
Vilela et al. Journal of Software Engineering Research and
Development (2016) 4:2
DOI 10.1186/s40411-016-0028-3

RESEARCH Open Access

A systematic process for obtaining the
behavior of context-sensitive systems
Jéssyka Vilela1*, Jaelson Castro1† and João Pimentel2†

*Correspondence: jffv@cin.ufpe.br
†Equal Contributors
1Centro de Informática,
Universidade Federal de
Pernambuco (UFPE), Av. Jornalista
Anibal Fernandes, s/n - Cidade
Universitaria, 50.740–560, Recife,
Brazil
Full list of author information is
available at the end of the article

Abstract
Background: Context-sensitive systems use contextual information in order to adapt
to the user’s current needs or requirements failure. Therefore, they need to dynamically
adapt their behavior. It is of paramount importance to specify and analyze the
intended behavior of these systems before they are fully implemented. The behavioral
specification can be used for requirements validation in order to check if these systems
will be able to achieve their goals. Moreover, the reasoning about properties of these
systems, such as deadlocks, reachability, completeness and correctness of the system,
can be supported. Therefore, it is of paramount importance to have an approach to
specify the dynamic behavior of the context-sensitive systems.
In this work, we propose the GO2S (GOals to Statecharts) process to systematically
derive the behavior of context-sensitive systems, expressed as statecharts, from
requirements models, described as goal models.
Results: The GO2S process addresses the specification of the tasks required for
monitoring of requirements satisfaction as well as the system adaptation according to
the context, the operationalization of non-functional requirements and prioritization of
alternatives to be used at runtime (variants). It is an iterative process centered on the
incremental refinement of a goal model, obtaining different views of the system
(design, contextual, behavioral). Furthermore, we conducted a controlled experiment
to evaluate the statecharts produced following GO2S process (experimental group) in
relation to the ones elaborated in ad-hoc fashion (control group).
Conclusions: The experiment results showed that the structural complexity of the
statecharts of the experimental group was lower in relation to the control group.
Moreover, the average of functionalities whose behavior was modeled according to
the specification and the time spent to produce the models of the experimental group
were higher in relation to the control group. Besides, the subjects agreed that the
GO2S process is easy to use.

Keywords: Context-sensitive systems, Behavior, Statechart, Goal models,
Requirements, Derivation, GO2S

1 Introduction
In this section, we characterize the context of this work and the main motivations and
justifications for conducting it. Then, we present the research goals and a brief summary
of the contributions of this work. Finally, the work structure is defined.

1.1 Context

Requirements Engineering (RE) is a branch of Software Engineering (SE) that deals
with elicitation, refinement, analysis, of software systems requirements (Sommerville and

© 2016 Vilela et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-016-0028-3-x&domain=pdf
mailto: jffv@cin.ufpe.br
http://creativecommons.org/licenses/by/4.0/

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 2 of 57

Kotonya 1998). Therefore, it addresses the reasons why a software system is needed,
the functionalities it must have to achieve, its purpose and the constraints on how the
software must be designed and implemented (Lapouchnian 2005).
Goal-oriented Requirements Engineering (GORE) approaches have become quite

popular. GORE is concerned with the use of goals for eliciting, elaborating, struc-
turing, specifying, analyzing, negotiating, documenting, and modifying requirements
(Lapouchnian 2005).
Goal models have been used as an effective means to capture the interactions and

information-related requirements of adaptive systems and context-sensitive systems (Ali
et al. 2010; Penserini et al. 2007; Morandini et al. 2009; Pimentel et al. 2014). A possible
reason is that they incorporate the space of alternatives of a set of operations, i.e. vari-
ants, which gives more flexibility to meet stakeholders’ goals in a dynamic environment
(Ali et al. 2010).
The requirements models, which describe the problem, need to be related to the

solution space, which often begins with the architectural description. However, a soft-
ware architecture cannot be described in a simple one-dimensional fashion (Clements
et al. 2002). It can be represented through different views: structural, behavioral,
deployment, configuration, etc. In this work, we are concerned with the behavioral
view.
Many notations support the description of the system’s behavior such as Labelled Tran-

sition Systems (LTS) (Nicola 1987), Petri Nets (Murata 1989), and Statechart (Harel 1987).
Statechart, adopted by Unified Modeling Language (UML) language, is a popular choice
for representing the behavioral view of a system (Pimentel et al. 2014; Ranjita et al. 2012).
Besides, this notation is an interesting visual formalism for modeling context-sensitive
systems since they are reactive and adapt their requirements.
Computer systems that use context to provide more relevant services or informa-

tion are called Context-Sensitive Systes (CSS) (Abowd et al. 1999). CSS enable systems
to distil available information into relevant information, to choose relevant actions
from a list of possibilities, or to determine the optimal method of information delivery
(Santos 2008).
An important feature of CSS is the contextual adaptation (Chalmers 2002). In these

systems, context can be used to trigger actions (when a certain set of contextual informa-
tion reaches specific values); or services (tailored according to the limits and preferences
imposed by the context). Hence, these systems use context to direct actions and behaviors
to support communication between systems and their users. This support can be achieved
changing their sequence of actions, the style of interactions and the type of information
provided to users in order to adapt to the user’s current needs or requirements failure
(Vieira et al. 2011).
Since context-sensitive systems are flexible and capable of reacting on behalf of their

users, they need to dynamically adapt their behavior. The are many benefits of specify-
ing the behavior of context-sensitive systems (Clements et al. 2002): the models can be
used as a communication channel among stakeholders during system-development activ-
ities and they improve the confidence that the context-sensitive system will be able to
achieve its goals. Moreover, the reasoning about systems’ properties in the behavioral
models, such as deadlocks, reachability, completeness and correctness of the system, can
be supported.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 3 of 57

1.2 Motivation and rationale

Enabling computer systems to change their behavior according to the analysis of contex-
tual information is a challenge that attracts the attention of researchers from several areas
of computer science (Ali et al. 2010; Santos 2008; Yu et al. 2008).
Context-sensitive systems must have the following characteristics: monitoring, aware-

ness and adaptability (Klein et al. 2008). Hence, developing CSS is a complex and a
labor-intensive task. When designing these systems, the software engineer needs to deal
with issues associated to: which kind of information consider as context, how to repre-
sent this information, how to acquire and process it (considering that it may come from
several and heterogeneous sources) and how to integrate the use of context in the system
(Santos 2008).
However, software engineers have difficulties to understand and define what to con-

sider as context and how to design context-sensitive systems. A possible reason is the lack
of consensus in the literature regarding the terminology, characteristics and specificities
related to context and CSS.
It is worth mentioning that context can influence the requirements of a system, and as

a consequence, the choice of the variant (alternative to be executed at runtime) a system
can adopt to meet its requirements (Ali et al. 2010). Hence, there is a need for approaches
that guide CSS designers on obtaining their behavior and performing activities related to
the system’s behavior specification.
It is important to note that Non-Functional Requirements (NFR) affect both the struc-

tural and behavioral aspects of the system (Liu et al. 2010). Hence, they need to be
operationalized. Moreover, they should be taken in consideration when deciding which
variant is more appropriate in a given context. Therefore, NFRs are critical and must be
elicited, analyzed, and properly handled.
Software-development organizations frequently begin their activities with one of these

alternative starting points - requirements or architectures - often adopting a waterfall like
development process. It is common to artificially freeze the requirements document and
release it for use in the next step of the development life cycle. On the other hand, if the
development is based on constrained architectures, it may restrict users and handicap
developers by resisting inevitable and desirable changes in requirements.
In fact, it is well known that requirements and software architecture are intertwined

(Nuseibeh 2001). Hence, it is of paramount importance that the architecture should be
aligned with requirements.
The inherent variability of CSS requires the analysis of their behavior before they are

fully implemented. Therefore, we need approaches to guide the software engineer of CSS
to obtain the behavior of context-sensitive systems from requirementsmodels. To the best
of our knowledge, no approach is available to guide the software engineer to perform this
specification from requirements models.
In particular, we investigated the work of (Pimentel et al. 2014) related to the derivation

of behavior from goal models. The authors assume that there is an uniform nature of the
context in which the system operates. Unfortunately, this is not always the case.
The research described in this paper is targeted, especially, at designers of CSS, particu-

larly those responsible for knowledge engineering, requirement analysis and architecture
design. We envisage a Model-Driven Development (MDD) approach, where models play
a key role throughout the development (Mellor et al. 2003).

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 4 of 57

1.3 Objectives

The main research question investigated by this work is: How can we obtain the behav-
ior of context-sensitive systems from requirements models including their non-functional
requirements?
In order to answer this research question, we define the following specific objectives:

• Proposal of a systematic process for deriving the behavior of context-sensitive
systems from requirements models;

• Definition of a systematic approach for the specification of monitoring and
adaptation tasks;

• Illustration of the process applicability through an example;
• Empirical evaluation of the process through a controlled experiment to evaluate the

time to implement, syntactic correctness, structural complexity, behavioral similarity
and cognitive complexity of the generated statecharts using (or not) our approach.

1.4 Contributions

The main contributions of this work consist in the proposal of: A systematic process for
deriving the behavior of context-sensitive systems, expressed as statechart, from require-
ments models, specified as goal models; Specification of monitoring and adaptation tasks
in a contextual design goal model; The behavioral contextual design goal model; A run-
ning example to demonstrate the process application; and A controlled experiment in
order to evaluate our process. The contributions of this paper are discussed in more
details in Section 5.1.
The remainder of this paper is organized as follows. In Section 2, we overview the

research baseline for this work. In Section 3, we explain the GO2S process, and discuss
its use with a running example. Section 4 presents the design and results of a controlled
experiment we conducted to evaluate our process. Section 5 discusses the contributions
of this work and points out some open issues. Later, we present related works in Section 6
while conclusions and venues for future works are presented in Section 7.

2 Background
The GO2S systematic process proposed in this paper consists of an incremental refine-
ment of a goal model, towards a statechart of a context-sensitive system. Our process
follows the twin peaks concept (Nuseibeh 2001) which separates problem structure and
requirements specification from solution structure and architecture specification, pro-
ducing progressively more detailed requirements and design specifications. The following
sub-sections provide a brief overview of these concepts.

2.1 Context-sensitive systems

People use daily, contextual information to make decisions, make judgments or inter-
act with others. Understanding the context in which there is a certain interaction is
essential for individuals to respond appropriately to the situation. Accordingly, context is
used in different types of interactions such as “Person-Person”, “Human-Computer” and
“Computer-Computer” (Vieira et al. 2011).
Applications that use context to provide services and relevant information are called

Context-Sensitive Systems. These systems must have the following characteristics:

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 5 of 57

monitoring, awareness and adaptability (Klein et al. 2008). Accordingly, CSS are flexible,
able to act autonomously on behalf of users and dynamically adapt their behavior.
Thus, CSS use context to direct actions and behaviors to support communication

between systems and their users (Vieira et al. 2011). To provide this support can be used
(Chalmers 2002): Contextual sensing, Contextual augmentation, Contextual resource
discovery, Context triggered actions, and Contextual mediation. In our work, we are con-
cerned with the last two cases Context triggered actions and Contextual mediation. They
are two types of Contextual adaptation (Chalmers 2002) that are responsible for chang-
ing the sequence of actions, the style of interactions and the type of information provided
to users in order to adapt to the user’s current needs or requirements failure (Vieira et al.
2011).
There is no consensus on the definition, terminology and related terms associated to

context. (Bazire and Brézillon 2005) cataloged more than 150 definitions of the concept
and concluded that there are many definitions for context that differs strongly across
different domains (computer science, philosophy, economy, business, human computer
interaction). As an example, in a context-sensitive search engine, if a user searches the
term “java” that could mean a programming language or an island. To disambiguate the
searched term, the engine may look to the context that can be the query history. If the
user asked recently for any programming language such as Pascal, C++, PHP, then most
probably he is looking for the Java programming language (Ali et al. 2010).
One possible explanation for this lack of consensus is that the context is used suppos-

ing that everybody knows its meaning. However, the definitions of context are too much
dependent of their own contexts (e.g. the discipline in which the definition is taken but
also on both the kind and the goal of a given text) (Bazire and Brézillon 2005).
In this work, we adopted the definition from the GORE perspective proposed by

(Ali et al. 2010). They defined a framework that states that context is a partial state of
the world that is relevant to an actor’s goals. Accordingly, each context must be refined
to allow it to be checked. The contextual refinement has a tree-like structure (see Fig. 1)

Fig. 1 Refinement of C4 context of meeting scheduler example

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 6 of 57

in which the root of this model is the context, and facts and statements are its nodes. In
order to obtain a verifiable context, all statements are refined into sub-statements and
facts, until there are only facts left.
Facts are predicates which truth values can be verified in a context, i.e. the system can

capture the necessary data and compute the truth value of a fact. For example, The meet-
ing date is more than two days away. These facts are verifiable on the basis of data a system
can collect of the world.
Statements, on the other hand, cannot be verified directly in a context due lack of

information or its abstract nature. For example, The meeting is not urgent, is a subjective
assertion that does not have a clear criteria to be evaluated against. A statement S is sup-
ported (through Support relation) by a set of facts that gives enough evidence to the truth
of S. Hence, a statement is not monitorable by itself but it is an abstraction of visible facts.
Statements are represented as shadowed rectangles and facts as parallelograms

(Ali et al. 2010). The support relation is represented as curved filled-in arrow, and the
implication logical operators and, or are represented as black triangles, white triangles,
filled-in arrows, respectively.
Figure 1 presents the refinement of the C4 context related to Collect timetables by email

task of the meeting scheduler example. It will be true if The number of participants is
high (since it will be time consuming calling too many participants), or The meeting is not
urgent (which can be checked by the fact The meeting date is more than 2 days away). If
it is urgent, the participants should be contacted by phone. Likewise, it is required that
The participants usually answer meeting requests by email (i.e. The participants answered
more than 50 % of timetables requests).
The context acts like a set of constraints that influence the behavior of a system

embedded in a given task (Bazire and Brézillon 2005). Hence, context-sensitive sys-
tems must monitor the context at runtime in order to decide which action will be
executed. Accordingly, in addition to the specification of the facts and statements
that defines a context, it is necessary to specify the real-word properties of the
facts that changes at runtime. These properties are called Contextual Elements (CE)
(Vieira et al. 2011). These elements can be defined as data or information in the
domain whose instantiated values influence the truth values of facts in the contextual
refinements.
Each contextual element can be identified with respect to its frequency or periodicity

and classified as static or dynamic. Static CE indicates information that is, in general, fixed
or does not change very often (e.g. user’s personal data - date of birth, number of rooms
in the meeting scheduler system). Dynamic CE changes almost instantly, hence it needs
to be constantly monitored and updated (e.g. physical location of a person, participants
available dates, number of date conflicts in a meeting request). The dynamic elements are
important for the specification of the context monitoring as will be discussed in Section 3.
For systems operating in and reflecting varying contexts, it is important to specify the

Context sources. These sources are mechanisms, such as equipments or technologies,
necessary to install or to use in order to enable contextual data collection.
The design of CSS entails more work in comparison to systems that do not consider

context since they must care for context-related tasks, such as the acquisition, processing,
storage and presentation of contextual information. In the next section, we presented the
goal-oriented approach for context modeling adopted in this paper.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 7 of 57

2.2 Contextual goal model

GORE is concerned with the use of goals for eliciting, elaborating, structuring, specify-
ing, analyzing, negotiating, documenting, andmodifying requirements (Van Lamsweerde
et al. 1995).
Goal models capture and refine stakeholder intentions to generate functional and non-

functional requirements. The notation used in this paper is based on the one described
by (Castro et al. 2002) which has goals, tasks, softgoals and contribution links (Make (++),
Help (+), Hurt (-) and Break (–)).
A contextual goal model extends a goal model with context annotations in order to

specify the variation points that are context-dependent. The notation used in this paper
to represent contexts in goal models is based on (Ali et al. 2010). Thus, contexts in our
work can be associated with the following variation points in a goal model:

• Or-refinement: the adoptability of a subgoal (subtask) may require a specific context
to hold as a pre-condition for the applicability of the corresponding goal model
variant. For example, consider the or-refinement of Timetables Collected goal in
Fig. 6. The Collect by email task will executed only if C4 holds, the same reasoning
applies to the other tasks in this refinement.

• And-refinement: the satisfaction (execution) of a subgoal (subtask) in this refinement
is needed only in certain contexts. A subgoal/task in this refinement must be
provided by its parent node but its execution is context-dependent. For example,
consider the Manage performance adaptation task in Fig. 9. The meeting scheduler
system must be able to perform this task, but it has not to be in all cases, only when
the C7 context holds. Although this is syntactically equivalent to an or-refinement,
the semantic is different. A context on an and-refinement influences the need for
reaching or executing the corresponding subgoal/subtask, while a context on an
or-refinement is itself needed to hold before adopting the corresponding
subgoal/subtask. This semantic difference is essential to decide which requirements
and alternatives will be active when a context change occurs at runtime.

• Contribution to softgoals: softgoals can be contributed either positively or negatively
by goals and tasks. The contribution of softgoals can vary from one context to
another. For example, the Turn on air ventilator task contributes positively to
Privacy softgoal and negatively to Energy spent wisely softgoal when C12 (it is sunny
and not very windy) holds.

According the framework of (Ali et al. 2010), for each variation point in the goal model,
the software engineer has to decide if a variation point is context-dependent or not.When
a contextual variation point is identified, the variants at the goal model are labelled by
C1. . .Cn and annotated in themodel (see Fig. 6), and described as a sentence (see Table 2).
Then, the contexts are refined in statements and facts to allow it to be checked.

2.3 Flow expressions

Flow expressions are an extension to regular expressions and can be used to describe
the behavior of software architectures through its goals and tasks in a goal model.
Accordingly, flow expressions are an useful notation that can aid in the design, analysis,
and understanding of software systems (Shaw 1978).

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 8 of 57

We adopted the symbols proposed by (Pimentel et al. 2014), described in Table 1, with
the purpose of facilitating their writing. Each atomic symbol represents a state related
to an element of the goal model. For example, if t1 is a task, the atomic expression Ti
represents the state where t1 is being fulfilled.
Flow expressions can be composed in terms of regular expression operators, such as

concatenation (t1 t2), meaning first satisfy t1 then t2 (sequential flow), or t2*, meaning
that t2 is to be satisfied zero or more times. Flow expressions separated with a vertical
bar |symbol represent alternative flows. The question mark ? is used to represent the
optionality of the flow to its left, i.e., that flow may be executed zero or one times.
The star symbol * indicates that the flow to its left may be executed zero, one or more

times, while the plus symbol + indicates that the flowmay be executed one or more times.
A dash - indicates that two flows are to be carried out concurrently, in the sense that
their states can be interleaved. These expressions allow the representation of the system
behavior as annotations on a goal model. Table 1 presents each symbol, its meaning and
an example.
As an example of flow expressions, consider the following flow expression: (A B (C |D)

E F* G) - (H*). This expression indicates that state A is followed by state B. After B, the
possible states are C or D (exclusively), followed by E. After E, F may be reached any
number of times. State G occurs after E or after F. Concurrently to all that, the state H
may occur any number of times.

2.4 Statecharts

Statecharts (Harel 1987) extend conventional state-transition diagrams with essentially
three elements, dealing, respectively, with the notions of hierarchy, concurrency and
communication.
Statecharts can be used as a stand-alone behavioral description, and, therefore,

became a popular visual formalism for modeling reactive systems (Harel 1987) such as
context-sensitive systems. These systems are characterized by being, to a large extent,
event-driven, continuously having to react to external and internal stimuli such as
context-sensitive systems.
The main elements of statecharts are states, events, transitions, actions and regions.

States are conditions during the life of an object or an interaction during which it satisfies
some condition, performs some action, or waits for some event.
Transitions capture a change of state caused by the occurrence of some associated

event. A transition may be guarded by some condition, represented by a condition
name or an expression enclosed between brackets. A guard captures a necessary condi-
tion for transition firing. States are represented as boxes and transitions between states
represented as arrows.

Table 1 Symbols of flow expressions (Pimentel et al. 2014)

Expression Meaning Example

blank space Sequence (t1 t2), first t1 and then t2

| Alternative (t1 |t2), t1 xor t2

? Optional (t1 t2? t3), first t1 and then t3, or first t1 followed by t2 and t3

* Zero or more times (t1 t2* t3), first t1, then t2 zero or more times, then t3

+ One or more times (t1 t2+), first t1, then t2 one or more times

- Parallelism t1-t2, t1 is executed at the same time as t2.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 9 of 57

An action is an auxiliary operation associated with a state transition that is applied when
the transition is activated. Statecharts also support the nesting of states. Concurrency is
represented by dividing a composite state into regions that are shown separated by dotted
lines.
Developing CSS is a complex and a labor-intensive task. Hence, there is a need for

approaches that guide CSS designers on obtaining their behavior from requirements
models and performing activities related to the system’s behavior specification. In the
next Section, we present the GO2S process - a systematic process to derive the behavior
of context-sensitive system from requirements models.

3 GOals to Statecharts (GO2S) process
Processes provide activities that support an activity. They can be used as checklists
and guidelines of what to do and how to do it (Wohlin et al. 2012). In order to
develop context-sensitive systems, several activities to obtain their behavior have to be
taken.
In this work, we propose the GO2S process to systematically derive the behavior of

context-sensitive systems (modeled as statecharts), from system’s requirements (modeled
as goal models) following the twin peaks concept (Nuseibeh 2001). The steps of the GO2S
process are illustrated in Fig. 2.
In order to specify the GO2S process, we used the Business Process Modeling Notation

(BPMN) (OMG 2016). BPMN is a well-adopted process-modeling standard supported
by many software tools that provides a graphical notation that describes the flow of a
process. Since this notation has been specifically designed to coordinate the sequence of
processes and the messages that flow between different process participants in a related
set of activities, it facilitates the understanding of the procedures and ensure that software
engineers understand themselves (OMG 2016).

Fig. 2 The GO2S process for deriving the behavior of context-sensitive systems

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 10 of 57

GO2S is divided into the following main sub-processes (see Fig. 2): the first sub-process
concerns the construction of Design Goal Model (DGM). It is followed by the specifica-
tion of contextual variation points. In the third sub-process, the tasks required for the
monitoring and adaptation activities are specified. Later, in the fourth sub-process, the
system behavior is represented in flow expressions. The next one derives a statechart
from the behavioral contextual design goal model. Finally, the last sub-process is the
prioritization of variants.
We explored the idea that it is possible to modularize the development of CSS by orga-

nizing the GO2S process in six sub-processes considering the main activities in order
to develop a context-sensitive system. The process is not supposed to be a waterfall
model. Thus, it is not assumed that a sub-process must be totally finished before the
next one is started. This is an iterative process centered on the incremental refinement
of a goal model, obtaining different views of the system (design, contextual, behavioral).
Accordingly, it may be necessary to go back and forth in the activities until the desired
level of detail is reached.
The sub-processes of GO2S process are illustrated in Fig. 2, and further elaborated in

the following sub-sections. At the beginning of each sub-process, we present a summary
of its goal, inputs, activities, and outputs.

3.1 Sub-process 1: Construction of design goal model

• Goal: Refine a goal model with new design elements
• Input: A goal model
• Activities:

1: Identify design tasks and constraints
2: Perform the NFR analysis
3: Include the design tasks that operationalizes the NFRs in the goal model
4: Assign Tasks

• Outputs:
Design Goal Model
Operationalization of NFRs

Our overall objective is to obtain the behavior of context-sensitive systems. Thus, we
assume that requirements elicitation and analysis activities were previously performed
and a goal model was generated. Hence, the first sub-process (see Fig. 3) of our process
consists of Construction of Design Goal model and receives a goal model as an input.
As we move to the solution space, it can be necessary to include new elements that

appeared in the design phase, such as design tasks and design constraints (Pimentel et al.
2014). Design tasks allow the architect to model tasks that, although not relevant for the
stakeholders in a first moment, are important for the definition of the system’s behavior.
Note these concerns usually emerge after requirements elicitation. Design quality con-
straints, on the other hand, restrict the initial goals and tasks or define requirements
quality constraints into more concrete ones (Pimentel et al. 2014).
Accordingly, these new elements are represented through dashed borders in a goal

model. This differentiation is used to emphasize the phase of the software develop-
ment they appear, while requirements elements describe the stakeholders’ needs, design
ones express a possible way to fulfil those needs. Despite such differentiation, these

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 11 of 57

Fig. 3 Activities of Construction of Design goal model activity

elements have the same semantic of tasks and quality constraints in a goal model. There-
fore, by including these elements in a goal model, it is possible to make use of the
existing goal reasoning infrastructure when designing systems with specific needs like
context-sensitivity.
In the first activity of the sub-process, the software engineer should check if there is

critical design task or quality constraint that was not identified in the requirements phase
that is necessary to the system. One source of these elements are NFRs. Therefore, it is
important to consider their impact in the system, since they change or complement both
the structural and behavioral aspects of the system architecture (Liu et al. 2010).
Therefore, note that in this first sub-process, we can establish the relationship between

NFR and the goal model using techniques for NFR analysis such as Softgoal Interdepen-
dency Graph (SIG) (Chung et al. 2012). If a NFR needs to be operationalized, a design
task must be included in the goal model. Further, design constraints may also need to be
included.
Moreover, the design goal model also allows the definition of assignments for its

tasks. A task or design task may be assigned/delegated to one or more users. Assign-
ments are expressed by labels below the assigned element (Pimentel et al. 2014). The
left side of the label shows the icon of a person, to represent the assignment. The
users to whom the task was assigned to are listed to the right of the icon, as shown
in Fig. 4.
In the meeting scheduler system, we have the usability, performance and security NFR.

In order to satisfy the security NFR, it was decided to perform access management, so
a new functionality should be added to satisfy this requirement. This is expressed by
the Manage Access design task. Besides, the Contact Participants design task may be
performed either by the meeting organizer or by a secretary.
This assignment was chosen since developing the capability of making automatic phone

calls and collecting timetables would be too costly. In order to make this kind of decision,
it may be necessary to consult with the project stakeholders in order to find the most ben-
eficial option. The DGM of the meeting scheduler which encompasses both requirements
and design elements, is shown in Fig. 4.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 12 of 57

Fig. 4 DGM of meeting scheduler example adapted from (Angelopoulos et al. 2014)

The outputs of this sub-process is the DGM which can include the design tasks that
operationalizes the NFRs. The OR refinement of DGM introduces alternatives into the
model accommodating many/all possible functionalities that fulfil stakeholder goals. The
space of alternatives defined by a goal model can be used as a basis for designing fine-
grained variability for highly customizable or adaptable software (Yu et al. 2008). Hence,
we need to consider variability of the model (Ali et al. 2010) as described in next sub-
process.

3.2 Sub-process 2: Specification of contextual variation points

• Goal: Refine a design goal model with contextual variation points
• Input: A design goal model
• Activities:

1: Identify and specify the contextual variation points
2: Refine contexts

• Outputs:
Contextual design goal model
Contexts refinements

In this second sub-process, the DGM constructed in the previous sub-process is refined
with contextual variation points and their associated contexts are refined as demonstrated
in Fig. 5.
The contextual variation points represent the context influence on the choice among

the available variants of goals satisfaction. They are annotated in the DGM to visually
specify the effects of context in the system’s behavior. In the GO2S process, contexts can
be associated to or/and refinements as well as contributions to softgoals present in a
design goal model.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 13 of 57

Fig. 5 Activities of Specification of contextual variation points activity

Accordingly, the architect should identify a contextual variation point and specify the
variants at the DGM with context labels such as C1. . .Cn as shown in Fig. 6. We followed
the notation proposed by (Ali et al. 2010) which requires that each context specified in the
contextual DGM must be refined through a set of statements and facts. The contextual
refinements are required in order to allow the system be able to check the validity of
context at runtime. Hence, if a context is true, the variant is enabled.
As an example of context refinement, consider the refinement of C4 context related to

Collect timetables by email task in Fig. 1. C4 will be true if The number of participants is
high fact, or The meeting is not urgent statement (which can be checked by The meeting
date is more than 2 days away fact), or The participants usually answer meeting requests
by email statement (verified by The participants answered more than 50 % of timetables

Fig. 6 Contextual DGM of meeting scheduler example

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 14 of 57

requests fact) are true. The contextual DGM of the meeting scheduler example is shown
in Fig. 6.
The outputs of this sub-process are the contextual DGM and the context refinements.

Next, we need to consider how the monitoring and adaptation will be performed.

3.3 Sub-process 3: Specification of adaptation andmonitoring

• Goal: Refine the contextual DGM with elements necessary for the specification of
adaptation Design Tasks as well as the monitoring

• Input: Contextual design goal model
• Activities:

1: Define the critical requirements that requires adaptation
2: Represent the adaptation management

2.1: Add a new design task in the root node for adaptation management
2.2: Add design tasks in the parent node previously created for the

management of each requirement that must be monitored and adapted
2.3: Add design tasks to represent the adaptation strategies for each

monitored requirement
3: Associate each adaptation design task with a context label
4: Refine each context
5: Identify the dynamic contextual elements
6: Represent the context monitoring

6.1: Add a new design task in the root node
6.2: Add design tasks to monitor each dynamic contextual element

7: Specify the context sources necessary to monitor the contexts
• Outputs:

Contextual design goal model refined
Contexts Refinements

Context-sensitive systems have the ability of adapt themselves in order to provide per-
sonalized services for its users when enable/disable functions. Therefore, we propose to
use this characteristic to deal with the requirements adaptation when a goal fails. In order
to achieve this, we refine a contextual DGMwith elements necessary for the specification
of adaptation design tasks as well as the monitoring.
The input of this third sub-process (see Fig. 7) is the contextual DGM. The software

engineer should analyze the system’s requirements, aiming to define the requirements
that are critical, and therefore require some action in case of failure. Our approach does
not prescribe any specific technique for elicitation and analysis of the requirements. Thus,
the software engineer should choose existing requirement elicitation techniques that best
fit. However, we can suggest some common sources of requirements that usually require
adaptation since they are, usually, critical and impact the system’s behavior:

• Softgoals present in the goal model;
• Goals that are critical for the system-to-be to fulfill its purpose, since some

subsequent activities may depend on them;
• Government regulations and rules may require that certain goals cannot fail or be

achieved at appropriate rates;
• Requirements related to Service Level Agreements (SLAs).

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 15 of 57

Fig. 7 Activities of Specification of adaptation and monitoring activity

Next, adaptation design tasks should be added in the root node of the contextual DGM
following the activity 2 described in the beginning of the section. These adaptation design
tasks represent the tasks required for adaptation of each requirement the software engi-
neer wants to adapt. We propose to add a new design task in the root node for adaptation
management as well as design tasks in this node for each critical requirement that must
be monitored and adapted.
Finally, design tasks should be added to represent the adaptation strategies. The adapta-

tion design tasks can be of several types, such as reconfiguration of system’s parameters,
step back or delegate the task to an user. Note that we should add at least two adaptation
design tasks since the variants are the cornerstone for adaptability, a system with only one
variant cannot be adaptable (Ali et al. 2010).
The next activity is to associate each adaptation design task with a context labelmeaning

that these elements will be activated when the associated context holds. For example,
consider theManage Schedule adaptation design task in Fig. 9. This task will be executed
when C6 context holds. According to the framework of (Ali et al. 2010), the contexts
should be refined in statements and facts. The refinement of C6 context is presented in
Fig. 8.
Therefore, C6 context will hold when The Number of conflicts is higher than [MCA]

(being MCA the Maximum Conflicts Allowed by the stakeholders) or when Schedule
defined goal failed, i.e. the fact Goal is in the failed state.
After all contexts, that influence the requirements are refined, and the contextual ele-

ments that need to be monitored are identified, the next activity is to identify the context
sources needed to monitor these contextual elements. The contextual elements are the
properties of real-world presented in the facts of context refinements that change their
values dynamically. Therefore, the changes in the contextual elements imply in changes
in the system context.
The context sources can be represented in a table like Table 2 in order to facilitate the

visualization and management by the software engineer.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 16 of 57

Fig. 8 Refinement of C6 context of meeting scheduler example

In our running example, the software engineer decided that the system has to adapt
itself when the Performance softgoal and the Schedule Defined goals fail. Therefore,
two adaptation design tasks were added to our running example: Manage Performance
adaptation andManage Schedule adaptation.
The adaptation design tasks are Step Back and Reconfigure Schedule for the Manage

Schedule adaptation design task; otherwise, Delegate (Software Architect) and Add new
server are the adaptation tasks for the adaptation Manage Performance adaptation
design task.
These adaptation elements of the meeting scheduler example are represented in Fig. 9.

In this figure, C1-C5 are the contexts previously identified, while C6-C11 are the ones
related to the requirements adaptation identified in this sub-process. These contexts must
hold so the adaptation design tasks can be executed.
In our meeting scheduler running example, the only context source is a mechanism to

information storage. The description of contexts and the context sources are presented in
Table 2.
However, the world is volatile and could be in different states. A partial state of the world

that is uniform does not influence the decisions of a system (Ali et al. 2010). Hence, the
system should monitor the properties over the world that are dynamic and have a impact
on system’s behavior namely contextual elements (see Section 2.1).
The facts and statements of a context will be activated when some change in the con-

textual elements occurs. Therefore, we should create a new design task, called Monitor
Context for example, to represent the monitoring of the context. Then, for each one of
the dynamic CE, a new design task should be created, expressing the need to monitor it.
These tasks can have the form ofMonitor [contextual element].
In the meeting scheduler system, we identified five CEs: meeting date, timetables

responses, participants available dates, number of conflicts and response time. Thus, we

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 17 of 57

Table 2 List of contexts of meeting scheduler example and the context sources needed to monitor
them

Description Variation Context

Point type Source

C1 The number of participants is small Mechanism to

and The number of rooms available OR information

is small and The date range is small storage.

C2 The number of participants is high and Mechanism to

The number of rooms available is high OR information

and The date range is high storage.

C3 The number of participants is small Mechanism to

or The meeting is urgent OR information

or Participants do not usually answer storage.

meeting requests by email

C4 Number of participants is high or Mechanism to

The meeting is not urgent or OR information

Participants usually answer storage.

meeting requests by email

C5 The participants agenda is up to date OR Mechanism to

information storage.

C6 Goal Schedule defined failed or The AND Mechanism to

number of conflicts is higher than [MCA] information storage.

C7 Response Time is higher than 2s AND Mechanism to

more than five times in the week information storage.

C8 The Number of conflicts is OR Mechanism to

higher than [MCA] OR information storage.

C9 The Step back strategy have failed OR Mechanism to

information storage.

C10 The Add new server OR Mechanism to

strategy have failed information storage.

C11 Response Time is higher than 2s OR Mechanism to

more than five times in the week information storage.

added five design tasks to represent themonitoring of these contextual elements as shown
in Fig. 9.
The outputs of this sub-process are the refined contextual DGM and context refine-

ments. Having defined the adaptation strategies and the contextual elements that need to
be monitored, we can now move on to specify the order of execution of tasks and goals.
For this, we rely on flow expressions.

3.4 Sub-process 4: Specification of flow expressions

• Goal: Refine the contextual design goal model with flow expressions that represent
the execution order of elements in the model

• Input: Contextual design goal model refined
• Activities:

1: Assign an identification (ID) for each goal and task in the goal model
2: Determine the flow expressions
3: Specify idle states

• Output: Behavioral contextual design goal model

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 18 of 57

Fig. 9 Contextual DGM of meeting scheduler example refined with adaptation elements

In this sub-process, the contextual design goal model is refined with flow expressions
that represent the execution order of elements in the model through the activities shown
in Fig. 10.
Flow expressions are a set of enrichments to a goal model that allow specification of

the runtime behavior through the execution order of its elements (see Section 2.3). These
expressions are used in the GO2S process as an intermediary model in order to derive the
statechart.
The first activity of the specification of flow expressions sub-process is to assign an

identification to each goal and task in the model. This identification is necessary for ref-
erence in the flow expression later. Gi was used as the identification for goals and Ti for

Fig. 10 Activities of Specification of flow expressions activity

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 19 of 57

tasks and design tasks where i is the number of the task. Considering that there are dif-
ferent ways for a system to perform a set of tasks, determining the behavioral refinement
(through flow expressions) is not a matter of direct translation (Pimentel et al. 2014).
After the IDs assignment, the next activity is to define the flow expression for each

parent node which describes the behavior of its children elements using the symbols pro-
posed by (Pimentel et al. 2014). The strategy can be bottom-up or top-down, the result
will be the same. Thereafter, when we reach the root goal, we have the flow expres-
sion from the entire system. The resulting flow expressions should be annotated in the
contextual design goal model as demonstrated in Fig. 11.
The flow expressions could be defined taking in consideration the business rules of the

system that were defined during the requirements phase. Therefore, the software engineer
should analyze the requirements to determine the execution order of the tasks in the
system, their optionality and multiplicity.
A common practice when creating statecharts is to use intermediate states as a point

where the system is idle, waiting for some input, such as input selection by the user or for
a context to hold. Considering how frequently these states appear, and aiming to reduce
visual pollution in the behavioral contextual DGM, such states must be inserted directly
in the flow expressions identified as iX, where X is an integer.
The result flow expression, presented in Fig. 11, of our running example is (i1 t16 i2 (g2

|g3 |g4 |t15)*) - t24 - t25.
Thus, from the idle state (i1), the system executes Manage Access (t16) design task,

entering in an idle state (i2). The Meeting Characterized (g2), Timetables collected (g3),
Schedule defined (g4) goals, and the Update meeting (t15) task are alternatives that can

Fig. 11 Behavioral contextual design goal model of the meeting scheduler example

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 20 of 57

be executed zero or more times. Besides,Monitor Context (t24) andManage Adaptation
(t25) design tasks are running concurrently with all tasks.
The output of this sub-process is the behavioral contextual design goal model. It is the

contextual design goal model annotated with flow expressions. This model can represent
in a unified way all the views developed in the GO2S (contextual, design and behavioral).
The behavior of a context-sensitive system can be simulated, using tools such as

(Yakindu Statechart Tools 2016) to help reason about the architecture’s ability to support
the range of functionality and related quality requirements of the system (Clements et al.
2002). Hence, after defining the flow expressions, the next sub-process is the statechart
derivation, which later can be used for analysis.

3.5 Sub-process 5: Statechart derivation and refinement

• Goal: Obtain the statechart and perform the refinements
• Input: Behavioral contextual design goal model
• Activities:

1: Generate the statechart using the derivation patterns:
1.1: Create a state for each goal and task following the hierarchy of the design

goal model
1.2: If necessary, create idle states to model situations where the system is

waiting for user interaction or for a given context to hold.
2: Specify transitions in the statechart
3: Specify monitoring actions
4: Represent variants priorities

• Output: Statechart

The statechart derivation and refinement sub-process relies on the behavioral contex-
tual DGM as in input, as indicated in Fig. 12. The goal of this sub-process is to obtain the
statechart and perform the refinements.
The flow expressions previously defined are translated into states of the statechart that

represents the system’s behavior view.We adopted the set of derivation patterns proposed
by (Pimentel et al. 2014). They are related to the different flows that may be expressed

Fig. 12 Activities of Statechart derivation and refinement activity

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 21 of 57

(sequential, alternative and concurrent) as well as to their optionality andmultiplicity (see
Fig. 13).
The generation of statechart consists of creating a state for each goal and task starting

with the root node. The hierarchy of goals should be considered, therefore, each goal and
task in and/or refinements becomes a superstate with its children nodes. We have six
types of flows: sequential tasks, alternative tasks, concurrent tasks, optional execution,
zero or more executions, one or more executions.
Sequential tasks are represented in the flow expression through the IDs separated by

blank space (). Figure 14 shows an illustration of the statechart derivation of this type of
flow from the behavioral design goal model.
Alternative tasks are represented in the flow expression through the IDs separated by a

vertical bar (|). An illustration of the statechart derivation of this type of flow is presented
in Fig. 15.
A hyphen (-) should be used to separate the IDs of concurrent tasks in the flow

expression as shown in Fig. 16.
In a sequence flow, one of the tasks possibly will not be executed. Accordingly, a ques-

tion mark (?) on the right of the ID in the flow expression should be used to represent this
optionality as demonstrated in Fig. 17.
An optional task can be executed repeatedly. Hence, we should use an asterisk (*) on

the right of the ID in the flow expression to represent that this task can be executed zero
or more times. Figure 18 shows an illustration of the statechart derivation of zero or more
executions tasks from the behavioral design goal model.
Finally, we should use a plus sign (+) on the right of the ID in the flow expression to

represent the repetition of tasks as presented in Fig. 19. The pseudocode of the derivation
algorithm can be found at (Pimentel 2015).
During the statechart derivation it can be necessary to specify more idle states to repre-

sent that the system is waiting for some input. These states should be represented though
new states and the conditions required to hold should be specified in the transition of
these idle states.
The procedure described above should be carried traversing the behavioral contextual

DGM until it reaches the leaf nodes. After generating the statechart, we must specify its
transitions in terms of their triggers and conditions. Any event can be used as a trigger, but
there are five particular classes of events that are likely to appear in a statechart (Pimentel

Fig. 13 Statechart derivation patterns (Pimentel et al. 2014)

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 22 of 57

Fig. 14 Sequential tasks pattern

Fig. 15 Alternative tasks pattern

Fig. 16 Concurrent tasks pattern

Fig. 17 Optional tasks pattern

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 23 of 57

Fig. 18 Zero or more executions pattern

et al. 2014): user request, timer, requested by another task, requested by another system
and context activation.
The monitoring of the environment in which the system is inserted is one of the

main characteristics of context-sensitive systems. Accordingly, such activity impact the
system’s behavior and it should be represented in the statechart. The results of the
monitoring will define which facts and statements are true, causing changes in the sys-
tem’s context. The management of such results should be implemented as functions of
the system.
Therefore, we propose to refine the monitoring of the contextual elements adding trig-

gers and actions. We use the every trigger which specifies periodic time events. Hence,
in a periodic cycle, the actions responsible for the update of the contextual elements are
executed. These update time should be specified according to requirements of each CSS
by the software engineer.
Given that it is possible that several variants may be enabled in certain contexts,

it is necessary to determine the best option. Hence, we propose to define a priority
for such variants whose values are determined using the AHP method described in
the next section. Such priorities are used in GO2S to configure the system’s behavior
(allow/prevent transitions based on customization decisions).
We propose to represent the use of the variants priorities through operations. They

receive as parameters the contexts associated with all variants in the refinement and their
priorities. The operations should evaluate which variantmust be executed considering the
contexts that hold at the moment and the priorities of the variants. The returned values
are used by guard conditions in the statechart to trigger the execution of the selected
variant.
Figure 20 presents the complete statechart of our running example. The context activa-

tion is represented through the context labels (C1, C2. . .Cn) annotated in the behavioral
contextual design goal model (Fig. 11).

Fig. 19 One or more executions pattern

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 24 of 57

Fig. 20 Statechart of meeting scheduler example

The system starts in idle state (i1). If the user requests login in the system, Manage
Access (t16) state is executed. In case of failure of the login, the system returns to the idle
state (i1), otherwise, it enters in idle state (i2). From i2, the user can start to character-
ize the meeting, so, the system enters in Meeting Characterized (g2) superstate in which
Define participants (t2), Define Date Range (t1) and Define topics (t3) states are reached,
followed by the idle state (i2).
If the user requests to update the meeting, the system reaches theUpdate meeting (t15)

state, later returning to idle state (i2). On the other hand, if collect timetables is requested,
the system enters in Collect timetables (g3) superstate from Idle state (i4) where it should
evaluate which variant should be executed considering the associated contexts (C3, C4,
C5) and their priorities (p3, p4 and p5 whose values will be calculated in the next sub-
process of GO2S). If only C3 holds, Input participants availability (t5) state is reached,

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 25 of 57

otherwise if only C4 holds, Collect by email (t4) state is reached, and finally, if only C5
holds, Collect automatically (t6) state is reached. If more than one context hold, the deci-
sion of which variant should be executed is the one with higher priority (i.e. it is the
variant that most contributes to the satisfaction of the system’s NFRs). After that, the
system returns to idle state (i2).
If the user requests manually schedule, the system reaches the Schedule manually (t7)

state. On the other hand, if C1 or C2 context holds, the system enters in Schedule auto-
matically (t8) superstate. If only C1 holds, Brute Force Algorithm (t12) state is reached.
Otherwise, if only C2 holds,Heuristics based algorithm (t11) state is reached. In case both
contexts holds, the execution of the variant will be determined considering the associated
contexts (C1, C2) and their priorities (p1 and p2).
Therefore, Characterize meeting (g2), Timetables collected (g3), Schedule defined (g4),

Update meeting (t15) are alternatives states that can be executed zero or more times. All
these states are running concurrently to Monitor Context (t24) and Manage Adaptation
(t25) states.
Monitor Context (t24) is a superstate which has five states running concurrently:Mon-

itor meeting date (t19), Monitor number of conflicts (t22), Monitor participants available
dates (t20), Monitor response time (t23) and Monitor Timetables responses (t21). These
sub-states represent themonitoring of dynamic contextual elements. The system updates,
in a periodic cycle of 2 seconds update, the contextual elements. Hence, when some
change occurs in any of these CEs, some context may hold and thus, the system should
take some adaptation action.
Manage Adaptation (t25) is a superstate that represents the adaptation design tasks the

system should perform in case of failure of critical requirements. It starts in a idle state
(i7) and waits until C6 or C7 context holds. If C6 context holds, it enters in the Manage
schedule adaptation (t27) superstate from idle (i5) state. When only C9 context holds, the
Reconfigure Schedule (t14) state is reached, otherwise, if only C8 holds, Step Back (t13)
state is entered. These states are executed as many times as necessary, until the contexts
do not hold anymore. In case both contexts hold, the execution of the variant will be
determined considering the associated contexts (C8, C9) and their priorities (p8 and p9).
When C7 context holds, the system enters the Manage performance adaptation (t26)

superstate from the idle state (i3). When only C11 context holds, the Delegate (Software
Architect) (t17) state is reached. Otherwise, if only C10 holds,Add new server (t18) state is
entered. In case both contexts hold, the execution of the variant will be determined con-
sidering the associated contexts (C10, C11) and their priorities (p10 and p11). Similarly,
these states are executed many times as necessary until the contexts do not hold anymore.
The statechart can be used to requirements validation, hence, the software engineer will

be able to check if the system will behave as expected. This model can also be used in the
next phase of the software development (implementation) to generate code through tools
such as (Yakindu Statechart Tools 2016).
The calculation of the variants priorities is explained in the next section.

3.6 Sub-process 6: Prioritization of variants

• Goal: When more than one context holds prioritize variants
• Input: Behavioral contextual design goal model
• Activities:

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 26 of 57

1: Define the preferences for variants over each NFR
2: Determine the weights of each NFR
3: Synthesize the results
4: Verify the consistence

• Output: Vector of variants priorities

The system’s variants are applicable only if their associated contexts hold. However, in a
certain execution, more than one variant may be enabled in the actual context. Therefore,
the system has to implement runtime mechanisms to decide on the best choice of variant
to adopt. In our work, we are concerned with the satisfaction of the NFRs since they have
a impact on the system’s behavior. Hence, we consider the variant contribution for the
NFRs satisfaction when choosing the best one when more than one hold at runtime.
In order to determine the variant contribution, we propose the use of the Analytical

Hierarchical Process(AHP) method (Saaty 1987). We adopted this method because of its
benefits are well described in the literature (Brito et al. 2007): it is a well-known and
accepted method; it is appropriate for handling conflicting concerns problems; it has the
ability to quantify subjective judgements; it is capable of comparing alternatives in relation
to established criteria; and it provides means to guarantee the logical consistency of the
judgements.
The AHPmethod is used in the GO2S process to produce a ranking of variants (alterna-

tives) that most contributes for the satisfaction of NFRs (criteria). First, it is necessary to
establish priorities for the main criteria by judging them in pairs for their relative impor-
tance, thus generating a pairwise comparison matrix. Judgements which are represented
by numbers from the fundamental scale are used to make the comparisons. The number
of judgements needed for a particular matrix of order n, the number of elements being
compared, is n(n - 1)/2 because it is reciprocal and the diagonal elements are equal to
unity (Saaty 1987).
It should be noted that AHP analysis can be performed using a spreadsheet tool, which

shows that there is no need for a sophisticated tool support to implement this method.
The activities required for NFRs prioritization are depicted in Fig. 21.

Fig. 21 Activities of prioritization of variants activity

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 27 of 57

In our running example, we took in consideration three NFRs (usability, security, per-
formance) and that it is possible that C3, C4, and C5 contexts of Fig. 11 hold at the same
time. Figure 22 illustrates the hierarchical tree of this example.
The first activity of this sub-process consists in defining the preferences for variants

(alternative) over each NFR (criteria). In order to achieve this, we considered the con-
tributions links Make, Help, Hurt and Break that can be presented in the behavioral
contextual DGM. In case of changes in the contribution links that are context-dependent,
the new values of the contributions should be considered. The system should update the
contribution strength at runtime and perform new analysis of the variants.
The contributions can also be represented, respectively, by ++, +, - and - - (Santos 2013).

The variants contribution for each NFR are represented through the contribution links as
demonstrated in Table 3 for the meeting scheduler example. These contributions values
presented in this table are fictional, subjective and based on our experience. In a real
setting, the stakeholders should be consulted.
Santos (2013) defined a mapping, presented in Table 4, to convert from the variants

contribution (demonstrated in Table 3) to AHP scale (Saaty 1987). Note that in the first
row, ++ sign has a importance from 1 (when compared to ++) to 9 (when compared to - -).
On the other hand, in the last row, the - - sign has an inverse importance varying from
1/9 (when compared to ++) to 1 (when compared to - -).
The pairwise comparisons between the variants for each NFR is done by creating a

matrix for each NFR to compare all values of variants contributions. Hence, matrices
n x n (with n as the number of variants) will associate the variants according to their
contribution to the selected NFR. In our running example, we have three NFRs, hence we
constructed three matrices. The results of these comparisons are presented in Tables 5, 7,
and 9.
In order to determine the vector of variants priorities for the Performance NFR, we

should calculate the normalized pairwise comparisonmatrix. Its elements are determined

Fig. 22 AHP hierarchical tree of the meeting scheduler example

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 28 of 57

Table 3 Variants and their contribution for the NFRs of meeting scheduler example

ID Variant Performance Security Usability

var3 Collect by phone + -

var4 Collect by email - + +

var5 Collect automatically ++ ++ ++

by dividing each element of the comparison matrix (Table 5) by the sum of each col-
umn. The normalized pairwise comparison matrix for the variants contributions to the
Performance NFR of meeting scheduler example is presented in Table 6.
Then, we find the estimated relative priorities by calculating the average of each row of

the normalized matrix. Finally, we have the priority vector for the pairwise matrix. The
vector of variants priorities for the Performance NFR is [var3 = 0.28 , var4 = 0.074, and
var5 = 0.643].
The results of the comparisons of the variant’s contributions to the Security NFR of

meeting scheduler example are presented in Table 7.
The normalized pairwise comparison matrix for variants contributions to the Security

NFR is presented in Table 8. Accordingly, the vector of variants priorities for this softgoal
is [var3 = 0.074 , var4 = 0.283, and var5 = 0.643].
The results of the comparisons of the variant’s contributions to the Usability NFR of

meeting scheduler example are presented in Table 9.
The normalized pairwise comparison matrix for variants contributions to the Usability

NFR is presented in Table 10.
Accordingly, the vector of variants priorities for the Usability NFR is [var3 = 0.106 ,

var4 = 0.26, and var5 = 0.633].
In order to determine the weights of each NFR, the software engineer should compare

all pairs of NFRs and assign a value to each pair using the AHP scale. The results of the
pairwise comparisons of the meeting scheduler example with three NFRs (usability, secu-
rity, performance) are shown in Table 11. These assigned values are fictional, subjective
and based on our experience.
The normalized pairwise comparison matrix for the NFRs of the meeting scheduler

example is presented in Table 12.
The NFR priorities vector of the meeting scheduler example is [Performance = 0.643,

Security = 0.283 and Usability = 0.074]. Hence, we can notice that Performance is the
most critical NFR followed by Security and Usability.
After defining the preferences for variants over each NFR, as well as the weights of each

NFR, the next activity is to synthesize these results. Accordingly, the vectors of variants
priority for each NFR are combined into a single matrix. This new matrix is multiplied by

Table 4Mapping from NFRs contributions to AHP values (Santos 2013)

++ + = - - -

++ 1 3 5 7 9

+ 1/3 1 3 5 7

= 1/5 1/3 1 3 5

- 1/7 1/5 1/3 1 3

- - 1/9 1/7 1/5 1/3 1

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 29 of 57

Table 5 Variant’s contributions to the performance NFR of meeting scheduler example

Performance var3 var4 var5

var3 1 5 1/3

var4 1/5 1 1/7

var5 3 7 1

Sum 5 9 1.48

Table 6 Normalized pairwise comparison matrix for the variants contributions to the performance
NFR

Performance var3 var4 var5 Weight

var3 0.24 0.38 0.23 0.28

var4 0.5 0.08 0.10 0.074

var5 0.71 0.54 0.68 0.643

Table 7 Variant’s contributions to the security NFR of meeting scheduler example

Security var3 var4 var5

var3 1 1/5 1/7

var4 5 1 1/3

var5 7 3 1

Sum 13 4.2 1.48

Table 8 Normalized pairwise comparison matrix for the variants contributions to the Security NFR

Security var3 var4 var5 Weight

var3 0.08 0.05 0.10 0.074

var4 0.38 0.24 0.23 0.283

var5 0.54 0.71 0.68 0.643

Table 9 Variant’s contributions to the usability NFR of meeting scheduler example

Usability var3 var4 var5

var3 1 1/3 1/5

var4 3 1 1/3

var5 5 3 1

Sum 9 4.33 1.53

Table 10 Normalized pairwise comparison matrix for the variants contributions to the Usability NFR

Usability var3 var4 var5 Weight

var3 0.118 0.08 0.13 0.106

var4 0.33 0.23 0.22 0.26

var5 0.56 0.69 0.65 0.633

Table 11 Pairwise comparison values for the NFRs of the meeting scheduler example

Usability Performance Security

Usability 1 1/7 1/5

Performance 7 1 3

Security 5 1/3 1

Sum 13 1.48 4.2

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 30 of 57

Table 12 Normalized pairwise comparison matrix for the NFRs of the meeting scheduler example

var3 var4 var5 Weight

var3 0.08 0.10 0.05 0.074

var4 0.54 0.68 0.71 0.643

var5 0.38 0.23 0.24 0.283

the NFR priority vector obtained from the NFR importance matrix to obtain the overall
objective (i.e., ranking of variants).
Table 13 shows the final ranking in our running example. We can notice that the var5

(collect automatically) is the one that contributes mostly for the satisfaction of the NFRs
(0.67) followed by var3 (collect by phone) with 0.21 and var4 (collect by email) with 0.15.
The final activity of the prioritization is to check the consistency of the judgements that

the software engineer demonstrated during the pairwise comparisons. The logical quality
of the decisions is guaranteed by computing the consistency ratio (CR), which measures
the consistency of the pairwise comparison judgements. The required procedure to cal-
culate these ratios are described in (Saaty 1987). When the consistency ratio exceeds 0.10
appreciably the judgements often need reexamination. This reduces any possible error
that might have been introduced during the judgement process (Saaty 1987).
We used a spreadsheet tool to determine the consistency ratios of the meeting sched-

uler example. For the pairwise comparison matrix for NFRs (Table 11), we obtained a
consistency ratio of 0.056. Otherwise, the consistency ratios for the variants contribution
for performance, security, and usability were 0.056, 0.056, and 0.033 respectively. These
ratios are a good indication that logical consistent judgements were made on all pairwise
comparisons, because they are below the required 0.1 threshold (Saaty 1987).
In the next section, we will describe the controlled experiment we conducted to

evaluated the GO2S process empirically.

4 Controlled experiment
In order to evaluate our proposal we designed a controlled experiment. We conducted
a multi-test within an object study since we examined a single object (the Smart Home
System) across a set of subjects. This empirical method can be used when it is pos-
sible to control those using the approach method, and when and where they are used
(Wohlin et al. 2012). Hence, it allows the control of, for example, subjects, objects and
instrumentation. This ensures that we are able to draw more general conclusions.
Experimentation is a labor-intensive task and is not simple; therefore, we had to pre-

pare, conduct and analyze the experiment properly. In order to make sure that the proper
actions were taken to ensure a successful experiment, we followed the framework pro-
posed by (Wohlin et al. 2012) for performing experiments in software engineering. The
authors propose five activities in order to perform an experiment: Scoping, Planning,

Table 13 Final ranking of meeting scheduler example

var3 var4 var5 NFR priority

Usability 0.11 0.26 0.63 0.074

Performance 0.28 0.07 0.64 0.643

Security 0.07 0.28 0.64 0.283

Variant priority 0.21 0.15 0.64

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 31 of 57

Operation, Analysis & interpretation, and Presentation & package. The results obtained
in each activity are described in the following subsections.

4.1 Scoping

The scoping specifies the motivation for performing the experiment. Hence, we began
setting its objectives. The goal of our experiment is summarized in Table 14. After the
definition of the experiment scope, the next activity is the Planning (Wohlin et al. 2012).

4.2 Planning

Planning defines how the experiment should be conducted. It is divided into six steps:
Context Selection, Variables selection, Hypothesis formulation, Selection of subjects, Exper-
iment design, Instrumentation and Validity evaluation. These steps are described in
details in next subsections.

4.2.1 Context selection

The context of our experiment is students of undergraduate, master’s and doctor’s degree
from a Requirements Engineering course at a university. The subjects were eighteen
students enrolled in the course. The experiment was run off-line (not in an industrial
software development environment). The ability to generalize from this specific context
is further elaborated in Section 4.6 where we discuss threats to the experiment.

4.2.2 Variables selection

In the design of experiments, we have to consider what independent variables or factors
are likely to have an impact on the results. In our experiment, the independent variables
were the use or not of GO2S process.
On the other hand, we considered five dependent variables, based on themetrics related

to evaluate our process: time to implement, syntactic correctness, structural complexity,
behavioral similarity, and cognitive complexity. These metrics were already used in the
literature to evaluate behavioral models (Dijkman et al. 2011) (Miranda et al. 2005). They
are described as following:

1. Implementation time: the time that subjects spent to develop the statecharts
measured in minutes. This metric was used to investigate if there was a significant
difference in the time spent using the GO2S process.

2. Syntactic correctness: we measured this variable through the number of syntactic
errors and warnings indicated by the Yakindu modeling tool (Yakindu Statechart

Table 14 Goal of the experiment

Analyze The GO2S process for deriving statecharts

from goal models of context-sensitive systems.

For the purpose of evaluation.

With respect to the time to implement, syntactic correctness,

structural complexity, behavioral similarity

and cognitive complexity.

From the point of view of software engineers.

In the context of students of a requirements engineering undergraduate and

graduate course, with some industry expertise,

implementing the GO2S process in an example.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 32 of 57

Tools 2016) (used by all subjects in this experiment) in the final statechart model
that the subjects delivered to us. This metric was used to investigate how well the
subjects of each group learned the statechart language as well as to verify if the
groups were well balanced.

3. Structural complexity: this variable is determined by the different elements that
compose the model (Miranda et al. 2005), such as states, transitions, activities, etc.
Hence, we evaluated the structural complexity of statecharts through different
metrics: the number of super states, orthogonal states, idle states, final state, simple
states, state transitions, choice, variables and actions. High structural complexity
has an impact on the cognitive complexity of statecharts (Miranda et al. 2005). This
metric was used to investigate the structural complexity of the statecharts obtained
using (or not) the GO2S process.

4. Behavioral similarity: each software engineer constructs a model according his
experience and knowledge. Accordingly, the behavioral similarity intends to
explore the behavior (i.e. the order of execution flows of the tasks) of different
models despite their structural differences (Dijkman et al. 2011). We measured the
behavioral similarity analyzing if the statechart, produced by the control and
experimental groups, behaves as expected through the percentage of the number of
functionalities modeled as described in the requirements model in relation of the
total number of functionalities. This metric was used to check if the behavioral
similarity of the statecharts produced of the experimental group was higher than
those of control group.

5. Cognitive complexity: this metric can be defined as the mental burden that the
persons have to deal with the process. Hence, the cognitive complexity of each
sub-process of the GO2S process was evaluated through the subject’s opinion
about the sub-processes and notations used in the GO2S process. Thus, we applied
an anonymous questionnaire with different assertions (see Table 15) about the
GO2S process. The subjects had to choose an option using the following scale:

Table 15 Statements used to evaluate cognitive complexity

Number Statement

1 The process for statecharts derivation from goal models is understandable.

2 Activity 1 is easy to understand.

3 The notation of goal model is easy to understand.

4 The use of goal models facilitates the creation of statecharts.

5 Activity 2 is easy to understand.

6 The notation for context specification is easy to understand.

7 Activity 3 is easy to understand.

8 Activity 4 is easy to understand.

9 The use of flow expressions facilitates the creation of statecharts.

10 The use of flow expressions makes the creation

of statecharts more systematic.

11 Activity 5 is easy to understand.

12 Statecharts makes easy to understand the system’s behavior.

13 The creation of statecharts contributes to a more complete system specification.

14 The mapping of tasks to states facilitates the creation of statecharts.

15 The mapping between goals and super-states

improves the organization of the statechart.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 33 of 57

Totally Disagree, Disagree, Indifferent, Agree, and Totally Agree. This metric was
used to investigate if the GO2S process were specified in a understandable way.

4.2.3 Hypotheses formulation

The main hypotheses are the null hypotheses that states there is no difference between
using or not the GO2S process. Therefore, the study tries to reject them. There are four-
teen null hypotheses, one for each metric the study analyzes. Table 24 describes the null
and alternative hypotheses of this experiment.

4.2.4 Selection of subjects

According to (Wohlin et al. 2012), the selection of subjects is also called a sample from
a population. In our experiment, we performed convenience sampling: the nearest and
most convenient persons are selected as subjects.
In order to identify the impacts of the use of the GO2S process, the subjects were

divided in two groups with nine subjects each: the subjects of one group generating stat-
echarts using the proposed process (experimental group), whereas the other subjects did
not use the proposed process (i.e. they belonged to the control group). This distribution
of the subjects in the two groups was performed randomly.

4.2.5 Experiment design

In our experiment, we compared two treatments: the use or not of the GO2S
process. Therefore, the design of our experiment was classified as one factor with
two treatments being of the type completely randomized design. The design setup
uses the same objects for both treatments and assigns the subjects randomly to
each treatment. Each subject uses only one treatment on one object (Wohlin et al.
2012). Since we had the same number of subjects per treatment, the design was
balanced.

4.2.6 Instrumentation

The instruments for an experiment are of three types, namely objects, guidelines and
measurement instruments (Wohlin et al. 2012). Therefore, for each subject, we prepared
a set of materials to be used in the experiment as described in the following subsections.

4.2.7 Experimental object

The subjects received a specification of a Smart Home System designed to make life eas-
ier for people with dementia problems and provide continuous care about them to ensure
their safety and comfort. To this end, the Smart Home had to act in response to the
context. In this experiment, we used a simplified version of the system adapted from
description available at (Ali 2010).

4.2.8 Guidelines

The subjects were aware that their data would be used by the experimental study. The
experimental group that applied the GO2S process also received a reference guide with
a summary of the activities and the notations used by our process. In addition to the
reference guide, the subjects of the experimental group also attended 4 h of course to
learn our process.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 34 of 57

4.2.9 Measurement instruments

All subjects answered a pre-experiment questionnaire to inform their profile and expe-
rience in system modeling. Moreover, the subjects also filled a questionnaire post-
experiment to express their opinions about each sub-process. We collected their state-
charts and all the material used in the experiment for evaluation.

4.3 Operation

In the operational phase of the experiment, the treatments were applied to the subjects.
This phase consists of three steps: preparation, execution and data validation.

4.3.1 Preparation

As previously mentioned, this study was performed using subjects enrolled in undergrad-
uate and graduate course and consisted of two trainings to the subjects. In the first one, we
provided classes about the goal model (Castro et al. 2002), the statecharts theory (Harel
1987) and the yakindu tool (Yakindu Statechart Tools 2016) to the participants of both
groups (control and experimental group).
We took extra care to check if the subjects had indeed learned adequately the state-

charts theory since it was a pre-requisite to participate in the experiment. They were
asked to work on a course project in which they had to model a statechart from a given
requirements specification (provided by the instructors). Besides the project modeling,
we also performed an oral argumentation with each subject, to check the quality of their
project handout and aquaintacy/familiarity with the statechart theory (Harel 1987) and
modeling tool (Yakindu Statechart Tools 2016).
The second training consisted in presenting/teaching the students the GO2S process to

the subjects of the experimental group (9 subjects) and performing a dry run to give the
subjects a chance to familiarize with activities of the process. The control group also had
an opportunity to exercise the statecharts language in a domain different from the one of
the experiment.
Finally, the experiment was executed. The time spent in each activity was the following:

• Classes about goal model, statecharts theory and tool to all subjects: 8 h
• Oral argumentation with all subjects: 3 h
• Training about the process to the subjects of the experimental group: 4 h
• Dry run with all subjects: 4 h
• Experiment: 3 h

The time spent to execute the experiment was 22 h. Besides this execution time, there
was the time spent in meetings for decision-making, the preparation of the project,
answering questions of students and correcting all projects. In addition, there was the
time spent on preparing slides, the material used in the experiment and the time required
to analyze the results. Hence, the total time was approximately 132 h.

4.3.2 Execution

The experiment was carried out in a computer laboratory with the two groups. Each
subject of the control group developed a statechart for the Smart Home System from
the requirements specification. On the other hand, each subject of the experimental
group developed a statechart following the GO2S process. We asked the subjects of the

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 35 of 57

experimental group to perform the sub-processes 1 to 5 of the GO2S process, since the
last one concerns with the variants prioritization that was not possible to compare to the
control group. All subjects had to perform the following experimental tasks:

• To write down the start and end time of the experiment.
• To fill out a pre-experiment questionnaire, which included academic and industry

experience.
• To construct the statechart using the Yakindu tool (Yakindu Statechart Tools 2016).
• The experimental group also had to fill out a post-experiment questionnaire.

4.3.3 Data validation

The subjects’ data were validated.When subjects finished the experiment, we checked for
each one of them, if their data forms were filled in a reasonable way. Furthermore, we also
checked that everybody has understood how to fill in the data in a correct way.

4.4 Analysis and interpretation

The data collected during operation step provided input to the Analysis & interpretation
activity. During the analysis phase, we understand the data while the interpretation phase
determines whether the hypotheses was accepted or rejected (Wohlin et al. 2012).
In the operation phase, we applied a pre-experiment questionnaire to each subjects of

both groups in order to investigate their profile and previous experience. From the anal-
ysis of Fig. 23, we can notice that both groups were well balanced. They were students of
different course types (undergraduate, and graduate - includingmaster’s and doctoral stu-
dents) and they had different background, i.e. they attended/or were attending different
undergraduate courses. The majority studied/is studying computer science.
We also asked the participants about their experience with behavior modeling and the

results are shown in Fig. 24. The subjects had some experience with behavior modeling
and both groups were more experienced with use case diagram and class diagram. These
notations have a different level of abstraction compared to statecharts.
We requested the subjects to answer about their level of proficiency on behavioral mod-

eling (statecharts and other modeling languages). The results are presented in Fig. 25.
The majority (of both groups) said that they had proficiency in modeling languages. It is
important to note that this is a subjective affirmation that depends on how the subjects
evaluate their knowledge.
After conducting the experiment, we analyzed each statechart produced by each subject

of both groups in order to measure the dependent variables.

Fig. 23 Subject’s profile

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 36 of 57

Activity Class GoalModel No PetriNets Statechart UseCase

Language

0
2

4
6

8

Control
Process

Fig. 24 Experience in behavior modeling

In relation to the syntactic correctness, the number of syntactic errors and the number
of warnings of each subject of the control group is presented in Table 16. The results of
the experimental group are presented in Table 17. From the results presented in these
tables, we can conclude that the number of syntactic errors was 66.67 % higher than the
number of control group. Analysing these results, we noticed that the syntactic errors
were made by two subjects (4 and 8 mistakes) in the control group and by one subject in
the experimental group (4 mistakes).
This high number of syntactical errors in the control group was caused by two par-

ticipants. The other subjects did not make any syntactic error. The subject that made 4
syntactic errors in the control group did not consider himself/herself proficient in some
systemmodeling language although he/she have already used a language for systemmod-
eling before the experiment. The subject that made 8 syntactic errors in the control group
agreed that he/she has proficiency in system modeling languages. The syntactical errors
in the experimental group were made by one subject. This subject did not agree that
he/she is proficient in state diagrams or other system modeling languages.
The number of warnings, on the other hand, was 64.29 % higher in the experimental

group. In relation to the control group, these errors were made by two subjects (2 and 3

Fig. 25 Proficiency in behavior modeling languages

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 37 of 57

Table 16 Syntactic correctness of statecharts of control group

Subject Number of syntactic errors Number of warnings

#6 4 0

#7 0 0

#8 0 2

#9 8 0

#10 0 0

#11 0 0

#15 0 3

#18 0 0

#20 0 0

Mean 1.33 0.56

Standard deviation 2.83 1.13

errors). The subject that made 2 errors agreed that he/she has proficiency in state dia-
grams including statecharts and said that he/she is indifferent to others system modeling
languages. The subject that made 3 errors did not considered himself/herself proficient
in any system modeling languages.
In relation to the number of warnings of the experimental group, these errors were

made by two subjects (7 errors each). One subject agreed that he/she is proficient in state
diagrams and statecharts and he/she is indifferent to other system modeling languages.
The other subject also agreed in his/her proficiency in state diagrams and totally agreed
that he/she is proficient in other system modeling languages.
Accordingly, we can infer that the level of proficiency in statecharts and other system

modeling languages said by the subjects does not have a direct impact on the results of
syntactic correctness.
Tables 18 and 19 present the results of the metrics used to characterize the structural

complexity of statecharts (superstates, orthogonal states, idle states, final states, simple
states, state transitions, choice, variables and actions) of each subject in the experiment.
From the analysis of these tables, we can notice that the experimental group used more
superstates, orthogonal states, idle states. The control group, on the other hand, used
more final states, simple states, state transitions, choice, variables and actions. When we
grouped these values (see Tables 19 and 18), we found that the structural complexity
of control group was 8.33 % higher (mean of 68 elements) than the experimental group

Table 17 Syntactic correctness of statecharts of experimental group

Subject Number of syntactic errors Number of warnings

#1 0 0

#3 0 0

#4 0 0

#12 0 7

#13 0 7

#14 0 0

#16 0 0

#17 0 0

#19 4 0

Mean 0.44 1.56

Standard deviation 1.33 3.09

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 38 of 57

Table 18 Structural complexity of statecharts of control group

Super- Ortho- Idle Final Simple State Choice Variables Actions
states gonal states states transi-

states tions

#6 2 6 1 0 19 22 0 4 2

#7 1 4 0 0 21 22 0 1 0

#8 1 6 1 0 17 21 0 1 0

#9 5 4 0 1 13 15 0 21 26

#10 1 7 7 0 21 32 9 9 8

#11 3 6 0 0 17 26 0 6 5

#15 1 8 0 0 20 34 0 23 18

#18 4 0 4 0 19 28 0 2 0

#20 5 4 0 0 22 26 0 0 0

Mean 2.56 5.00 1.44 0.11 18.78 25.11 1.00 7.44 6.56

Standard deviation 1.74 2.35 2.46 0.33 2.77 5.86 3.00 8.73 9.4

(62.33 elements). These results indicate that for the scenario in which the experiment was
conducted that the structural complexity of the statecharts generated using the GO2S
process was lower than the satecharts produced not using it.
The behavioral similarity was another dependent variable analyzed in the statecharts.

Tables 20 and 21 show the results of each subject of control and experimental groups.
These values were calculated by analyzing each statechart of all subjects and verifying
if the functionalities behave (in sequence, parallel, alternative and other possible flows)
as described in the requirements specification. Finally, we calculated the percentage of
correct functionalities from the total number of functionalities.
Considering the behavioral similarity, we observed that the number of correct func-

tionalities i.e. they behave as described in requirements specification is higher in the
experimental group. Therefore, the mean of behavioral similarity of the experimental
group was 21.49 % higher than the control group as indicated in Tables 21 and 20.
Moreover, the time spent by each subject to construct the statechart is presented in

Tables 20 and 21. From the results of these tables, we can conclude that the time to con-
struct the statecharts was slightly higher (119.67min) than the control group (108.56min)
with a small difference of 11.11 min (9.29 %). These results indicate that, although there

Table 19 Structural complexity of statecharts of experimental group

Super- Ortho- Idle Final Simple State Choice Variables Actions
states gonal states states transi-

states tions

#1 6 5 4 0 15 19 0 0 0

#3 5 7 7 0 21 23 0 5 0

#4 3 12 5 0 18 19 0 9 0

#12 3 6 1 0 17 15 0 7 0

#13 3 14 2 0 24 23 0 6 0

#14 5 8 9 0 23 25 0 7 0

#16 6 9 7 0 20 26 0 8 0

#17 5 8 4 0 15 16 0 8 0

#19 4 4 0 0 15 20 0 5 0

Mean 4.33 8.11 4.33 0 18.67 20.67 0 6.11 0

Standard deviation 3.00 3.22 3.00 0 3.5 3.84 0 2.67 0

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 39 of 57

Table 20 Behavioral similarity of statecharts and time spent (control group)

Subject Behavioral similarity (%) Time spent (minutes)

#6 66.67 70

#7 46.67 68

#8 60 65

#9 20 115

#10 73.33 113

#11 66.67 126

#15 73.33 109

#18 33.33 153

#20 46.67 158

Mean 54.60 108.56

Standard deviation 18.69 35.03

is an extra effort to perform all the sub-processes of the GO2S process, the extra time
required is not significant compared to not using it.
We also asked the subjects of the experimental group to fill out a post-questionnaire

form in order to obtain their cognitive complexity about the process. We provided fifteen
statements (presented in Table 15) where they had to choose an answer using the follow-
ing scale: Totally Disagree (TD), Disagree (D) Indifferent (I), Agree (A), Totally Disagree
(TA). For the questions not answered by the subjects, we marked as Not Answered (NA).
The results of the cognitive complexity of GO2S process are listed in Table 22. These
results indicate that the GO2S process is easy to understand.

4.4.1 Statistical hypotheses testing

The heterogeneous characteristics of the dependent variables of this experiment moti-
vated the realization of normality tests in the data.
Before the application of the normality tests, we analysed the distribution of the vari-

ables by constructing the boxplots. Figures 26, 27, 28, 29 and 30 present the boxplot of
the variables implementation time, syntactic errors, warnings, behavioral similarity and
structural complexity (considering the sum of all elements of the statechart) respectively.
In this work, we used the Kolmogorov-Smirnov normality test whose results are listed

in Table 23. The normality tests of the variables Syntactic Errors, Warnings, Final States,
Choice of the control group as well as the variables Syntactic Errors and Warnings of the
experimental group rejected the hypothesis that the data are normally distributed since

Table 21 Behavioral similarity of statecharts and time spent (experimental group)

Subject Behavioral similarity (%) Time spent (minutes)

#1 53.33 112

#3 93.33 91

#4 80 76

#12 66.67 110

#13 100 120

#14 80 124

#16 80 141

#17 73.33 147

#19 53.33 156

Mean 75.56 119.67

Standard deviation 15.99 26.03

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 40 of 57

Table 22 Results of cognitive complexity

Number TD (%) D (%) I (%) A (%) TA (%) NA (%)

1 66.67 33.33

2 11.11 88.89

3 55.56 44.44

4 11.11 44.44 44.44

5 33.33 22.22 44.44

6 22.22 22.22 55.56

7 11.11 33.33 22.22 33.33

8 11.11 55.56 33.33

9 22.22 66.67 11.11

10 22.22 66.67 11.11

11 11.11 66.67 11.11 11.11

12 11.11 44.44 33.33 11.11

13 33.33 11.11 44.44 11.11

14 11.11 55.56 22.22 11.11

15 44.44 44.44 11.11

their p-value is smaller that the significance level adopted in this work (5 %), i.e. the the
confidence level is (95 %). The Kolmogorov-Smirnov applied to the other variables, listed
in Table 23, did not reject the normality of the data.
We applied parametric and non-parametric tests in order to perform the hypotheses

testing of this experiment. Table 24 describes the hypotheses evaluated in this paper. The
results are presented in Table 25.
The results of this experiment allowed the rejection of the hypotheses that the number

of transitions modeled by the control group is equal by the ones modeled by the exper-
imental group (pair H04 and H17). Accordingly, we can accept the hypothesis that the
control group used more transitions that the experimental group. This contributes to the
higher structural complexity of the control group.

Control Experimental

80
10

0
12

0
14

0
16

0

Time to Implement

Group

T
im

e

Fig. 26 Boxplot of the variable implementation time

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 41 of 57

Control Experimental

0
2

4
6

8

Number of syntatic errors

Group

N
um

be
r

of
 s

yn
ta

tic
 e

rr
or

s

Fig. 27 Boxplot of the variable syntactic errors

The hypothesis that the number of super states of the control group is equal
that the number of super states of the experimental group was also rejected (pair
H06 and H112). Hence, we can accept that the number of super states of the con-
trol group is smaller that the number of super states of the experimental group.
Although this means a smaller structural complexity of the control group, this can
also indicate a higher modularization of the models produced by the experimental
group.

Control Experimental

0
1

2
3

4
5

6
7

Number of Warnings

Group

N
um

be
r

of
 W

ar
ni

ng
s

Fig. 28 Boxplot of the variable warnings

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 42 of 57

Control Experimental

20
40

60
80

10
0

Behavioral Similiarity

Group

B
eh

av
io

ra
l S

im
ila

rit
y

Fig. 29 Boxplot of the variable behavioral similarity

Another rejected hypothesis was the pair H07 and H114. According to this hypothesis,
the number of orthogonal states of the control group is equal that the number of orthogo-
nal states of the experimental group. Therefore, we can accept that number of orthogonal
states of the control group is smaller that the number of orthogonal states of the experi-
mental group. A consequence of this result is that the subjects of the control group did not
represent the monitoring required in context-sensitive systems. Besides, this also explains
why the subjects of the control group did not represent the functionalities that should
behave in parallel correctly.
The rejection of the pair H08 and H116 allows accepting that the number of idle states

of the control group is also smaller than the control group. This result is also related with

Control Experimental

5
6

7
8

9
10

11

Structural complexity

Group

S
tr

uc
tu

ra
l c

om
pl

ex
ity

Fig. 30 Boxplot of the variable structural complexity

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 43 of 57

Table 23 Results of normality statistical testing of investigated variables

Group Variable Normality test Statistical comparison

Control Implementation time Normal (p-value=0.8086) Mean

Syntactic Errors Not Normal (p-value=0.04501) Median

Warnings Not Normal (p-value=0.03997) Median

State Transitions Normal (p-value=0.9903) Mean

States Normal (p-value=0.8698) Mean

Super States Normal (p-value=0.5831) Mean

Orthogonal States Normal (p-value=0.7582) Mean

Idle States Normal (p-value=0.2213) Mean

Final States Not Normal (p-value=0.01555) Median

Choice Not Normal (p-value=0.01555) Median

Variables Normal (p-value=0.7162) Mean

Actions Normal (p-value=0.6642) Mean

Behavioral Similarity Normal (p-value=0.2681) Median

Experimental Implementation time Normal (p-value=0.9904) Mean

Syntactic Errors Not Normal (p-value=0.04501) Median

Warnings Not Normal (p-value=0.03712) Median

State Transitions Normal (p-value=0.9148) Mean

States Normal (p-value=0.9148) Mean

Super States Normal (p-value=0.7327) Mean

Orthogonal States Normal (p-value=0.9313) Mean

Idle States Normal (p-value=0.9906) Mean

Final States Normal (p-value=0.9906) Median since the control group is not normal

Choice Normal (p-value=0.9906) Median since the control group is not normal

Variables Normal (p-value=0.7409) Mean

Actions Normal (p-value=0.7409) Mean

Behavioral similarity Normal (p-value=0.5293) Mean

Table 24 Null and alternative hypothesis

Null hypothesis Alternative hypothesis Alternative hypothesis

H01: TimeCon=TimeExp H11: TimeCon>TimeExp H12: TimeCon<TimeExp

H02: ErrorsCon=ErrorsExp H13: ErrorsCon>ErrorsExp H14: ErrorsCon<ErrorsExp

H03: WarnCon=WarnExp H15: WarnCon>WarnExp H16: WarnCon<WarnExp

H04: TransCon=TransExp H17: TransCon>TransExp H18: TransCon<TransExp

H05: StatesCon=StatesExp H19: StatesCon>StatesExp H110: StatesCon<StatesExp

H06: SuperSCon=SuperSExp H111: SuperSCon>SuperSExp H112: SuperSCon<SuperSExp

H07: OrthogSCon=OrthogSExp H113: OrthogSCon>OrthogSExp H114: OrthogSCon<OrthogSExp

H08: IdleSCon=IdleSExp H115: IdleSCon>IdleSExp H116: IdleSCon<IdleSExp

H09: FinalSCon=FinalSExp H117: FinalSCon>FinalSExp H118: FinalSCon<FinalSExp

H010: ChoiceCon=ChoiceExp H119: ChoiceCon>ChoiceExp H120: ChoiceCon<ChoiceExp

H011: VarCon=VarExp H121: VarCon>VarExp H122: VarCon<VarExp

H012: ActCon=ActExp H123: ActCon>ActExp H124: ActCon<ActExp

H013: BehaCon=BehaExp H125: BehaCon>BehaExp H126: BehaCon<BehaExp

H014: The GO2S is not easy to understand. H127: The GO2S is not easy to understand.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 44 of 57

Table 25 Results of hypothesis testing

Hypothesis test Result Conclusion

H01 and H11 T-Test (p-value = 0.7715) H01 not rejected

H01 and H12 T-Test (p-value = 0.2285) H01 not rejected

H02 and H13 Wilcox Test (p-value = 0.5242) H02 not rejected

H02 and H14 Wilcox Test (p-value = 0.5242) H02 not rejected

H03 and H15 Wilcox Test (p-value = 0.6192) H03 not rejected

H03 and H16 Wilcox Test (p-value = 0.4278) H03 not rejected

H04 and H17 T-Test (p-value = 0.03908) H04 rejected

H04 and H18 T-Test (p-value = 0.9609) H04 not rejected

H05 and H19 T-Test (p-value = 0.4707) H05 not rejected

H05 and H110 T-Test (p-value = 0.5293) H05 not rejected

H06 and H111 T-Test (p-value = 0.9908) H06 not rejected

H06 and H112 T-Test (p-value = 0.009234) H06 rejected

H07 and H113 T-Test (p-value = 0.9832) H07 not rejected

H07 and H114 T-Test (p-value = 0.01684) H07 rejected

H08 and H115 T-Test (p-value = 0.9797) H08 not rejected

H08 and H116 T-Test (p-value = 0.02029) H08 rejected

H09 and H117 Wilcox Test (p-value = 0.187) H09 not rejected

H09 and H118 Wilcox Test (p-value = 0.8667) H09 not rejected

H010 and H119 Wilcox Test (p-value = 0.187) H010 not rejected

H010 and H120 Wilcox Test (p-value = 0.3356) H010 not rejected

H011 and H121 T-Test (p-value = 0.187) H011 not rejected

H011 and H122 T-Test (p-value = 0.6644) H011 not rejected

H012 and H123 T-Test (p-value = 0.03484) H012 rejected

H012 and H124 T-Test (p-value = 0.9652) H012 not rejected

H013 and H125 T-Test (p-value = 0.9906) H012 not rejected

H013 and H126 T-Test (p-value = 0.009419) H012 rejected

H014 qualitative measurement H014 rejected

the monitoring required in context-sensitive systems. The idle states are necessary to the
system adapts itself if some requirement is not bring satisfied or it needs providing an
specialized service to its users. Hence, many subjects subjects of the control group did
not consider such monitoring and adaptation.
Another rejected hypothesis was that the number of action in the models developed

by the control group is equal to the number of actions in the model produced by the
experimental group (pair H012 and H123). Therefore, the subjects of the control group
used more action than the experimental group.
The pair H013 and H126 was also rejected. Therefore, we can accept that the behav-

ioral similarity of the experimental group is higher the control group. Accordingly, we
can say with a confidence level of 95 % that the number of requirements that behave as
described in the specification of the experimental group is higher than the number of
control group. This is the most important contribution of the GO2S process since the
proposed sub-processes for the derivation of the statechart from the goal model allow the
software engineer to focus on the flows on the system’s variants instead of its structure.
The results of statements in the post-experiment questionnaire, presented in Table 22,

showed that hypothesis H014 is rejected. Hence, the subjects of the experimental group
agreed that the GO2S process is easy to understand.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 45 of 57

4.5 Presentation and package

The subjects of our experiment were students of different course types (graduate and
undergraduate students) having the mostly studied/is studying computer science course.
They stated that they have modeled the behavior of systems previously and both groups
have more experience with use case diagram and class diagram. Besides, the majority of
both groups agree that they had proficiency in modeling languages.
After analysing the statectharts produced by the subjects, we can conclude in relation

to the syntactic correctness, the number of syntactic errors of control group was 66.67 %
higher than the number of the experimental group. The number of warnings, on the other
hand, was 64.29 % higher in experimental group.
Moreover, the structural complexity of control group is higher (mean of 68 elements)

than experimental group (62.33 elements) corresponding to a reduction of 8.33 %. In addi-
tion, the mean of behavioral similarity of experimental group was higher (75.56 %) than
control group (54.07 %) corresponding to a difference of 21.49 %. Besides, the time spent
by the experimental group to construct the statecharts was higher (119.67 min) than the
control group (108.56 min) with a difference of 11.11 min (9.29 %).
The nine subjects that applied our process also filled out a post-questionnaire in

which they expressed their opinion about the process using the following scale Totally
Disagree, Disagree, Indifferent, Agree and Totally Agree. We asked their opinion about
easiness to apply the process and all subjects agreed (66.67 % agreed and 33.33 % totally
agreed) that the process is understandable. The results of our experiment are discussed
in Section 5.

4.6 Threats to validity

This section discusses how valid the results are and if we can generalize them to a broad
population. According to (Wohlin et al. 2012), there are four kinds of validity: internal,
conclusion, construct and external.

4.6.1 Internal validity

Internal validity analyzes if the collected data in the study are result of the dependent
variables and not from an uncontrolled factor. We tried to mitigate the selection bias (i.e.
there are differences between the subjects’ expertise) by performing a random assignment
of the subjects to the control group and the experimental group.
Despite being separated in two groups, one that used the GO2S process and the other

that did not use, both groups received the same goal model and system specification.
Therefore, we did not expect the subjects to be unhappy or discouraged in performing
or not the treatment, since the resulting statechart should be behaviorally equivalent.
Moreover, given that the experiment was performed in one day related to a domain that
they had no contact before, we mitigate the history and maturation effects by making
observation at a single time point.
One may claim that training the subjects of the experimental group about the GO2S

process increases that group familiarity with the models. However, the control group had
only 4 h less training than the experimental group. This can introduce a threat to validity
about the training hours but it is minimized since the statecharts of both groups can be
behavioral equivalent. Hence, it is possible to construct the statechart without any guid-
ance. Therefore, we believe that this factor did not cause so much harm in the results.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 46 of 57

Moreover, the training of one group instead of another is a common issue when perform-
ing experimental studies that have control group to validate some technique. Besides, it
should be noted that this is a common practice in the experimental community when
performing controlled experiments.

4.6.2 Conclusion validity

Conclusion validity is related to the ability to reach a correct conclusion about the col-
lected data, as well as the reliability of measures and the collected data. We tried to
improve the reliability of treatment implementation by using the same treatment and
providing the same training, with the same instructor for all subjects of the experimen-
tal group. If the training was provided by different instructors, it would not possible to
infer whether the results were influenced by the training or they were derived from the
GO2S process. Thus, we mitigate this possible threat to the validity. We also attempted to
improve the conclusion validity by randomly choosing the subjects of both groups, thus
promoting heterogeneous groups that were not correlated with the dependent variables.
Moreover, formal designs and the resulting statistical robustness are desirable, but we

should not be driven exclusively by the achievement of statistical significance. Com-
mon sense must be maintained, which allows us, for example, to experiment just to help
develop and refine hypotheses (Basili et al. 1986). Besides, the number of subjects in our
experiment is too small to reject all hypotheses we proposed to evaluate.

4.6.3 Construct validity

Construct validity is concerned to the relationship between the concepts and theories
behind the experiment as well as what is measured and affected. The implementation time
is not a goodmeasure to compare models since construct a model fast does not mean that
it is correct and it does what it is supposed to do. Hence, we believe the most important
metric evaluated in this experiment is the behavioral similarity since this metrics analyzes
if the model behaves as expected through the percentage of the number of functionali-
ties modeled as described in the requirements model in relation of the total number of
functionalities.
We developed an expected response of the derivation process, but it was not an author-

itative correct answer since the model can have structural differences and still behave in
a similar way. We compare the models developed by the subjects and we found differ-
ences, we simulated it in the yakindu tool to analyzed if it behaves as we specified in the
requirements specification provided to the subjects in the experiment. In other words,
the execution order of the tasks related to some functionality was modeled as described
in the system specification. For example, if some functionality requires that a set of tasks
should be executed in parallel or in sequence or as alternatives, the subjects should have
modeled it as the expected flow execution.

4.6.4 External validity

External validity is concerned with the ability to generalize the results to an industrial
environment. One expected result of this study is to guide software engineers on when to
use (or not) the GO2S process. As we used randomization to separate the subjects in two
groups, we expect a decrease on the confounding factors (factors that can influence the
results of the experiments), since the most important is the subjects’ expertise.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 47 of 57

The context of our experiment is students of undergraduate, master’ and doctor’s
degree from a Requirements Engineering course at a university. Even though we had
different types of students, the limited number of subjects does not allow to generalize
outside the scope of the study. On the other hand, we expect that the results, including
the subjects’ feedback, can be used as guidelines to improve our process.
Someone could argue that we should use professionals in experiments because there

may be many differences between students and professionals. However, (Svahnberg et al.
2008) demonstrated that there is not necessarily much difference between students and
professionals in many experimental settings.
According to (Svahnberg et al. 2008), students can be expected to be, at least, reasonably

representative if compared to industry people introduced to a novel technique for the first
time, which would have been the case if we had access to professional context-sensitive
developers as subjects. Furthermore, (Runeson 2003) demonstrated that in spite of differ-
ences between freshmen, graduate students, and practitioners (though less between the
two latter groups), they all showed tendencies in the same direction.
The lack of professionals in software engineering experiments is due to the concep-

tion of high costs and large organizational effort. Many authors, such as (Basili et al.
1986), (Fenton 1993) and (Sjoberg et al. 2002) point out the difficulties of conducting con-
trolled software engineering experiments in realistic environments. Accordingly, these
environments can also be a weakness, because there are an enormous number of fac-
tors that differ across environments, in terms of desired cost/quality goals, methodology,
experience, problem domain, constraints, etc (Basili et al. 1986).
Therefore, it may be too costly or impossible to manipulate an independent variable or

to randomize treatments in real life (Sjoberg et al. 2002). Even if we can somehow gather
a sufficiently large group of professionals, the logistics of organizing the group into a set
of experimental subjects can be daunting due to schedule and location issues. Moreover,
according to (Sjoberg et al. 2002), empirical software engineering research departments
should have particular budgets for paying students and software professionals for taking
part in experiments. Unfortunately, this was not our case.
A non-controversial use of student experiments is to use them to test experimen-

tal design and initial hypotheses, before conducting experiments with professionals, as
recommended by (Sjoberg et al. 2002). According to (Carver et al. 2010), it can make
sense to use students for initial experiments, to see whether the experiment design
works. We agree with these arguments and we tried to mitigate confounding factors by
performing a careful experiment in which we tried to use an appropriate assessment
criterion.
Although the results are limited by the narrow scope, we believe that the process and

the study design are considerable contributions. This experiment can guide other studies
in order to evaluate the proposed process with more general and conclusive results and
can also support other kind of studies.

4.7 Ethics

In our controlled experiment, we were committed to make our research ethical. There-
fore, we addressed the ethical principles that form the core of several research ethics
guidelines and codes: informed consent, beneficence, confidentiality (Vinson and Singer
2008).

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 48 of 57

The principle of informed consent stipulates that potential subjects should be informed
of all relevant facts about a study before making an explicit, free and well-considered deci-
sion about whether to participate (Vinson and Singer 2008). Therefore, we provided to
subjects all the information necessary to understand how the research would affect them:
the purpose of the research, its procedure, the risks to the subjects, the anticipated bene-
fits to the subjects, alternatives to participation, the treatment of confidential information,
the voluntary nature of participation, and a statement offering to answer the subjects’
questions.
The degree of beneficence results from a weighted combination of risks, harms, and

benefits to the subjects and society from participation in a study (Vinson and Singer 2008).
In our experiment, the risks of harm were minimized by protecting the confidentiality.
The principle of confidentiality refers to the subjects’ right to expect that any information
they share with researchers will remain confidential (Vinson and Singer 2008).
Accordingly, we executed procedures in order to maintain confidentiality and reduce

the risks of harm. During the experiment, we randomly assigned a number to each
participant and they answered all questionnaires anonymously. Therefore, the data
anonymity was preserved since the analysis of the data could not reveal the identity of the
subjects.
In the next section, we discuss the results obtained in this paper.

5 Discussion
Software-development organizations frequently begin their activities with one of these
alternative starting points - requirements or architectures - often adopting a water-
fall development process. The start from the requirements produces artificially frozen
requirements documents for use in the next step in the development life cycle. Starting
from architecture, on the other hand, creates systems with constrained architectures that
restrict users and handicap developers by resisting inevitable and desirable changes in
requirements (Nuseibeh 2001).
Software engineers have difficulties to understand and define what to consider as con-

text and how to design context-sensitive systems. This is due to the lack of consensus
in the literature regarding the terminology, characteristics and specificities necessary to
develop them. Hence, there is a need for approaches to guide the designers to perform
activities related to the specification of the behavior of context-sensitive systems.
This paper proposed the GO2S systematic process for obtaining the behavior

of context-sensitive systems (expressed as statecharts) from requirements models
(expressed as goal models) following the twin peaks concept (Nuseibeh 2001). It is an
iterative process centered on the incremental refinement of a goal model, which pro-
vides different views of the system (design, contextual, behavioral). Accordingly, it may
be necessary to go back and forth in the sub-processes until the desired level of detail is
reached.
A general engineering principle for managing complexity is to (a) decompose a sys-

tem into multiple smaller components that can be worked with individually through
multiple phases of development, and (b) integrate components in later stages of develop-
ment to form a complete system. Decomposing systems into components can also lead
to cost reductions and decreased development time when components are reused across
multiple systems (Hatcliff et al. 2014).

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 49 of 57

We explored the idea that it is possible to modularize the development of CSS by
organizing the GO2S process in six sub-processes considering the main activities in
order to develop a context-sensitive system: requirements specification, context specifi-
cation, the adaptation and monitoring, the definition of system’s behavior, the statechart
derivation and the prioritization of variants. We hope that this modularization can aid
the maintenance and evolution of CSS, diminishing the complexity on building these
applications.
Furthermore, we proposed to specify the adaptation and monitoring tasks connected

directly in the root goal since we want to separate these concerns. Accordingly, at the
same time the system provides the functionalities to the user, it also has to monitor de
context in order to detect changes in the contextual elements as well as adapt itself in case
of failure of requirements previously or because it is necessary to provide a specialized
service to the user. Accordingly, the statechart of the context-sensitive systems should
have at least three parallel states (requirements, monitoring and adaptation).
Flow expressions were used to specify the system behavior and thus, help the derivation

of statecharts. These expressions are useful because they can aid in the design, analysis,
and understanding of software systems (Shaw 1978). Since every goal and task should be
present in the flow expression, excepting the ones assigned to users, we can check the
completeness of the derivation. Hence, every element should correspond to a state in the
statechart.
In comparison with the work of (Pimentel et al. 2014), the main difference is that we

address the system’s context, the operationalization of the NFRs and prioritization of vari-
ants. This prioritization was performed using the AHP method. This method uses a scale
[1. . . 9] that is based on psychological theories and experiments that points to the use of
nine unit scales as a reasonable set that allows humans to perform discrimination between
preferences for two items. Each value of the scale can be given a different interpretation
allowing a numerical, verbal or graphical interpretation of the values (Saaty 1987).
The prioritization of variants sub-process is useful for selecting which variant the sys-

tem must adopt at runtime when more than one is variant is enabled at the same time.
The variant that will be executed is the one that mostly contributes for the satisfaction of
the most critical NFR from the point of view of the software engineer. It should be noted
that AHP analysis can be performed using a spreadsheet tool, which shows that there is
no need for sophisticated tool support for this method.
The AHP method has many benefits (Brito et al. 2007): it is a well-known and accepted

method; it is appropriate for handling conflicting concerns problems; it has the ability
to quantify subjective judgements; it is capable of comparing alternatives in relation to
established criteria; and it provides means to guarantee the logical consistency of the
judgements. Hence, the AHP has proven to be an effective method for prioritizing objec-
tives. In industrial projects, this method has been reported as being effective, accurate
and also to yield informative and trustworthy results (Karlsson 1996). However, since all
unique pairs must be compared, the required effort can be substantial.
An experiment to study the scalability of statechart generation algorithmwas previously

conducted by (Pimentel et al. 2014). The inputs of the simulation were five flow expres-
sions with all possible operators and different number of elements (100, 300, 500, 700, and
900). The results demonstrated that the automatic derivation of statecharts from design
goal models is feasible even for large models.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 50 of 57

Besides, the contextual design goal model captures the inherent variability of the design
space, through the definition of alternative refinements for the same design element.
Thus, different solutions (statecharts) for a given problem can be devised.
The design of context-sensitive systems entails more work in comparison to applica-

tions that do not consider context since they must care for context-related tasks, such as
the acquisition, processing, storage and presentation of contextual information. Hence, it
is important to note that the monitoring required to assess the context may have a signif-
icant impact on the system under development. The context monitoring often consumes
many application resources and has the tendency to decrease the system’s performance.
Thus, the impact of monitoring the context data must also be taken in consideration when
defining the context annotations.
We conducted a controlled experiment to evaluate our process. The subjects were

students of different course types (graduate and undergraduate students) having the
mostly studied/is studying computer science course. The subjects in our experi-
ment stated that they had previously modeled the behavior of systems (see Fig. 24).
Moreover, they had more experience with use case diagram and class diagram.
Besides, the majority of the subjects agreed that they have proficiency in modeling
languages.
We provided the same training about goal models and statecharts with the same

instructor and for the same amount of time (excluding the time for the training
about GO2S) for the subjects of both groups. Besides, we asked the subjects to
work on the same exercise about a news website individually. We marked the exer-
cise aiming to identify different levels of knowledge about statechart and we per-
formed an oral argumentation about these exercise. We conclude that, although the
subjects made some different mistakes, they learned the concepts of the statecharts
language, how to apply them and they answered our questions showing confidence.
This argumentation provided some evidence that all subjects were at the same level of
experience.
We provided a detailed description of the experiment since its design is also a contribu-

tion of this paper. It can be used by another researchers in order to perform experiments
aiming the replication in future studies with larger samples or different subjects from the
industry. It is important to highlight that the experiment was used as a pilot to get some
evidence of the feasibility of our process.
From the statecharts produced by the subjects, we can conclude in relation to the syn-

tactic correctness, the number of syntactic errors of control group was higher than the
number of process group. The number of warnings, on the other hand, is higher in pro-
cess group. Considering the completeness of functionalities, we noticed that the number
of functionalities in statecharts that behave as described in requirements specification is
higher in the process group.
We could also observe that the number of syntactic errors of control group was 66.67 %

higher than the number of process group. The number of warnings, on the other hand,
was 64.29 % higher in process group.
Moreover, the structural complexity of control group is higher (mean of 68 elements)

than process group (62.33 elements) corresponding to a reduction of 8.33 %. In addi-
tion, the mean of behavioral similarity of process group was higher (75.56 %) than control
group (54.07 %) corresponding to a difference of 21.49 %. Besides, the time spent by the

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 51 of 57

process group to construct the statecharts was higher (119.67min) than the control group
(108.56 min) with a difference of 11 min (9.28 %).
Thereby, the experiment results showed that, with a confidence level of 95 %, that the

number of requirements that behave as described in the specification of the experimental
groups is higher than the number of control group.
Moreover, the structural complexity was lower in the process group models and the

time spent to implement was higher in the process group. The non-rejection of other
hypotheses means that it is necessary to conduct more experiments with larger samples
sizes in order to be able to confirm or reject such hypotheses with high statistical power.
The nine subjects that applied our process also filled out a post-questionnaire in which

they expressed their opinion about the process using the following scale Totally Disagree,
Disagree, Indifferent, Agree and Totally Agree. We asked their opinion about easiness to
apply the process and six subjects (66.67 %) agreed that the process was easy to use, while
3 subjects (33.33 %) said they Totally Agree.
Eight subjects (88.89 %) agreed that the Activity 1 (Construction of design goal model)

is easy and only one subject disagreed (11.11 %) as illustrated in Table 22. Considering
the easiness of understanding Activity 2 (Specification of contextual variation points),
three subjects (33.33 %) disagreed, two subjects (22.22 %) marked indifferent, and four
agreed (44.44 %) as shown in Table 22. In relation to the easiness of Activity 3 (Specifica-
tion of monitoring and adaptation), three subjects agreed (33.33 %), two subject marked
indifferent (22.22 %), three disagreed (33.33 %) and one totally disagreed (11.11 %) as
demonstrated in Table 22.
The Activity 4 (Specification of flow expressions) was also evaluated about its easi-

ness of understanding (see Table 22). The majority agreed (55.56 %) and totally agreed
(33.33 %) that this activity was easy of understand. Only one subject marked as indifferent
(11.11 %). We also asked the subjects if the Activity 5 (Statechart derivation and refine-
ment) was easy to understand. Six subjects (66.67 %) agreed that the activity 5 was easy,
one totally agreed (11.11 %), one marked indifferent (11.11 %) and one subject did not
answered this question (11.11 %) as illustrated in Table 22.
Therefore, since the subjects did not have much difficulties to use the GO2S pro-

cess, the results of the experiment indicate that it is possible to reproduce the process
and it is understandable. Although the results are limited by the narrow scope we
have, we believe that the process and the study design are considerable contributions.
This controlled experiment can guide other studies in order to evaluate the GO2S
process with more general and conclusive results and can also support other kind
of studies.
Nevertheless, despite the encouraging results obtained, they must be considered as pre-

liminaries. Further replication is necessary and also new experiments must be carried out
with software engineers who develop context-sensitive systems.

5.1 Contributions

The main contributions of this work consist in the proposal of:

• A systematic process for deriving the behavior of context-sensitive systems,
expressed as statechart, from requirements models, specified as goal models.
The GO2S process consists of six sub-processes to guide the software engineer:

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 52 of 57

Construction of design goal model; Specification of contextual variation points;
Specification of monitoring and adaptation; Specification of flow expressions,
Statechart derivation and refinement. The process was modeled using the BPMN
language to capture the sequence of activities to be performed indicating the
input/output artifacts. The process is useful both for guiding a context-sensitive
systems development team on designing a new application and also as a conceptual
foundation to support academic teaching activities on context and context-sensitive
systems. This GO2S process for deriving the behavior of context-sensitive systems
from requirements models is original.

• Specification of monitoring and adaptation tasks in a contextual design goal
model.We propose the specification of monitoring and adaptation tasks in a single
model, the contextual goal model. This is an important contribution since
context-sensitive systems should provide three characteristics: monitoring,
awareness and adaptation. Therefore, it does not require any additional notation or
extension, the specification is performed using the elements already defined in this
model.

• The behavioral contextual design goal model. This model allows to express, in a
single model, information about requirements, architectural design,
operationalization of NFRs, context, behavior, adaptation and monitoring tasks.

• A running example to demonstrate the process application. In order to illustrate
our process we considered the well-known meeting scheduler system, aiming closely
follow the defined process.

• A controlled experiment in order to evaluate our process. The experiment
results allowed us to reject hypotheses that there is no difference between using or
not the proposed process. The results of the experiment indicate that there are some
evidence that the number of functionalities that behaved as specified in requirements
document was higher in the group that used the GO2S process. Besides, the
structural complexity was lower. However, the time spent to implement, on the other
hand, was slightly higher in the group that followed our approach.

In the next section, we discuss some related works.

6 Related works
To the best of our knowledge, no process regarding the statecharts derivation of context-
sensitive systems from goals models has been undertaken so far. However, we identified
some works that are somehow related with behavior derivation.
A process for generating complementary design views from a goal model with high vari-

ability in configurations, behavioral specifications, architectural and business processes
is presented in (Yu et al. 2008). To this end, the authors employed three complementary
design views: a feature model, a statechart and a component model. The process is guided
by heuristic rules and patterns to map a goal hierarchy into an isomorphic state hierar-
chy in a statechart. However, the resulting statecharts of this approach do not support
the specification of monitoring and adaptation tasks and the variants prioritization as
supported in our work. The specification of these tasks are necessary in the develop-
ment of context-sensitive systems since they must have three characteristics: monitoring,
awareness and adaptation (Klein et al. 2008).

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 53 of 57

The STREAM-A (Strategy for Transition between Requirements and Architectural
Models for Adaptive systems) approach (Pimentel et al. 2012) uses goal models based on i*
(istar) framework to support the design and evolution of systems that require adaptability.
It comprises the enrichment of the requirements model with contextual annotations and
the identification of the data that the systemwill have to monitor. However, it focuses only
on the structure of a system architecture not the behavior. It is of paramount importance
to specify and analyze the intended behavior of context-sensitive systems before they are
fully implemented since context acts like a set of constraints that influence the behavior
of a system (a user or a computer) embedded in a given task (Bazire and Brézillon 2005).
The behavioral specification is used as input to the analysis which explores the range of
possible order of interactions, opportunities for concurrency, and time-based interaction
dependencies among system elements. Hence, an important difference of our work is to
specify and analyze the intended behavior of these systems.
In a subsequent work, (Pimentel et al. 2014) proposed a process for deriving behavioral

models from goal models. The behavioral models, expressed as statecharts, are obtained
through a series of refinements expressed within an extended design goal model that con-
stitutes an intermediary model between requirements and architecture. However, they
assume that there is an uniform nature of the context in which the system operates. Unfor-
tunately, this is not always the case. This assumption is not valid in many types of systems,
where it is essential to monitor and adapt to an inherently varying context in order to
keep the system’s goals satisfied. We consider the algorithm for the statecharts derivation
developed in this work and adapt it to CSS. Besides considering the modeling of system’s
context, the monitoring and adaptation tasks, we address the operationalization of NFRs.
Moreover, given that it is possible that several variants may be enabled in certain contexts,
it is necessary to determine the best option. Hence, we propose to perform this prioriti-
zation through the contribution of the variants to the satisfaction of the non-functional
requirements.
An integrated approach to assist the design of context-sensitive systems is described

in (Vieira et al. 2011). Their work includes a context metamodel for representing struc-
tural and behavioral aspects on CSS. In order to support the modeling of behavioral
concepts, the authors propose the use of a Unified Modeling Laguage (UML) profile
to model the application behavior using the UML activity diagram with the semantics
defined in the Contextual Graphs (CxG)(Brézillon 2007). However, the authors observed
in their empirical study that the usage of UML Activity diagram to model the contex-
tual graphs following the CxG profile, caused misunderstandings, since the semantics of
the elements of this diagram conflicted with the contextual graph elements semantics.
In our work, we use the statecharts to specify the intended behavior of context-sensitive
systems since it is a popular choice for representing the behavioral view of a system and
it is also adopted by UML language. Besides, this notation is an interesting visual for-
malism for modeling context-sensitive systems since they are reactive and adapt their
requirements. Moreover, an activity diagram is a special case of a statechart. Statecharts,
otherwise, are a powerful graphical notation to describe reactive systems that allow nested
super-/sub-state structure for abstraction or decomposition. This hierarchical notation
of statecharts allows the description of the behavior of context-sensitive systems at dif-
ferent levels of abstraction. This property of statecharts makes them much more concise
and usable than activity diagrams and contributes to a lower structural complexity of the

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 54 of 57

models. Besides, we also concerned with the satisfaction of NFRs, thus we propose an
activity in our process that deals with variants prioritization.
The contextual goals models were used in two scenarios of systems operating in and

reflecting varying contexts in the work of (Ali 2010). They organized two lab sessions
and invited a group of requirements analysts to apply their framework. The analysts have
modeled the requirements of the two systems, smart home and museum-guide, using the
contextual goal model. The requirements analysts, who participated in the sessions, have
already a good expertise in goal modeling and they are familiar with emerging computing
paradigms scenarios such as ubiquitous computing and mobile information systems. The
results of the study conducted by (Ali 2010) showed that the contextual goal model is easy
to understand; the framework provides a useful systematic way to analyze contexts; the
relation between goals and context is strong in certain systems; the context specification
could be a subject to viewpoints (in some other cases, it was debatable if a certain context
is a statement or a fact).
The use of flow expressions to specify the behavior of systems has been presenting

promising results. This notation has been accepted and used successfully used in many
works (Pimentel et al. 2014; Shaw 1978; Dalpiaz et al. 2013) since it is a notation with rea-
sonable complexity but is easy to use. The specification of the system behavior through
flow expressions was proposed in the work of (Shaw 1978). This work defines the flow
expressions language, for describing flows in sequential and concurrent software, and
illustrates its use in a variety of applications. According to the authors, this notation
provides another tool for software design, analysis, and understanding.
As evidence of the notation usefulness, (Shaw 1978) exhibited the application of flow

expressions in many areas including the modeling of concurrent programs, the descrip-
tion of operating system architectures, the specification of synchronization problems and
solutions, the flow and description of command languages, and systems analysis.We used
this notation in the GO2S process to specify the behavior of context-sensitive systems and
to derive contextualized statecharts.
The work of (Pimentel et al. 2014) explores the flow expressions in their multi-

dimensional approach that exploits inherent variability of the design space. In this
work, alternative refinements are considered for the same intermediate problem,
resulting in multiple solutions (statecharts) from a single initial problem (requirements).
The flow expressions are also used in the work of (Dalpiaz et al. 2013) to propose a con-
ceptual distinction between Design-time Goal Models (DGMs) - used to design a system
- and Runtime Goal Models (RGMs) - used to analyze a system’s runtime behavior with
respect to its requirements. In their work, RGMs extend DGMswith additional state, flow
expressions and historical information about the fulfilment of goals.

7 Conclusion
In this work, we proposed a systematic process for deriving the behavior of context-
sensitive systems, expressed as statechart, from goal models namely GO2S. The process
consists of six sub-processes to guide the analyst.
The first sub-process concerns the construction of a design goal model. It is followed by

the definition of contextual variation points. In the third sub-process, the tasks required
for the monitoring and adaptation activities are specified. Later, the system behavior
is represented in flow expressions in the fourth sub-process. The next one derives a

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 55 of 57

statechart from the behavioral contextual design goal model. Finally, the last sub-process
is the prioritization of variants.
We conducted a controlled experiment in order to evaluate our process. The experi-

ment results allow us to reject hypotheses that there is no difference between using or
not the Go2S process. Besides, that are some evidence that the Go2S process can improve
the number of functionalities implemented as specified in requirements document with
lower structural complexity. Moreover, the results also indicate that it is possible to
reproduce the process and it is understandable.

7.1 Future works

For future works, the following activities can be undertaken:

• Develop a case tool to implement the process. This tool could be used to produce
the goal model and guide the software engineer to apply the GO2S process
generating the different views (design, contextual and behavioral) of our process to
implement the statechart derivation.

• Apply the process to complex systems. The use of the process for more complex
systems, especially in the context of the industry, would help to assess if it is suitable
in different domains. Equally important is to conduct further investigation to assess
its costs and benefits. This analysis would help to identify points of the process that
require improvements.

• Formally define the dependent variables. A rigorous formalization of the
dependent variables, especially the behavioral similarity, is another work that can
contribute to facilitate the evaluation of each subject’s response as right or wrong or
in-between.

• Perform new controlled experiments. Despite the encouraging results obtained,
we consider them as preliminaries. Further replication is necessary and also new
experiments must be carried out with software engineers who develop
context-sensitive systems.

• Develop mechanisms to perform the reasoning of context-sensitive systems
from the generated statecharts. Statecharts allow the reasoning through the
analysis of properties such as system’s completeness and correctness. This reasoning
could be added to the GO2S process to improve the quality of generated statecharts.

• Incorporate other architectural views in our process. Software architecture can
be composed of four views: structural, behavioral, deployment, and configuration.
The structural view was already addressed in the work of (Pimentel et al. 2012) and
our process addressed the behavioral view. It is important to derive systematically the
other architectural views, for example deployment and configuration in order to
obtain a complete system specification.

• Investigate the use of ontologies in the process. The use of ontologies can
contribute to perform the verification of behavioral models considering their
empirical benefits for requirements engineering identified in a previous systematic
literature review (Dermeval et al. 2015).

Competing interests
The authors declare that they have no competing interests.

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 56 of 57

Authors’ contributions
Every author was important for the completion of this article, however, their previous activities are also important to
reach the research results, then, these activities are listed in this section. The activities proposed in our process have been
shaped in periodic meetings among JV and JC. All authors planned the experiment protocol and analyzed the threats to
the validity of the experiment and the measures to reduce the risks. JV carried out the experiment and analyzed its results
assisted by JP and JC. All authors read and approved the final manuscript.

Acknowledgements
The following Brazilian institutions have supported this work: FACEPE, CAPES and CNPq.

Author details
1Centro de Informática, Universidade Federal de Pernambuco (UFPE), Av. Jornalista Anibal Fernandes, s/n - Cidade
Universitaria, 50.740–560, Recife, Brazil. 2Universidade de Pernambuco (UPE), Av. Sport Clube do Recife, 252 - Madalena,
Recife - PE, 50750-500, Brazil.

Received: 17 December 2014 Accepted: 14 April 2016

References
Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P (1999) Towards a better understanding of context and

context-awareness. In: Gellersen H-W (ed). Handheld and Ubiquitous Computing. Lecture Notes in Computer
Science. Springer Vol. 1707. pp 304–307

Ali R (2010) Modeling and reasoning about contextual requirements: Goal-based framework. PhD thesis, Universita degli
Studi di Trento

Ali R, Dalpiaz F, Giorgini P (2010) A goal-based framework for contextual requirements modeling and analysis.
Requirements Eng 15(4):439–458

Angelopoulos K, Souza VES, Mylopoulos J (2014) Dealing with multiple failures in zanshin: a control-theoretic approach.
In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS 2014. ACM, New York, NY, USA. pp 165–174

Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering. IEEE Trans Softw Eng SE 12(7):733–743
Bazire M, Brézillon P (2005) Understanding context before using it. In: Dey A, Kokinov B, Leake D, Turner R (eds). Modeling

and Using Context. Lecture Notes in Computer Science. Springer Vol. 3554. pp 29–40
Brézillon P (2007) Context modeling: Task model and practice model. In: Modeling and Using Context. Springer.

pp 122–135
Brito IS, Vieira F, Moreira A, Ribeiro RA (2007) Handling Conflicts in Aspectual Requirements Compositions. In: Rashid A,

Aksit M (eds). Transactions on Aspect-Oriented Software Development III. Springer Berlin Heidelberg Vol. 4620.
pp 144–166. doi:10.1007/978-3-540-75162-5_6

Carver JC, Jaccheri L, Morasca S, Shull F (2010) A checklist for integrating student empirical studies with research and
teaching goals. Empir Softw Eng 15(1):35–59

Castro J, Kolp M, Mylopoulos J (2002) Towards requirements-driven information systems engineering: the tropos project.
Inform Syst 27(6):365–389

Chalmers D (2002) Contextual mediation to support ubiquitous computing. PhD thesis, University of London, Imperial
College of Science, Technology and Medicine

Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-functional requirements in software engineering, Vol. 5. Springer
Science & Business Media

Clements P, Garlan D, Bass L, Stafford J, Nord R, Ivers J, Little R (2002) Documenting Software Architectures: Views and
Beyond. Pearson Education, United States

Dalpiaz F, Borgida A, Horkoff J, Mylopoulos J (2013) Runtime goal models: Keynote. In: Research Challenges in
Information Science (RCIS), 2013 IEEE Seventh International Conference On. IEEE. pp 1–11

Dermeval D, Vilela J, Bittencourt II, Castro J, Isotani S, Brito P, Silva A (2015) Applications of ontologies in requirements
engineering: a systematic review of the literature. Requirements Engineering. Springer, pp 1–33

Dijkman R, Dumas M, van Dongen B, Käärik R, Mendling J (2011) Similarity of business process models: Metrics and
evaluation. Inf Syst 36(2):498–516

Fenton N (1993) How effective are software engineering methods? J Syst Softw 22(2):141–146
Harel D (1987) Statecharts: A visual formalism for complex systems. Sci Comput Program 8(3):231–274
Hatcliff J, Wassyng A, Kelly T, Comar C, Jones P (2014) Certifiably safe software-dependent systems: challenges and

directions. In: Proceedings of the on Future of Software Engineering. ACM. pp 182–200
Karlsson J (1996) Software requirements prioritizing. In: Proceedings of the Second International Conference on

Requirements Engineering. IEEE. pp 110–116
Klein C, Schmid R, Leuxner C, Sitou W, Spanfelner B (2008) A survey of context adaptation in autonomic computing. In:

Fourth International Conference on Autonomic and Autonomous Systems, 2008. ICAS 2008. IEEE. pp 106–111
Lapouchnian A (2005) Goal-oriented requirements engineering: An overview of the current research. Technical Report.

University of Toronto
Liu Y, Ma Z, Shao W (2010) Integrating non-functional requirement modeling into model driven development method.

In: Software Engineering Conference (APSEC), 2010 17th Asia Pacific. IEEE. pp 98–107
Mellor SJ, Clark T, Futagami T (2003) Model-driven development: guest editors’ introduction. IEEE Softw 20(5):14–18
Miranda D, Genero M, Piattini M (2005) Empirical validation of metrics for uml statechart diagrams. In: Enterprise

Information Systems V. Springer, Netherlands. pp 101–108
Morandini M, Migeon F, Gleizes M-P, Maurel C, Penserini L, Perini A (2009) A goal-oriented approach for modelling

self-organising MAS. In: Engineering Societies in the Agents World X, vol 5881. Springer, pp 33–48

http://dx.doi.org/10.1007/978-3-540-75162-5_6

Vilela et al. Journal of Software Engineering Research and Development (2016) 4:2 Page 57 of 57

Murata T (1989) Petri nets: Properties, analysis and applications. Proc IEEE 77(4):541–580
Nicola Rd (1987) Extensional equivalences for transition systems. Acta Informatica 24(2):211–237
Nuseibeh B (2001) Weaving together requirements and architectures. Computer 34(3):115–119
OMG (2016) Object Management Group. Business Process Model and Notation. http://www.bpmn.org/. Accessed 17 Dec

2014
Penserini L, Perini A, Susi A, Mylopoulos J (2007) High variability design for software agents: Extending tropos. ACM Trans

Autonomous Adaptive Syst (TAAS) 2(4):16:1-16:27
Pimentel JHC (2015) Systematic design of adaptive systems— a control-based framework. PhD thesis, Federal University

of Pernambuco, Centers of Informatics
Pimentel J, Lucena M, Castro J, Silva C, Santos E, Alencar F (2012) Deriving software architectural models from

requirements models for adaptive systems: the stream-a approach. Requirements Eng 17(4):259–281
Pimentel J, Castro J, Mylopoulos J, Angelopoulos K, Souza VES (2014) From requirements to statecharts via design

refinement. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing: 24–28 March 2014;
Gyeongju, Korea. ACM. pp 995–1000

Ranjita KS, Prafulla KB, Durga PM (2012) Minimal testcase generation for object-oriented software with state charts. arXiv
preprint arXiv:1208.2265

Runeson P (2003) Using students as experiment subjects–an analysis on graduate and freshmen student data. In:
Proceedings of the 7th International Conference on Empirical Assessment in Software Engineering.–Keele University,
UK. Citeseer. pp 95–102

Saaty RW (1987) The analytic hierarchy process - what it is and how it is used. Mathematical Modelling 9(3):161–176
Santos VVd (2008) Cemantika: A domain-independent framework for designing context-sensitive systems. PhD thesis,

Universidade Federal de Pernambuco, Centro de Informática
Santos EB (2013) Business process configuration with nfrs and context-awareness. PhD thesis, Federal University of

Pernambuco, Centers of Informatics
Shaw AC (1978) Software descriptions with flow expressions. Softw Eng IEEE Trans 3:242–254
Sjoberg DIK, Anda B, Arisholm E, Dyba T, Jorgensen M, Karahasanovic A, Koren EF, Vokac M (2002) Conducting realistic

experiments in software engineering. In: Proceedings of 2002 International Symposium in Empirical Software
Engineering. pp 17–26

Sommerville I, Kotonya G (1998) Requirements Engineering: Processes and Techniques. John Wiley & Sons, Inc., New York,
NY, USA

Svahnberg M, Aurum A, Wohlin C (2008) Using students as subjects - an empirical evaluation. In: Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement. ESEM ’08. ACM,
New York, NY, USA. pp 288–290

Van Lamsweerde A, Darimont R, Massonet P (1995) Goal-directed elaboration of requirements for a meeting scheduler:
Problems and lessons learnt. In: Requirements Engineering, 1995, Proceedings of the Second IEEE International
Symposium On. IEEE. pp 194–203

Vieira V, Tedesco P, Salgado AC (2011) Designing context-sensitive systems: An integrated approach. Expert Syst Appl
38(2):1119–1138

Vinson NG, Singer J (2008) A practical guide to ethical research involving humans. In: Guide to Advanced Empirical
Software Engineering. pp 229–256

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in Software Engineering.
Springer, Norwell, MA, USA

Yakindu Statechart Tools (2016). http://statecharts.org/. Accessed 17 Dec 2014
Yu Y, Lapouchnian A, Liaskos S, Mylopoulos J, Leite JC (2008) From goals to high-variability software design. In:

Foundations of Intelligent Systems. Springer. pp 1–16

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.bpmn.org/
http://statecharts.org/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Introduction
	Context
	Motivation and rationale
	Objectives
	Contributions

	Background
	Context-sensitive systems
	Contextual goal model
	Flow expressions
	Statecharts

	GOals to Statecharts (GO2S) process
	Sub-process 1: Construction of design goal model
	Sub-process 2: Specification of contextual variation points
	Sub-process 3: Specification of adaptation and monitoring
	Sub-process 4: Specification of flow expressions
	Sub-process 5: Statechart derivation and refinement
	Sub-process 6: Prioritization of variants

	Controlled experiment
	Scoping
	Planning
	Context selection
	Variables selection
	Hypotheses formulation
	Selection of subjects
	Experiment design
	Instrumentation
	Experimental object
	Guidelines
	Measurement instruments

	Operation
	Preparation
	Execution
	Data validation

	Analysis and interpretation
	Statistical hypotheses testing

	Presentation and package
	Threats to validity
	Internal validity
	Conclusion validity
	Construct validity
	External validity

	Ethics

	Discussion
	Contributions

	Related works
	Conclusion
	Future works

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

