the outcome of the High Level diagram 3.679 0.904 4

design

Q13. I describe my experience with ArchReco tool in general as positive 3.679 0.904 4

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 28 of 36

Fig. 13 Post-test responses for Functionality. Responses based on the 5-likert scale questions (1-lowest
(negative) and 5-highest (positive) responses)

Screen capturing videos - results

From the 28 evaluation participants 11 of them sent their screen capturing videos for anal-
ysis. The videos that were not sent were mostly because they could not send the file due to
their large size, since the received files are approximately 28-30MB each. The received files
though were thoroughly analysed in order to examine the actions of the users while they
were executing the tasks. From the videos it was managed to confirm that the participants
followed the task instructions and that they used both Context Aware recommendation
algorithms to receive recommendations of Design Patterns and they used the recommen-
dation results to take decisions for applying the recommendations in their diagram design
models. Themean time for executing the tasks was 35.06minutes withmaximum 47min-
utes and minimum 17 minutes. Each one of the participants, followed the instructions

Table 11 Post-test questions for design patterns training & educational character of the
recommender system

Question Mean St. Deviation Mode

Q14. AerchReco offers Stimulating possibilities to explore new Design 3.536 0.792 4

Patterns

Q15. ArchReco helps in choosing useful Design patterns to apply in 3.750 0.799 4

a Software Design diagram

Q16. I feel that I learned to work creatively using the ArchReco tool 3.571 0.836 4

Q17. I found ArchReco tool helpful to support us go over and over new 3.750 0.881 4

Design Patterns until I found a suitable one to apply in my model

Q18. I found the recommendation of Design Patterns useful 3.750 0.881 4

Q19. The information provided for each pattern was sufficient 3.643 0.678 4

Q20. Recommendations for Design Patterns helped me learn new patterns 3.286 0.976 4

Q21. Some of the Design Patterns are familiar to me 3.321 0.863 3

Q22. The items recommended to me are novel and interesting 3.357 0.731 4

Q23. The recommender system is educational 4.071 0.899 5

Q24. The recommendation System provides an adequate way for me to 3.429 0.836 4

express my preferences

Q25. I became familiar with the recommendation system very quickly 3.536 0.999 4

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 29 of 36

Fig. 14 Post-test responses for for Design Patters training and Educational Character of Recommendation
System. Responses based on the 5-likert scale questions (1-lowest (negative) and 5-highest (positive)
responses)

that were given by the evaluation web-page and they started by the configuration of the
diagram that they were asked to design. By the definition of the diagram type the architec-
tural patterns were appearing on the right site of the software and from the videos we saw
that almost all of them went through the descriptions of all web based architectural pat-
terns description, even if the requested one was clearly mentioned in the task that was the
MVC. They all used the add “Architectural pattern to canvas” button and they continued
to the diagram design without further investigation of the Architectural Pattern Design.
Then they started building the diagram using the palette shapes for each particular Archi-
tectural layer using the provided shapes from the palette and when the recommendations
were appearing users were going through all the list of patterns that was provided to them.
Some of them were pressing the “More” button and they were continuing their study with
more Design Patterns. From the videos it was possible to see the time that they were
spending for reading the information for each Design Pattern. The mean time was cal-
culated to be between 2-5 minutes per Design Pattern and in all videos it is shown that
participants applied in their diagrams 2 (minimum) to 9 (maximum) Design Patterns.
In most of the Design Patterns the testers were reading the descriptions provided in the
small space-holder that by default presents the Pattern’s data and for specific patterns they
were opening the large window to read the content. In most of the cases the Patterns that
were viewed in large window were the ones that were selected to be included in the dia-
grams. For the UI related diagrams the image provided seemed to be enough for selection
since they had the minimum time of reading before they add them in the diagram. Fur-
ther analysis on the videos, also gave us some indications for improvements where most
of them were related to the Interaction with the software and the User Experience. Some
of the users were trying to drag the Design Patterns in the canvas which is currently not
supported. The Recommended Patterns are currently presented in the form of links that
the user has to select to see the information and their addition to the canvas is done with
the use of a button. It was noticed that in some cases this was confusing for the users and
it will be an improvement that will be changed in future releases. Also some attributes

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 30 of 36

of specific Design Patterns like “implementation” or “code example” were not contain-
ing enough information and the users were reloading the specific info tab to get content.
The lack of content for specific attributes of patterns happened because of the lack of this
information from the source that was initially retrieved and therefore, in cases like this, it
is better to hide the empty Design Pattern attributes when this is happening.

Evaluation of the context aware recommendation algorithms

The overall evaluation of the recommendation algorithms was done through the opinions
collected by the users via the questionnaires andmore specifically the results presented in
Table 11. The accuracy of the algorithms is not a representative measurement especially
for software tools that themost important factor for evaluation is the subjective opinion of
the users. Accuracy though remains an important factor to take into account. In the cur-
rent release of the prototype the work focused on the usage of non-personalized content
based recommendations. The reason for not proceeding into personalized recommenda-
tions at the current phase of the work was a decision that should be taken in order to focus
this evaluation on the training impact of the prototype and its design functionality and
not confuse the users by asking them to provide ratings for the Design Patterns. There-
fore, for the non-personalized Context Aware Recommendations at the current release of
ArchReco prototype we used samples of input data that was collected by the evaluation
participants and we used them as comparison dataset for the computation of Precision
(Eq. 2) - Recall (Eq. 3) measurements for the two recommendation algorithms.
Precision (Manning et al. 2008) is defined as the fraction of recommended items which

are relevant and it is expressed as

Precision = |relevant items recommended|
|items in the list| (2)

Recall (Manning et al. 2008) as the fraction of relevant recommendations that are
presented to the user and it is expressed as

Recall = |relevant items recommended|
|relevant items| (3)

The recommender systems produce a list of recommendations which are subsets of a
larger set of data. The precision is the rate of the recommended subset in relation to the
overall list of items and recall is the rates the actual relevance of the recommended items
in comparison to items which are already known or characterized as relevant.
For the Text-Based algorithm the precision is estimated close to 60% and the recall is

estimated to be 8.57%. The high precision is showing that there is a high percentage of
relevant recommended Design Patterns but the selected (recall) value is low. The result
varies based on the wording of the input text. The more descriptive is the text then the
results are also more accurate. This is shown by the computation of the precision recall of
the Utility based algorithm using four contextual factors. For the Utility based algorithm
the algorithm executed repeatedly and for every repetition, one of the defined contex-
tual factors was removed from the calculation. The minimum number of factors that
were used was two. The results received are: with four factors were p=100%, r=14.286%
respectively, with three factors p=66.67% r= 11.429%, two factors p=33.33%, r=2.857%. It
is obvious that the more contextual factors used in the computations the better results are
received. Additionally, the weights for each particular factor influence the ranking of the
results and therefore the recall value of the results.

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 31 of 36

Related work
The examination of Context Aware Recommendations for Design patterns related liter-
ature revealed a few research papers that refer to Recommendations for Design Patterns
and less that refer to the usage of context as a means to compute recommendations for
Design Patterns. There are several topics though related to the Design patterns research
and their usage, which were examined in separate and they are presented in the rest of
this section.

Design patterns in software architecture design

Hohpe et al. (2013) refers to the difficulty but also the necessity of finding good patterns
while at the same time they identify the need for additional work in organizing and struc-
turing the large body of existing Design Patterns. In the same work it is also mentioned
that pattern centric design tools promise to be more appealing to the software engineers
than mere component and connector drawing tools. In the literature one can find two
types of patterns related to Software Engineering, the Architectural Patterns and Design
Patterns. Design Patterns were introduced in (Alexander et al. 1977) as Software Engi-
neering problems that may occur repeatedly, and they are associated with a solution that
can be used to solve the problem every time it occurs within the current context that
the problem exists. Architectural patterns are similar but with a wider scope. For exam-
ple, more than one Design Pattern can be applied for specific Architectural patterns.
Most of the publications related to Architectural Patterns are focusing in Architectural
Styles and Views. Design patterns in terms of Software Architecture Design are gener-
ally met in papers related to Architectural Decisions (Capilla et al. 2016; Zimmermann
2012). In amore general perspective of Architecture design (Farenhorst and de Boer 2009)
presents Design Patterns as part of the 4 views that consist of the Architecture Knowledge
Management (AKM). Zimmerman et al. (2008) elaborates the combination of pattern
and decision centric design in Software Architecture Design while (Harrison et al. 2007)
presents methods for documenting decisions with patterns.
Beyond the fact that Design Patterns are part of Software Architecture KnowledgeMan-

agement and considered an important Architectural Decision point, the current work
is not focusing in defining the context of a Design Pattern by analyzing the very com-
plex Architectural Decision Making process as it is presented by (Zimmermann 2012).
The context aware recommendation mechanisms of the current work are following the
assumption that the Architectural decisions already exist and the Software Engineer is
able to proceed to the high level modelling design which will be used by the developers
for coding the designed components.

Design patterns recovery

The last decade Design Patterns are commonly accepted and used in Software Engineer-
ing. After the Design Patterns usage in Software Engineering is matured enough, several
frameworks and software platforms were developed with the use of Design Patterns. As
mentioned in (Rasool and Streitferdt 2011) the flexibility in software maintenance and re-
usability motivated several researchers to develop Design Patterns recovery techniques.
Examples of such techniques can be found in (Dong et al. 2009; Gueheneuc and Antoniol
2008; Lucia et al. 2009; Tsantalis et al. 2006) and in more recent work, such as Elaasar
et al. (2015). The recovery of Design Patterns mainly aims to identify with high accuracy

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 32 of 36

the Design Patterns that were used in existing software tools. The recovery techniques
are useful for the current work and especially for the evaluation of the current work’s pro-
posed tool in the future. In addition, Design Patterns recovery techniques can be used for
the creation of datasets of Design Patterns for which the lack of such datasets is a known
problem at the current stage of this work.

Design patterns & recommendation systems

Design Patterns for Software Design are recently increasing in number with new patterns
appearing to cover general functionalities or more dedicated domains (e.g., mobile appli-
cation design, or user interface design). Some previous works have focused on providing
recommendations on the appropriate usage of Design Patterns. Gueheneuc et al. (2007)
proposed a methodology of recommending Design Patterns through the textual analy-
sis of each pattern into the most important words and computing the similarity distance
between those words and the words of the query given by the user. Gomes et al. (2002)
proposed a Case Based Reasoning (CBR) Recommendation system for the recommenda-
tion of Design Patterns based on previous experiences using a Design Patterns Knowledge
Base and related taxonomies. A similar system was developed by (Weiss and Birukou
2007) that recommends patterns using the Implicit Culture Framework (ICF). The rec-
ommendations are produced based on the users’ previous actions, based on conventional
Information Retrieval and CBR methods. Palma et al. (2012) propose a Design Patterns
Recommendation (DPR) framework, which recommends patterns based on predefined
questions that the designers have to answer, and based on the given answer the framework
has a weighting mechanism for the selection of the appropriate pattern. The initial iden-
tification of patterns that can be used through the DPR framework is selected through
LUCENE indexing and TF-IDF filtering of the query given and the intent description of
each pattern.

Formalization and reasoning of design patterns

Formalization of Design Patterns refers to the techniques and methodologies that were
developed for the representation of Design Patterns. In that aspect, in the existing lit-
erature several approaches can be found. In particular, there are research works that
refer to the ontological representation, graphical representation, UML representations
of Design Patterns or to Design Patterns Specification Languages that are used for their
representation. Bottoni et al. (2009) present a visual and formal approach to the spec-
ification of patterns, supporting pattern analysis and pattern based model completion.
The approach is based on graphs, morphisms and operations from category theory and
exploits triple graphs to annotate model elements with pattern roles. Dong et al. (2007)
provide a method of formalizing the representation of Design patterns with the use of
extended UML language by adding UML annotations aiming to represent the roles that
an operation/attribute plays in addition to the roles a class plays in a Design Pattern.

Software engineering educational and training tools

SimSE (Navarro and van der Hoek 2007) is a computer-based environment that facilitates
the creation and simulation of realistic game-based software simulation models. SimSE is
used as educational software environment providing the students with a platform through
which they can interact with many different aspects of the software process in a practical

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 33 of 36

manner. SimSE is a single player game in which the user/player has the role of the project
manager whomust manage a team of developers for the completion of tasks for a software
engineering project.
In (Mancoridis et al. 1994) a combination of two Software Engineering Educational

tools is presented: The Object Oriented Turing (OOT) and Star. The software tool pre-
sented in (Mancoridis et al. 1994) is a targeted work for Unix Users and specifically
learners who are designing software using the Turing programming language. More
specifically it is a programming environment enhanced by a set of tools for editing,
high speed compiling, linking, executing, and debugging OOT programs, as well as for
browsing the Unix file system.
Another Game Based Educational tool for Software Engineering Training is presented

in (Wang and Wu 2009), where the importance of games in education is emphasized
and the work is targeting the education of the complex course of Software Engineering
through a Game Development Framework (GDF). The difference between the GDF and
other game based educational tools is the fact that the framework is used to create games.
That means that the students are learning the Software Engineering concepts through
the game development by writing their own games for particular requirements that they
are given.
The current work differs from the above approaches in the following aspects: 1. The

recommendations methods used for the recommendation of Design Patterns, 2. the devel-
opment of a prototype tool that applies the proposed methods and 3. Use of Semantic Web
Technologies for modeling the context of Software Design process and for the retrieval of
Design Patterns from multiple Design Patterns repositories. In particular, Recommenda-
tion methods that were implemented for the aims of this work differ from the existing
methods as per the type of recommendations, the implementation and the final usage. In
particular, a text-based method was already used in similar research works (Gomes et al.
2002; Guéhéneuc and Mustapha 2007; Weiss and Birukou 2007) with the difference that
in these works the text filtering was parsing only specific Design Patterns attributes such
as the Implementation or the Intent. Utility based recommendations were not applied in
other Design Patterns related work. The use of Utility-based recommendations is a well
known method in Recommendation Systems research area but not commonly used for
the current topic and context, which is the Context Aware Recommendations for Design
Patterns for the training in using the Design Patterns when designing High Level Soft-
ware Diagrams. Moreover, the combination of Semantic Web Technologies with Context
Aware recommendations and their integration as a complete prototype solution for the
training of students in learning the Design Patterns by practice consists of an original
work in relation to the reported related work.

Conclusions
The work presented in this article describes the ArchReco software and how the com-
bination of Semantic Web Technologies for modelling the Context of Software Design
Process and specifically the representation of Design Patterns contextual information is
used for the training by practice in the topic of Software Design. Context Aware Recom-
mendations are used as enhancement tool for making that possible. The implementation
of the described models and the development of the Semantic based Context Aware Rec-
ommendations within High Level Modelling Tools can become a useful training tool for

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 34 of 36

Computer Science and Software Engineering students. The work presented the semantic
analysis and implementation of the examined models as well as the two Context Aware
Recommendation algorithms that were used. It presents the ArchReco prototype envi-
ronment and presented the results from a user based evaluation that was performed. The
evaluation’s results were analysed and this analysis showed the Usefulness of the tool, the
perception of the users regarding the supported functionality and finally the impact of
the tool and particularly the usage of the recommendation system as a training support
system. The positive results as well as comments such as the following are motivating the
continuation of the current work and the development of additional enhancements that
will make ArchReco a professional training tool. “I have studied many Design Patterns
through a different way (reading a book from cover to cover and write notes on my Evernote
account, which includes intent, description, UML diagrams etc. so that I can have a quick
and accurate reference when it comes to decide how to solve a problem). I found that the
recommendation system can be really useful. I think, it will encourage many people to use
design patterns which they forget when they design a software”.
The results received from the current evaluation are also defining new objectives as

future work. The most important one is the integration of the current system with per-
sonalized Context Aware Recommendations that will take into account prior knowledge
of the users for the computation of the recommendations. This will be achieved with
the usage of more sophisticated user based contextual analysis and collaborative rec-
ommendation filtering. Using the personalized Context Aware Recommendation results
and the user based feedback for the produced recommendations, it will be possible to
evaluate the produced results using false-positive analysis for the improvement of the
results accuracy and the contextual refactoring in the cases that this might be neces-
sary. Moreover, in the future more attention will be given to the improvement of the
user interface design that will facilitate the overall user experience by using ArchReco.
Finally, a transformation of the tool into a web based application is routed as well as the
exposure of Design Patterns as a publicly accessible repository that currently do not exist
and identified as a necessity for similar developments or additions to similar training
modelling tools.

Abbreviations
AKM: Architecture Acknowledgement management; CBR: Case based reasoning; DPR: Design patterns recommendation;
DB: Data-base; GDF: Game development framework; GoF: Gang of Four; ITI: Institute of information technology; MVC:
Model view controller; MVP: Model view presenter; MVVM: Model view - view model; OOT: Object oriented turing; OWL:
Web Ontology Language (W3C); SPARQL: Simple Protocol and RDF (Resource Description Framework) Query Language;
TF-IDF: Term frequency inverse document frequency; UML: Unified modelling language; UI: User interface URI: Uniform
resource identifier

Funding
No funding sources.

Availability of data andmaterials
The results of the survey mentioned in the Motivation Section, The evaluation responses and the screen capture videos
are available from http://www.cs.ucy.ac.cy/~sielis/Results.zip. The ArchReco software is available in http://www.cs.ucy.ac.
cy/~sielis/ArchReco.zip. The ontologies and the source code can be provided by communicating the authors.

Authors’ contributions
GAS is the main contributor of the research work presented in this article. He performed the research, development and
evaluation that is presented, and thus he is the correspondant author of the work. AT co-supervised the research work
and contributed in the evaluation setup and evaluation results analysis. GAP co-supervised the overall research and
contributed by guidelining the research process from begining to end. All authors read and approved the final
manuscript.

http://www.cs.ucy.ac.cy/~sielis/Results.zip
http://www.cs.ucy.ac.cy/~sielis/ArchReco.zip
http://www.cs.ucy.ac.cy/~sielis/ArchReco.zip

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 35 of 36

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Computer Science, University of Cyprus, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
2Department of Design & Multimedia, University of Nicosia, University of Nicosia, P.O. Box 24005, 1700 Nicosia, Cyprus.

Received: 28 September 2016 Accepted: 5 April 2017

References
Alexander C, Ishikawa S, Silverstein M (1977) A Pattern Language: Towns, Buildings, Construction. Center for

Environmental Structure Berkeley, Calif: Center for Environmental Structure series. USA, OUP USA. https://books.
google.com.cy/books?id=hwAHmktpk5IC

Awais MA (2016) Requirements prioritization: challenges and techniques for quality software development. Adv Comput
Sci Int J 5(2):14–21

Bayley I, Zhu H (2008) On the composition of design patterns. In: Quality Software, 2008. QSIC ’08. The Eighth
International Conference On. pp 27–36. doi:10.1109/QSIC.2008.32

Balaji S, Murugaiyan MS (2012) Waterfall vs. v-model vs. agile: a comparative study on sdlc. Int J Inf Technol Business
Manag 2(1):26–30

Bottoni P, Guerra E, de Lara J (2009) Formal Foundation for Pattern-Based Modelling(Chechik M, Wirsing M, eds.).
Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-00593-0_19, http://dx.doi.org/10.1007/978-3-642-00593-0_19

Briand LC, Morasca S, Basili VR (1999) Defining and validating measures for object-based high-level design. IEEE Trans
Softw Eng 25(5):722–743. doi:10.1109/32.815329

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented Software Architecture: A System of
Patterns. John Wiley & Sons Inc., New York

Capilla R, Jansen A, Tang A, Avgeriou P, Babar MA (2016) 10 years of software architecture knowledge management:
Practice and future. J Syst Softw 116:191–205. doi:10.1016/j.jss.2015.08.054

Chin JP, Diehl VA, Norman KL (1988) Development of an instrument measuring user satisfaction of the human-computer
interface. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’88. ACM, New
York, pp 213–218. doi:10.1145/57167.57203, http://doi.acm.org/10.1145/57167.57203

Codina V, Ricci F, Ceccaroni L (2013) Semantically-enhanced pre-filtering for context-aware recommender systems. In:
Proceedings of the 3rd Workshop on Context-awareness in Retrieval and Recommendation. ACM, pp 15–18

Codina V, Ricci F, Ceccaroni L (2016) Distributional semantic pre-filtering in context-aware recommender systems. User
Model User-Adapted Interact 26(1):1–32

Cross N (2004) Expertise in design: an overview. Des Stud 25(5):427–441. doi:10.1016/j.destud.2004.06.002
Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q

13(3):319–340. doi:10.2307/249008
Dey AK, Abowd GD, Salber D (2001) A conceptual framework and a toolkit for supporting the rapid prototyping of

context-aware applications. Hum-Comput Interact 16(2):97–166. doi:10.1207/S15327051HCI16234_02
Dong J, Sheng Y, Zhang K (2007) Visualizing design patterns in their applications and compositions. Softw Eng IEEE Trans

33(7):433–453. doi:10.1109/TSE.2007.1012
Dong J, Zhao Y, Sun Y (2009) Syst Man Cybernet Part A Syst Humans IEEE Trans 39(6):1271–1282.

doi:10.1109/TSMCA.2009.2028012
Elaasar M, Briand LC, Labiche Y (2015) Vpml: an approach to detect design patterns of mof-based modeling languages.

Softw Syst Model 14(2):735–764. doi:10.1007/s10270-013-0325-9
Farenhorst R, de Boer RC (2009) Knowledge management in software architecture: State of the art. Softw Archit Knowl

Manag:21–38. doi:10.1007/978-3-642-02374-3_2
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Object-oriented Software.

Addison-Wesley Longman Publishing Co. Inc., Boston
Gomes P, Pereira F, Paiva P, Seco N, Carreiro P, Ferreira J, Bento C (2002) Using cbr for automation of software design

patterns. In: Craw S, Preece A (eds). Advances in Case-Based Reasoning. Lecture Notes in Computer Science, vol. 2416.
Springer, Berlin Heidelberg, pp 534–548. doi:10.1007/3-540-46119-1_39, http://dx.doi.org/10.1007/3-540-46119-1_39

Guéhéneuc YG, Mustapha R (2007) A simple recommender system for design patterns. In: Proceedings of the 1st
EuroPLoP Focus Group on Pattern Repositories

Gueheneuc YG, Antoniol G (2008) Demima: A multilayered approach for design pattern identification. Softw Eng IEEE
Trans 34(5):667–684. doi:10.1109/TSE.2008.48

Harrison N, Avgeriou P, Zdun U (2007) Using patterns to capture architectural decisions. Softw IEEE 24(4):38–45.
doi:10.1109/MS.2007.124

Hayes C, Massa P, Avesani P, Cunningham P (2002) An online evaluation framework for recommender systems. In:
Workshop on Personalization and Recommendation in E-Commerce (Malaga). http://www.tara.tcd.ie/handle/2262/
13178

Hou D, Hoover HJ (2006) Using scl to specify and check design intent in source code. IEEE Trans Softw Eng 32(6):404–423.
doi:10.1109/TSE.2006.60

Hohpe G, Wirfs-Brock R, Yoder JW, Zimmermann O (2013) Twenty years of patterns’ impact. Softw IEEE 30(6):88–88.
doi:10.1109/MS.2013.135

Jena A (2015) A free and open source java framework for building semantic web and linked data applications. Available
online: jena.apache.org. Accessed 28 Apr 2015

https://books.google.com.cy/books?id=hwAHmktpk5IC
https://books.google.com.cy/books?id=hwAHmktpk5IC
http://dx.doi.org/10.1109/QSIC.2008.32
http://dx.doi.org/10.1007/978-3-642-00593-0_19
http://dx.doi.org/10.1007/978-3-642-00593-0_19
http://dx.doi.org/10.1109/32.815329
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1145/57167.57203
http://doi.acm.org/10.1145/57167.57203
http://dx.doi.org/10.1016/j.destud.2004.06.002
http://dx.doi.org/10.2307/249008
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1109/TSE.2007.1012
http://dx.doi.org/10.1109/TSMCA.2009.2028012
http://dx.doi.org/10.1007/s10270-013-0325-9
http://dx.doi.org/10.1007/978-3-642-02374-3_2
http://dx.doi.org/10.1007/3-540-46119-1_39
http://dx.doi.org/10.1007/3-540-46119-1_39
http://dx.doi.org/10.1109/TSE.2008.48
http://dx.doi.org/10.1109/MS.2007.124
http://www.tara.tcd.ie/handle/2262/13178
http://www.tara.tcd.ie/handle/2262/13178
http://dx.doi.org/10.1109/TSE.2006.60
http://dx.doi.org/10.1109/MS.2013.135
jena.apache.org

Sielis et al. Journal of Software Engineering Research and Development (2017) 5:2 Page 36 of 36

Knijnenburg BP, Willemsen MC, Gantner Z, Soncu H, Newell C (2012) Explaining the user experience of recommender
systems. User Model User-Adapted Interaction 22(4-5):441–504. doi:10.1007/s11257-011-9118-4

Lewis JR (1995) Ibm computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J
Hum Comput Interact 7(1):57–78. doi:10.1080/10447319509526110

Lund AM (2001) Measuring usability with the use questionnaire. Usability Interface 8(2):3–6
Lucia AD, Deufemia V, Gravino C, Risi M (2009) Design pattern recovery through visual language parsing and source code

analysis. J Syst Softw 82(7):1177–1193. doi:10.1016/j.jss.2009.02.012
Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cambridge University Press, New York
Mancoridis S, Holt RC, Godfrey MW (1994) Tool support for software engineering education. Technical report,

Department of Computer Science, University of Toronto
McCandless M, Hatcher E, Gospodnetic O (2010) Lucene in Action, Second Edition: Covers Apache Lucene 3.0. Manning

Publications Co., Greenwich
Munassar NMA, Govardhan A (2010) A comparison between five models of software engineering. IJCSI 5:95–101
Navarro EO, van der Hoek A (2007) Comprehensive evaluation of an educational software engineering simulation

environment. In: Software Engineering Education Training, 2007. CSEET ’07. 20th Conference On. pp 195–202.
doi:10.1109/CSEET.2007.14

Palma F, Farzin H, Guéhéneuc YG, Moha N (2012) Recommendation system for design patterns in software development:
An dpr overview. In: Proceedings of the Third International Workshop on Recommendation Systems for Software
Engineering. RSSE ’12. IEEE Press, Piscataway, pp 1–5. http://dl.acm.org/citation.cfm?id=2666719.2666720

Pu P, Chen L, Hu R (2011) A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth
ACM Conference on Recommender Systems. RecSys ’11. ACM, New York, pp 157–164. doi:10.1145/2043932.2043962,
http://doi.acm.org/10.1145/2043932.2043962

Rasool G, Streitferdt D (2011) A survey on design pattern recovery techniques. J Comp Sci 8(2)
Rola P, Kuchta D, Kopczyk D (2016) Conceptual model of working space for agile (scrum) project team. J Syst Softw

118:49–63
Tsantalis N, Chatzigeorgiou A, Stephanides G, Halkidis ST (2006) Design pattern detection using similarity scoring. Softw

Eng IEEE Trans 32(11):896–909. doi:10.1109/TSE.2006.112
Wang AI, Wu B (2009) An application of a game development framework in higher education. Int J Comput Games

Technol 2009:6–1612. doi:10.1155/2009/693267
Walz DB, Elam JJ, Curtis B (1993) Inside a software design team: knowledge acquisition, sharing, and integration.

Commun ACM 36(10):63–77. doi:10.1145/163430.163447
Wagatsuma K, Harada T, Anze S, Goto Y, Cheng J (2016) A Supporting Tool for Spiral Model of Cryptographic Protocol

Design with Reasoning-Based Formal Analysis(Park JJJH, Chao H-C, Arabnia H, Yen NY, eds.). Springer, Berlin,
Heidelberg. doi:10.1007/978-3-662-47895-0_4, http://dx.doi.org/10.1007/978-3-662-47895-0_4

Weilkiens T, Lamm JG, Roth S, Walker M B: The v-model. Model-Based Syst Archit:343–352
Weiss M, Birukou A (2007) Building a pattern repository: Benefitting from the open, lightweight, and participative nature

of wikis. In: International Symposium on Wikis (WikiSym). ACM, pp 21–23
Wu HC, Luk RWP, Wong KF, Kwok KL (2008) Interpreting tf-idf term weights as making relevance decisions. ACM Trans Inf

Syst (TOIS) 26(3):13
Zimmermann O, Zdun U, Gschwind T, Leymann F (2008) Combining pattern languages and reusable architectural

decision models into a comprehensive and comprehensible design method. In: Software Architecture, 2008. WICSA
2008. Seventh Working IEEE/IFIP Conference On. pp 157–166. doi:10.1109/WICSA.2008.19

Zimmermann O (2012) Architectural decision identification in architectural patterns. In: Proceedings of the WICSA/ECSA
2012 Companion Volume. WICSA/ECSA ’12. ACM, New York, pp 96–103. doi:10.1145/2361999.2362021, http://doi.
acm.org/10.1145/2361999.2362021

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1007/s11257-011-9118-4
http://dx.doi.org/10.1080/10447319509526110
http://dx.doi.org/10.1016/j.jss.2009.02.012
http://dx.doi.org/10.1109/CSEET.2007.14
http://dl.acm.org/citation.cfm?id=2666719.2666720
http://dx.doi.org/10.1145/2043932.2043962
http://doi.acm.org/10.1145/2043932.2043962
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.1155/2009/693267
http://dx.doi.org/10.1145/163430.163447
http://dx.doi.org/10.1007/978-3-662-47895-0_4
http://dx.doi.org/10.1007/978-3-662-47895-0_4
http://dx.doi.org/10.1109/WICSA.2008.19
http://dx.doi.org/10.1145/2361999.2362021
http://doi.acm.org/10.1145/2361999.2362021
http://doi.acm.org/10.1145/2361999.2362021

	Abstract
	Keywords

	Content
	Methods
	Results
	Conclusions

	Background
	Motivation
	ArchReco: a design patterns recommendation tool
	Software design process - context analysis
	Design patterns ontology model
	ArchReco prototype - design patterns training tool
	System architecture
	Semantic interoperability component

	Context aware recommendations component for design patterns
	Text-based recommendations for design patterns
	Utility based recommendation for design patterns
	Pre-filtering
	Post-filtering

	A use case scenario
	Methods
	Evaluation frameworks
	Evaluation of the ArchReco prototype
	Evaluation setup

	Results and discussion
	Pre-test questionnaire
	Post-task questionnaire
	Post-test questionnaire
	Screen capturing videos - results
	Evaluation of the context aware recommendation algorithms

	Related work
	Design patterns in software architecture design
	Design patterns recovery
	Design patterns & recommendation systems
	Formalization and reasoning of design patterns
	Software engineering educational and training tools

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

