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Abstract

Background: Feature modeling has been widely used in domain engineering for the
development and configuration of software product lines. A feature model represents
the set of possible products or configurations to apply in a given context. Recently, this
formalism has been applied to the runtime (re-)configuration of systems with high
variability and running in changing contexts. These systems must adapt by updating
their component assembly configuration at runtime, while minimizing the impact of
such changes on the quality of service. For this reason the selection of a good system
configuration is seen as an optimization problem based on quality attribute criteria.

Methods: We propose an approach for system adaptation based on the specification,
measurement and optimization of quality attribute properties on feature models.
Furthermore, we describe its integration into a platform for supporting the
self-adaptation of component-based systems. Feature models are annotated with
quality attribute properties and metrics, and then an efficient algorithm is used to deal
with the optimization problem.

Results and conclusions: Two performance properties –frame processing time and
reconfiguration time– are estimated with our model against measurements obtained
from the running system to show the accuracy of metrics on feature models for
estimating quality attribute properties. The results show evidence that these metrics
are reasonably accurate for measuring performance properties on a realistic
component-based computer vision system.

Keywords: Feature models; Runtime adaptation; Quality attributes; Optimization;
Component-based software engineering

1 Background
Feature models (Kang et al. 1990) are a simple but powerful formalism for representing
commonalities, varying aspects, and configuration rules of software products, which have
been mostly used in Software Product Lines (SPLs). In recent works, feature models have
been applied for specifying and executing dynamically adaptive systems. These systems
can be conceptualized as a dynamic software product line (DSPL) (Hallsteinsen et al. 2008)
in which variability and configuration rules are bound and checked at runtime. As in
traditional SPLs, feature models are a convenient formalism for representing a DSPL and
enable automated reasoning about properties of its adaptive configurations.
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In (Moisan et al. 2011), feature models were proposed for the representation and
dynamic adaptation of component-based systems, such as a video surveillance (VS) pro-
cessing chain. The domain of computer vision and video surveillance offers a challenging
ground because of the high variability in both the surveillance tasks and the video analysis
algorithms. From a functional perspective, the various VS tasks (e.g., counting, intrusion
detection, tracking, scenario recognition) have different requirements, namely observa-
tion conditions, objects of interest, and device configurations, among others; whichmight
vary from one application to another. From an implementation perspective, selecting
the (software) components themselves, assembling them, and tuning their parameters
to comply with the context might lead to different configuration variants. Moreover,
the context is not fixed but evolves dynamically and thus requires runtime adaptation
of the component assembly in order to keep performing with a desirable quality of
service.
In a given execution context many configurations are valid but only one of them should

be selected for system adaptation. The selection process must consider configuration
rules, resource restrictions and stakeholders’ preferences, especially with regard to non-
functional properties or quality attributes of the system. Thus, the selection of the “best”
system configuration implies to find the candidate that optimizes a given set of quality
attributes quantified by means of quality metrics. This process generally involves trade-
offs between several goals, such as maximizing accuracy, achieving the best performance,
or choosing the simplest setup (or substitution) for the current configuration, among
others.
In a previous work (Sanchez et al. 2013), we presented a heuristic search algorithm

called CSA (Configuration Selection Algorithm)1 for solving the optimization prob-
lem resulting from selecting a valid configuration of a system based on feature models.
This algorithm offers different strategies for leveraging execution efficiency and optimal-
ity, and allows us to define different objective functions for comparing configurations
and optimizing multiple attributes simultaneously, while adhering to resource restric-
tions and feature model constraints. However, this algorithm requires an infrastructure
with capabilities for: monitoring context changes, activating and assembling (at runtime)
components that implement specific features, and gathering suitable metrics for system
properties, so as to assess various configuration alternatives.
In this article, we present the overall approach and the component-based platform

in which the CSA is embedded. Our approach provides a framework for the specifica-
tion, measurement and optimization of quality attribute properties2 expressed on top
of feature models. We show how these properties can be specified by means of feature
attributes and evaluated with quality metrics in the context of feature models. The global
properties of the system are computed by means of aggregate functions over the features.
Along this line, we discuss the selection process carried out by our optimization algo-
rithm, highlighting some trade-off situations between quality attributes. A key aspect of
model-based approaches for adaptive systems is the ability of the model to estimate a
given system property, which is correlated with the actual property observed in the run-
ning system. For instance, if our approach computes a metrics for reconfiguration time as
the sum of the individual times for each reconfiguration operation, e.g., add or remove a
component from system assembly, we need to ensure that the aggregate metrics is a “good
predictor” for the time that the system takes to reconfigure itself.
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This work extends the original SBCARS article in several ways (Sanchez et al. 2014).
Compared to earlier work, we provide additional information about our approach, its
application, and implementing platform. We also extend its evaluation with new experi-
ments that assess the accuracy of the proposed metrics. To do so, we rely on a concrete
implementation of our platform for managing the adaptation of a computer vision pro-
cessing chain based on OpenCV libraries (Opencv project 2015). This processing chain
includes components for image segmentation, motion, face detection, etc. In particular,
we are focused on two properties –reconfiguration time and frame processing time–which
are common in computer vision systems, and then compare predicted against measured
property values. Our experiments reported an accuracy of 87.6% and 90.6% for these two
properties, respectively. These preliminary results suggest that it is possible to predict
quality attribute properties with simple aggregate functions defined on feature models.
The rest of this article is organized as follows. Section 2 presents the proposed

approach. It provides background about feature models, their role in the representation
and adaptation of component-based systems, and describes how quality attributes are
related to feature models, estimated by metrics, and then optimized with the CSA. It also
covers a process for applying the approach. Section 3 presents the platform architecture
for the approach along with a particular implementation and some adaptation scenarios.
In Section 4, we perform an empirical evaluation of two of the proposed metrics for esti-
mating reconfiguration time and frame processing time, and discuss lessons learned and
limitations. Section 5 analyzes related work. Finally, Section 6 presents the conclusions
and outlines future research directions.

2 Approach: feature models for runtime adaptation
An adaptive system is a system whose behavior can be changed during its execution
according to the user´s needs or context changes. If the system can react to changes
in the operating environment, the system is called self-adaptive (Oreizy et al. 1999).
These systems are usually conceptualized using a reference model for autonomic control
loops called MAPE-K (IBM 2003). In MAPE-K, there is a managed element (software or
hardware resources) that is given autonomic behavior by coupling it with an autonomic
manager. This manager is built in terms of four functions or steps (monitor, analyze,
plan and execute) that define the autonomic control loop, an internal knowledge that
represents the stakeholders´ goals, the managed element, and, optionally, its execution
environment.
Our approach can be viewed as an instance of the MAPE-K loop, as follows: the man-

aged element is a video surveillance processing chain implemented in terms of software
components; a feature model formalism is used for the knowledge representation (about
the system and its context); and an optimization process based on an heuristic search
algorithm is used for the planning step. This algorithm employs quality attribute metrics
for guiding the system adaptation.
The planning aspect takes into account the data from the monitor/analyze steps to

produce a series of actions to be effected by the execute step on the managed ele-
ment. In simple cases, event-condition-action (ECA) rules are used to directly produce
adaptation plans from specific event combinations with the form “when event occurs
and condition holds, then execute action”. This approach might present some problems,
like possible conflicts between rules, and limitations for representing restrictions on
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system configurations. Other approach for planning the system adaptation is to define
a transition graph model at design time, like the reconfiguration transition system (RTS)
in (Oliveira and Barbosa 2014). Nodes in the graph represent system configurations and
edges represent reconfiguration transitions, i.e., operations to adapt the system from a
configuration to another. However, the number of valid configurations might grow expo-
nentially for a large number of system variability points due to combination of features.
Therefore constructing such a graph model can be infeasible in many domains.
Our approach presents an alternative to deal with the above concerns by means of

feature models. It also addresses the following challenges:

• Representation of a set of valid configurations applicable at a given execution
context, by means of feature model formalisms.

• Selection of the “best” candidate from this set, taking quality criteria into account, by
means of the Configuration Selection Algorithm. This optimization algorithm is
based on the Best-First Search schema (Pearl 1984), a well studied technique for
combinatorial optimization problems such as configuration selection on feature
models. This algorithm offers a set of proven characteristics with respect to
correctness, completeness, efficiency, and optimality that meet the requirements for
its application on runtime systems (Sanchez et al. 2013).

2.1 Feature models

According to (Kang et al. 1990), a feature model is a compact representation of all possible
products or configurations, for instance, of an SPL. These models are visually represented
as features and relationships among them. Features correspond to selectable concepts
of the system at different abstraction level: functional and non-functional requirements,
environment and context restrictions, runtime components, implementation modules,
etc. A feature model is arranged in a hierarchy that forms a tree where features are
connected by:

• Tree constraints: relationships between a parent feature and its child features (or
sub-features). Tree constraints include mandatory, optional, xor (alternative) and or
relationships between parents and sub-features.

• Cross–tree constraints: typically inclusion or exclusion statements of the form “if
feature F is selected, then features A and B must also be selected (or deselected)”.

The root feature of the tree represents the concept being described, generally the system
itself, and the remaining nodes denote branches and sub-features that dis-aggregate the
main concept into several elements and concerns.
Several extensions to this basic notation have been proposed (Schobbens et al. 2007),

including propositional formulas for cross-tree constraints (Batory 2005), and extended
or attributed feature model (Benavides et al. 2005). We use these two extensions for mod-
eling system element dependencies and specifying quality attribute properties. Generic
propositional formulas allow us to define constraints and dependencies among features,
such as “features A and B imply not C”. The second extension refers to a type of feature
model in which additional information is added as feature attributes. An attribute consists
of a name, a domain, and a value. Attributes are often used to specify extra information,
such as cost, response time, or memory required to support the feature, among others.
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2.1.1 Model for a video surveillance system

Figure 1 depicts an example of feature model for a video surveillance processing chain, as
described in (Moisan et al. 2011). This model was designed with a focus on the separation
of requirements and implementation concerns, therefore the root is decomposed into
two branches or sub-models: VSspecification and VScomponent. The first sub-model rep-
resents “what to do” and includes functionality (Application, ObjectOfInterest features),
quality parameters (QoS feature) desired by users, and environmental and hardware con-
ditions (Context feature). The second sub-model represents the system components and
their parameters, that is “how (the software) should do it”.
Cross-tree constraints are used to formalize extra-feature dependencies in the form of

propositional formulas. In the VScomponent sub-model, these constraints define con-
figuration rules for the correct assembly of software components. For instance, the
dependency “component A requires the interface provided by component B” can be
modeled by the constraint “A implies B”. Furthermore, cross-tree constraints between
both sub-models work as a bridge between application requirements and component
assemblies that realize those requirements. For instance, the constraint “ShadowRemoval
implies Lighting.Low” means that if Lighting.Low feature, which represents a low light con-
text condition, is selected due to a light dimming event, the ShadowRemoval component
is deselected, i.e. it cannot be part of the current system configuration.
A component is a unit of deployment that requires or provides services to other com-

ponents through specific interfaces. A system configuration C of a video surveillance
processing chain can be defined as a set of connected and running components, each
one customizable with a set of parameters, and these components can be removed,
added or replaced from the system assembly at runtime, as long as they meet interface
requirements.
Figure 2(a) shows a configuration instance of the video surveillance processing chain.

The purpose of this system is to analyze a sequence of images, i.e. a video, to detect inter-
esting situations or events. Its global architecture follows a pipe-and-filter architectural
pattern: it is a processing chain or pipeline of software components. These components
can be seen as processing elements arranged in such a way the output of each element
is the input of the next one. The pipeline starts with image acquisition, then segmenta-
tion of the acquired images to group image regions into “blobs”, classification of possible
objects, tracking these objects from one frame to the other, and lastly scenario recogni-
tion for, e.g., intrusion detection or other scenarios. The output results might be stored

Fig. 1 Excerpt of feature model for a video surveillance system
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Fig. 2 Mapping system configuration to feature model configuration. a System configuration of a video
surveillance processing chain. b Feature model full configuration of a video surveillance processing chain

for future processing, or might raise alerts to human observers. In the domain of com-
puter vision and video surveillance systems, the processing chain can involve additional
stages (e.g., clustering, shadow removal, and data fusion - in case of multiple cameras),
which require the deployment of different software components. These components can
have variants (e.g., algorithms, strategies, input data, etc), each one corresponding to a
different configuration parameter of the component.

2.2 Mappingmodel representation to runtime system

The mapping between the runtime system, i.e. the set of running components, and its
model representation is achieved by means of feature model configurations. This and
other key concepts for understanding the approach are presented below.

2.2.1 Full configurations

Formally, a system configuration C is represented by a feature model full configuration
(simply called full configuration) defined as a 2-tuple 〈S,D〉 where S and D are sets of
selected and deselected features respectively, such that S ∩ D = ∅, S ∪ D = F (set of all
features) and all constraints are satisfied. Figure 2(b) shows the full configuration that rep-
resents the system configuration in Fig. 2(a). Note that only the VScomponent branch is
depicted due to the model size, and each running component is associated with a selected
feature.

2.2.2 Partial configurations

Context changes or user interactions are events that can trigger dynamic reconfigura-
tions of the model (selecting and deselecting features). For instance, lighting changes can
have an impact on the parametrization of the acquisition and segmentation components
of the processing chain. Users might require to recognize different events or perform a
different task, tuning or even replacing the scenario recognition component for another
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task-dependent component. As another example, energy supply conditions can imply a
system reconfiguration.
The configuration in response to a context change is seldom a full configuration but

rather a partial configuration of the feature model. A partial configuration is a partial
assignment of feature values that represents the set of valid full configurations compat-
ible with an execution context. It is defined as a 3-tuple 〈S,D,U〉 where U is the set
of unselected (i.e., unassigned) features, such that S, D, and U are pairwise disjoint and
S ∪ D ∪ U = F . A key challenge is to derive an “optimal” full configuration from a given
partial configuration. This process consists in selecting or deselecting unselected fea-
tures until U becomes empty, considering the satisfaction of feature model constraints,
resource restrictions, and the optimization of an objective function based on quality
attribute properties. The optimal decision is usually made in the presence of trade-offs
between two or more conflicting objectives. For example, selecting a new configura-
tion that maximizes performance and minimizes the required time for reconfiguring the
system. This combinatorial optimization problem and the corresponding Configuration
Selection Algorithm (CSA) are described in Section 2.3.4.

2.2.3 Concrete and abstract features

Features are classified into concrete and abstract ones depending on whether they
represent software elements of the system, i.e., deployable components and their con-
figuration parameters. Concrete features have a one-to-one mapping to software ele-
ments. This mapping is necessary for identifying components and parameters to be
tuned when reconfiguration is required. Examples of concrete features are ImageAcqui-
sition, Resolution.High, etc. By contrast, the remaining features are called abstract and
they usually correspond to high-level features used for organizing the whole diagram
(e.g., VSsystem), grouping sets of components and parameter variants (e.g., Tracking, Res-
olution), or representing specification and context aspects (features in the VSspecification
sub-model).

2.3 Quality attributes on feature models

A quality attribute is a key aspect (or property) of the system that is used by its stakehold-
ers to judge its operation, rather than specific functional behaviors (Bass 2003). Quality
attribute properties are typically quantified by quality metrics. Systems often fail to meet
stakeholders needs regarding these attributes when they focus on some aspects with-
out considering the impact on others. For instance, when system adaptation is required,
selecting the configuration that minimizes the reconfiguration time might not be the best
candidate regarding the overall quality of service (QoS). Furthermore, the overall QoS is
defined based on a combination of conflicting runtime properties (e.g., response time,
accuracy, availability, security). For example, replicating communication and computation
to achieve availability, or including a shadow removal component to achieve high accuracy
for event recognition, might conflict with performance requirements (e.g., low response
time) or resource restrictions (e.g., maximum memory consumption). Stakeholders (i.e.,
users) generally find it difficult to quantify their preferences in such conflicting situations.
The goal of our model-based approach for managing quality attributes is to quan-

titatively evaluate and trade-off multiple quality attributes to achieve a better overall
system configuration. We do not look for a single metric but rather for a quantification of
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individual attributes and for trade-offs among those metrics. The problem is formalized
as the optimization of an objective function that aggregates the metrics and quantifies
stakeholders’ preferences for individual attributes.
In summary, themanagement of runtime quality attributes involves three steps, namely:

(i) specification, (ii) measurement, and (iii) optimization. Specification deals with the
representation and assignment of quality attribute properties of individual system ele-
ments to features. Measurement implies the use of metrics for feature models to assess
these quality attributes quantitatively at the system level. Finally, optimization deals with
the maximization or minimization of conflicting attributes evaluated with these metrics,
which are assigned to different weights in order to consider stakeholders’ preferences,
while still meeting configuration rules and resource restrictions.

2.3.1 Specification

Quality attribute properties must be specified at design time. A wide range of properties
exists to evaluate the runtime operations of a system. Some attributes are common to
most adaptive systems, like reconfiguration time, response time, memory consumption,
availability, among others. Besides, video surveillance systems exhibit specific attributes,
namely: accuracy and sensitivity of detection or tracking algorithms, relevance of object
classification, frame processing time, among others. These properties can be categorized
into the following classes, depending on how they are specified on the feature models:

1. Direct assigned attributes/properties: this class contains attributes that are
representable as features, because they can be directly selected by stakeholders
during the product configuration phase at development time. At runtime, the
selection and deselection of these features can be triggered by events coming from
context changes. In our model of Fig. 1, these features correspond to the Quality of
Service (QoS) branch.

2. Quantitative attributes/properties: this category contains feature attributes that
can be measured on a metric scale, such as response time, reconfiguration time,
accuracy, among others. These attributes define properties of individual features,
but one can infer a measure for the overall configuration using some metric
function to aggregate the values of individual elements. For example, the system
memory consumption can be calculated as a sum of the required memory for each
running component.

3. Qualitative attributes/properties: this category includes attributes of features that
can only be described qualitatively using an ordinal scale, i.e., a set of qualifier tags
like low, medium, and high for usability, security, or camera resolution, among
others. In this case, there is no metrics for deriving quantifiable measures of the
overall configuration. However, a mapping function from qualifier tags onto real
values can be used to handle these attributes as quantitative properties.

2.3.2 Measurement

When analyzing quality attributes of component-based systems, a key aspect is how
these attributes can be measured or predicted on the basis of properties of individ-
ual components, which are determined with a certain accuracy. According to (Crnkovic
et al. 2005) some system quality attributes can be derived directly from the component
attributes, called directly composable properties, like memory consumption; while others
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might require a computation model that considers the system architecture together with
the component attributes, called architecture-related properties, like performance prop-
erties. There are also system attributes that have no direct counterparts at the component
level. They are rather the consequence of the system interactions with its environment,
its architecture, plus attributes of various components. We focus on directly composable
properties and architecture-related properties. That is, in our feature model, an attribute
of a system configuration is a function of the same type of attribute of the components
and features involved in that configuration.
For each attribute, the overall value of a configuration is calculated by an aggregate

function that considers the value of the selected features. For some particular attributes,
deselected features are also considered. An aggregate function is a function that performs
a computation on a set of values to return a single value. Different aggregate functions
are suggested as quality metrics, according to the nature of the attribute (Rosenberg et al.
2009). We have considered 4 functions, described in Table 1. Although these functions
limit the set of metrics supported by the approach, they are appropriate for a wide range
of scenarios and have mathematical properties suitable for optimization using feature
models (Sanchez et al. 2013).
To compute the aggregate functions for each attribute a, all features of the featuremodel

are enriched with two slots, aS and aD. These slots represent the contribution of the
feature to the aggregated value when its state is selected or deselected. These slots are
initialized by default to the neutral element (e) of their specific function: 0 for addition,
1 for product, ∞ for minimum, and −∞ for maximum. Neutral elements do not affect
aggregate values, so they are used as “null” values for feature slots where attributes do not
apply. Concrete features might have predetermined values for some attributes that corre-
spond to inherent properties of software elements (components and parameters), such as
required memory, startup time, failure probability, accuracy, etc. Although our approach
permits changing them dynamically, these property values are generally considered con-
stant across the system execution. These values are usually predetermined by system
experts, for instance, by measuring the performance of each component in isolation.
Note that a feature f contributes differently to the aggregate value when it is selected

(aS(f )) or deselected (aD(f )). For most attributes (e.g., memory consumption or response
time), deselected features do not contribute at all (aD(f ) = e), but for others some of them
do. For instance, for minimizing the reconfiguration time, if a feature representing a soft-
ware component is selected for the next execution context, the corresponding component
startup time is taken into account, whereas when the feature is deselected its shutdown
time is considered instead.

Table 1 Aggregate functions for a given quality attribute a and configuration C = 〈S,D〉
Function Formulation Quality Attribute Examples

Addition M+
a (C) = ∑

f∈S aS(f ) + ∑
f∈D aD(f ) required memory, reconfiguration and

response time (sequential execution),

Product M×
a (C) = ∏

f∈S aS(f ) × ∏
f∈D aD(f ) accuracy, availability

Maximum MM
a (C) = max(maxf∈S(aS(f )), maxf∈D(aD(f ))) reconfiguration and response time (parallel

execution)

Minimum Mm
a (C) = min(minf∈S(aS(f )), minf∈D(aD(f ))) security, usability (using a metric scale for

qualifier tags)
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The ranking value of a given configuration is a combination of its aggregated values. An
optimal system configuration C is defined as one that minimizes this value. In our case,
the ranking value is given by the following weighted function:

L(C) =
∑

a∈A
wa × Ma(C) − μa

σa
(1)

whereA is the set of quality attribute properties of interest,wa is the weight of each quality
attribute a,Ma is the aggregate function associated with attribute a, whichmight have dif-
ferent forms according to the nature of the attributes (see Table 1), and μa and σa are the
average value and the standard deviation ofMa for all valid configurations. The expression
(Ma(C) − μa)/σa is required to normalize Ma, since each attribute has different measur-
ing units (e.g., milliseconds for response time, megabytes for memory consumption, etc)
and orders of magnitude. The computation of μa and σais done automatically at design
time, while wa must be set manually considering that

∑
a∈A |wa| = 1.

The linear combination of these metrics in such a single objective function as in
Equation 1, allows us to deal simultaneously with several attributes. That is, we trans-
form a multi-objective optimization problem into a mono-objective one by means of a
scalarization technique known as weighted sum method (Marler and Arora 2010). The
parameters of the scalarization are the weights of each term, and they provide a simple
way for specifying stakeholders´ preferences for attributes. By convention, the opti-
mization problem is stated in terms of minimization, but each individual term can be
maximized or minimized if the associated weight is negative or positive.

2.3.3 Examples of property specification andmeasurement

Figure 3 shows an example of how component property values are mapped to feature
attribute slots. Three attributes are depicted: reconfiguration time (rtime), memory con-
sumption (mem), and accuracy (acc). System reconfiguration time is computed with an
additive metric function if the reconfiguration operations are applied sequentially. Thus,
the total time is the sum of the startup time and the shutdown time of added and removed
components respectively. For instance, if ShadowRemoval (SR) component is currently
running and a new reconfiguration is required, rtimeS(SR) = 0 sec since selecting this
feature does not have any impact on the reconfiguration time because the component

Fig. 3 Mapping example from component properties to feature slots rtimeS , rtimeD ,memS ,memD , accS , and
accD
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is already in execution. In turn, rtimeD(SR) = ShutdownTime(SR) because deselecting
this feature implies the removal of the component. In the same way, if the compo-
nent is not running in the current configuration and a new reconfiguration is required,
rtimeD(SR) = 0 sec and rtimeS(SR) = StartupTime(SR).
Besides reconfiguration time, another interesting performance measure is the response

time. Response time is defined as the time required for the system to process a request or
task. It can be measured with an additive or maximum function depending on the com-
ponents execution context. If several tasks are executed in the same thread, the overall
required time is the addition of the required times per task; if each task is instead exe-
cuted in parallel, the overall time is the maximum among the required times per task. In
our video surveillance processing chain, we rename this performance measure as frame
processing time, i.e., the time required to process a video frame. Then, the frame process-
ing time is computed by a maximum function, if each component in the processing chain
runs in parallel, or by an additive function if the execution is sequential. The accuracies of
additive and maximum functions as global quality metrics for estimating reconfiguration
and frame processing time are evaluated in Section 4.
Some propertiesmight apply to some components but not to others. For instance, track-

ing or detection algorithms can be measured in terms of accuracy or sensitivity, but it is
not the case for image acquisition. The same happens with security, usability, and other
quality attributes. If an attribute does not apply to a component or parameter, its aS value
is set to the neutral element as an abstract feature.
With the above examples we showed a variety of runtime properties and metrics

for measuring them. The linear weighed function is fundamental for grouping these
measures and estimating the overall quality of system configuration candidates.

2.3.4 Optimization

The configuration selection or feature model optimization problem (Benavides et al.
2010) takes a partial configuration of an attributed feature model and an objective func-
tion as inputs and returns the full configuration fulfilling the criteria established by the
function. Selecting the configuration that minimizes (or maximizes) the given function
is an intractable combinatorial problem, since the set of valid configurations increases
exponentially with respect to the number of optional features.
In real-time systems that have to adapt themselves in bound periods of time, any opti-

mization algorithm must meet correctness, completeness, and efficiency requirements,
preferably with a high degree of optimality. Algorithm correctness is fundamental since
it is impracticable to deploy an invalid configuration, i.e., a configuration that does not
fulfill feature constraints and resource restrictions. Completeness and time efficiency are
required under time constraints. Finally, although an optimal solution is not mandatory, it
is desirable to compute “good-enough” solutions. The proposed Configuration Selection
Algorithm (Sanchez et al. 2013) meets these requirements.
CSA is based on a Best-First Search schema (Pearl 1984) that performs a systematic

search over an abstract structure called state-space graph. In our case, this structure is a
binary tree where nodes are valid states of the problem (partial and full configurations)
and edges represent individual selection/deselection of features. From a given initial par-
tial configuration that represents the root of the tree-like state-space graph, the algorithm
generates new nodes by selecting and deselecting features. It uses an heuristic function to



Sanchez et al. Journal of Software Engineering Research and Development  (2015) 3:10 Page 12 of 30

estimate the objective function value of these nodes in order to drive the search towards
the optimal (or sub-optimal) solution, and a container (OPEN set) for storing and order-
ing the visited nodes. The algorithm succeeds when it reaches a full configuration (goal
node).
The algorithm is enriched with constraint propagation techniques that reduce the

search space considerably and discard invalid configurations. In addition, the algorithm
was extended to validate resource restrictions (global constraints). Resource restrictions
are represented as inequality constraints using an aggregate function from Table 1. For
example, a memory consumption restriction has the form M+

a (C) ≤ α, where α is the
memory limit. If one of these restrictions is violated, the configuration is considered
invalid and discarded. Inequality constraints with aggregate functions can be used to
enforce other resource restrictions, like CPU load, bandwidth use, or maximum number
of running components.
The OPEN set of visited nodes defines different search strategies depending on its

implementation structure (e.g., a stack, queue, priority queue). Some well-known search
strategies includesDepth-First Search (DFS), Breadth-First Search (BFS), Best-First Search
Star (BF*), and Greedy Best-First Search (GBFS). The last two are informed search
strategies that require the heuristic function to guide the search. They have interest-
ing properties about efficiency and optimality when they are equipped with admissible
heuristics (Pearl 1984), i.e., a function that never overestimates the value of the best
solution. Using relaxed models of the problem (Sanchez et al. 2013), we have designed
admissible heuristics for the 4 aggregate functions presented in Table 1 and a linear com-
bination of them (equation 1) in such a way that BF* can reach an optimal solution within
reasonable time and GBFS can improve the optimality of the approximate solution.
For efficiency, the GBFS strategy appears as the ideal option for real-time systems that

have to adapt in bound time, while BF* strategy is ideal for assisting design decisions, such
as product generation of SPLs from feature models, since it guarantees the optimal solu-
tion using admissible heuristics, although it takes exponential time to compute. Details
of the search strategies and heuristics are provided in (Sanchez et al. 2013), along with
experimental results using randomly generated scenarios.

2.4 Process

In order to apply the approach, three activities must take place in a development pro-
cess, namely: modeling, mapping and attribute specification (Fig. 4). The output of these
activities is a configuration file with the feature model, a mapping of such features, and a
quality attribute specification required by the self-adaptive platform.
The modeling activity consists of defining the feature model that represents the sys-

tem assembly and other concerns (context conditions, user’s requirements, etc). A system

Fig. 4 Process overview
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expert with knowledge of the domain application should conduct the design of the model.
It must be checked at design time to guarantee consistency properties (Moisan et al.
2011). For example, for all possible execution contexts (partial configurations) at least one
valid software configuration to deploy (full configuration) must exist. The modeling relies
on FAMILIAR (FeAtureModel scrIpt Language for manIpulation and Automatic Reason-
ing) (Acher et al. 2013), a scripting language and tool dedicated to the management of
feature models. In particular, FAMILIAR allows us to capture the variability of the soft-
ware system and its possible contextual changes, and also supports the verification of
consistency properties.
The mapping and attribute specification are done by software engineers that are con-

cerned with the system implementation. The mapping activity implies linking software
elements (components and parameters) to features, and system events to feature selec-
tion/deselections (event rules). Currently, the approach is limited to one-to-onemappings
between features and software elements, such as in feature-oriented software develop-
ment (Apel and Kästner 2009) where features are mapped to implementation assets. The
mapping must be specified manually in the configuration file, providing the name of the
feature and its corresponding software element.
Finally, the attribute specification defines the attribute values and metrics for the opti-

mization process. This specification is mademanually in the same configuration file. Each
metric is defined by an aggregate function over an attribute, and a specific weight, as
explained in Section 2.3.2. An attribute value is defined in the configuration file providing
its name, e.g., startup time, constant value, e.g., 0.5 seconds, and the associated software
element, e.g., shadow removal component.

3 Platform architecture
In this section, we describe the platform that materializes the approach presented in the
previous Section. The platform was designed to accomplish the following goals:

1. Provide basic functions for monitoring and re-configuring component-based
system;

2. Articulate the running system with a runtime (feature-based) model, in order to
represent and manipulate configurations and execution contexts;

3. Support the specification, measurement, and optimization of quality attribute
properties on feature models, in order to plan and perform system adaptation
minimizing the impact on quality of service.

The platform was implemented in C++. Its architecture defines three main collaborat-
ing modules, as shown in Fig. 5, which provide a simple interface that makes the design
loosely coupled:

• Component Manager (CM): this part deals with the low-level aspects of software
components and configuration changes. It captures basic events about context
changes (e.g., lighting changes) and user interactions (e.g., preference for high
resolution), and then forwards those events to the Configuration Adapter, which
returns a set of reconfiguration operations for adapting the current configuration to
the new execution context. The CM is responsible for applying these operations,
hence changing the system configuration. These operations can be of the following
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Fig. 5 Platform architecture

types: (i) add a component to system assembly, (ii) remove a component, (iii) replace
one component with another, or (iv) update the parameter configuration of a
component.

• Configuration Adapter (CA): it is a mediator between the CM and the Model
Manager. It receives events from the CM and interprets them as feature actions
(selection and deselection of features) for the Model Manager. In return, it obtains a
new full configuration compatible with the new execution context. Since the CA
manages the mapping between features and software elements, it is responsible for
instructing the CM to reconfigure the system.

• Model Manager (MM): it holds a feature model representation of the running
system. Besides features and their constraints, this model includes feature attributes,
resource restrictions, the objective function to be optimized, and the full
configuration that represents the current system configuration. A key part of the
MM is the Configuration Selection Algorithm (CSA), which is in charge of selecting
a new full configuration from a given partial configuration. This algorithm enforces
configuration validity and resource restrictions, and makes use of an objective
function to guide the selection (e.g., minimizing the number of component changes
in the processing chain, maximizing the detection accuracy, or any linear
combination of them).

The platform lifecycle and control loop is described below. For illustrative purposes, an
adaptation example is then presented in Section 3.2. Details of the CMmodule and a par-
ticular implementation for managing the self-adaptation of a computer vision processing
chain are provided in Section 3.3. This implementation is used for evaluating the accuracy
of metric functions in Section 4.

3.1 Lifecycle and control loop

The mapping to the MAPE-K model is interesting to identify some architectural aspects.
The implemented video processing chain corresponds to the managed element in the



Sanchez et al. Journal of Software Engineering Research and Development  (2015) 3:10 Page 15 of 30

MAPE-K model while the platform corresponds to the autonomic manager. The differ-
ent steps that conform the autonomic manager loop are easily identified in its modules,
namely: the monitor function is carried out by the CM module that captures events and
software exceptions from the running system; the analyze function is done at the CA
module with rules for relating runtime events and selection/deselection of features; the
plan function is performed by both the CSA algorithm and the CA module that trans-
late the new full configuration into reconfiguration operations; and finally, the execute
function is done by the CM module. Feature models and quality metrics are used for the
knowledge representation of the system, context and stakeholders’ goals.
The general platform lifecycle is shown in Fig. 6. Essentially, it comprises 3 steps,

namely: initialization, control loop, and finalization. During initialization, the modules
(CM, CA and MM) are created, and two threads are started for executing the main con-
trol loop: one thread corresponds to the Component Manager thread that executes and
monitors the managed system as a set of running components, while the other thread is
the Configuration Adapter thread that handles events that may imply possible reconfigu-
rations. When an event is triggered by a component, the CM thread dispatches it to the
CA by sending a message. The event is queued to be later processed by the CA thread,
so that the CM is not blocked and might continue with normal operation while next
configuration is computed by the CA in background.
Based on predefined event rules, the CA informs the MM about a subset of

selected/deselected features for the new execution context. For example, a light dimming
event implies the selection of featureContext.Lighting.Low. TheMMcreates a partial con-
figuration based on those features, and also adjusts feature attributes for the selection
step. As we will explain later, some feature attributes have predefined values while others

Fig. 6 Sequence diagram showing the platform lifecycle and control loop
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might change depending on the current system configuration. Next, the selection step
is performed by the CSA that takes as inputs the partial configuration as well as extra
information about feature constraints, attributes, resource restrictions, and the objec-
tive function to minimize. When a new full configuration is computed, the CA compares
the new and current configurations in order to identify reconfiguration operations (e.g.,
addition, removal, replacement, and parameter tuning of software components). The CA
instructs the CM to reconfigure the managed system by providing these operations in a
message, and stays idle while there are no events to handle. Finally, the platform is final-
ized or released when a particular system shutdown event is triggered, generally due to a
user request.

3.2 Adaptation example of a video surveillance system

To illustrate both the approach and platform, we present a simple scenario of run-
time adaptation of the Video Surveillance system described in Section 2.1.1. In this
example, the users’ goal is to execute the VS system for detecting intrusion with peo-
ple recognition under various illumination conditions. For simplicity, we consider only
two optimization criteria: reconfiguration time (rtime), which is expressed in seconds
and must be minimized; and accuracy for intrusion detection (acc), which is a ratio
between 0 and 1 and must be maximized. Then, the objective function is defined by
L(C) = wrtime × (M+

rtime(C) − μrtime)/σrtime + wacc × (M×
acc(C) − μacc)/σacc, where

wrtime > 0 for minimization and wacc < 0 for maximization.
Currently we do not have a complete implementation of this system, but rather a sim-

plified version that is used in Section 4 to empirically evaluate quality metrics. For this
reason, properties weights wrtime and wacc, and feature attributes in Fig. 2(b) were con-
figured manually. For these values,M×

acc(C) andM+
rtime(C) are normalized using μrtime =

1.42 sec, σrtime = 0.65 sec, μacc = 0.6 and σacc = 0.11.
For system startup, let us assume that the scene is under normal light conditions. Since

the system is not yet in operation, the initial full configuration stored by the Model Man-
ager (MM) has an empty set of selected features and the reconfiguration time is equivalent
to the system startup time. According to the users’ goal, the Configuration Adapter
(CA) sends to the MM the features Application.Intrusion.WithRecognition and Applica-
tion.ObjectOfInterest.People to be selected. The initial partial configuration computed by
the MM is partially depicted in Fig. 7(a). Remember that a full system configuration
should be derived from the partial configuration. The selected features lead, via constraint
propagation, to the selection of the features ScenarioRecognition.PeopleBased and Classi-
fication.People, in order to achieve the goals. The rest of the system settings still remain
undefined, providing a set of 72 possible full configurations for the given execution con-
text. This set of configurations are shown in a two-dimensional space in Fig. 8(a), with
accuracy (M×

acc(C)) and startup time (M+
rtime(C)) as their coordinates, and level curves

that indicate the direction in which L(C) decrease.
The CSA is in charge of choosing one of the available full configurations. Let us suppose

that we want to select the most accurate configuration, no matters its required startup
time (as the system is still offline), so we set wrtime ≈0 for the objective function. This
is reflected in level curves that are nearly horizontal. As it can be seen in Fig. 8(a), the
solution returned by the algorithm is the one that maximizes the intrusion detection
accuracy and, consequently, the startup time since the most accurate components and
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Fig. 7 Partial configuration examples. a Initial partial configuration for intrusion detection with people
recognition. b New partial configuration for intrusion detection with light dimming

parameters require more time to be in operation. This solution includes the parameters
Resolution.High and Color.Full for ImageAcquisition, and the components ShadowRe-
moval and Tracking.LongTerm with its three parameters for considering 3D information,
image texture and color, in order to improve intrusion detection performance.
Let us then assume that, at some point in time, ambient light is drastically dimmed,

so the system has to adapt to this lighting reduction. The corresponding “light dim-
ming” event is triggered by the processing chain during the image analysis (segmentation

Fig. 8 Solution sets. a Derived from initial partial configuration. b Derived from new partial configuration
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stage). This event propagates from the Component Manager to the CA. Event rules in
CA consider Application.Intrusion.WithRecognition and Context.Lighting.Low as selected
features to achieve intrusion detection with the current lighting condition. Taking into
account cross-tree constraints, the MM infers the (new) partial configuration depicted
in Fig. 7(b). Note that this is a more restrictive scenario. The ScenarioRecognition com-
ponent is not longer able to precisely recognize people, probably leading to more false
positives during detection. However, this is the best that the VS system can do with poor
lighting conditions.
Since the system is executing, we consider reconfiguration time as a priority over accu-

racy for the next adaptations. Along this line, we set |wrtime| greater than |wacc| in the
objective function. Fig. 8(b) depicts the set of solutions (8 possible full configurations)
derived from the partial configuration in Fig. 7(b). Here, CSA returns the configuration
thatminimizes added, removed and tuned components in order to reduce reconfiguration
time. The chosen solution keeps the Tracking.LongTerm component, together with 3D
and Texture parameters, but removes ShadowRemoval since it is not compatible with the
new lighting context and tunes ImageAcquisition, Classification and ScenarioRecognition
parameters.

3.3 Component manager implementation

The Component Manager is an abstract class defined as a thread with three pure vir-
tual (abstract) methods that are invoked by the Configuration Adapter to initialize,
reconfigure and release the managed system. Its interface is depicted in the gray box in
Fig. 9.
Due to the one-to-one mappings between features and system components and param-

eters, the CA uses a basic set of four reconfiguration operations to instruct the CM,
namely: add (feature selected), remove (feature deselected), replace (one feature selected
and other deselected in an alternative relationship), and update component (feature rep-
resenting a component parameter is selected or deselected). However these operations
do not have an specific semantics. For instance, adding a component can mean to deploy

Fig. 9 Simplified class diagram of the platform
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it on a particular slot of the system that requires an specific interface, or it can mean to
connect a new component with an already deployed one, among others. The Component
Manager and operation classes must be extended in order to apply the approach on a
particular system and provide semantics to these operations.
For the sake of experimentation, we implemented a simple version of the CM that sets

up the system as a linear arrangement of components to perform different computer
vision tasks over a sequence of images. As shown in class diagram in Fig. 9, each running
component is associated with a slot or stage in the processing chain. Thus components
are added, removed and replaced from specific stages in the processing chain.
For implementing the CM, we evaluated some C++ component frameworks based on

the OSGi component model (McAffer et al. 2010), such as the Service Oriented Frame-
work (SOF)3 and the CTK Plugin Framework (CTK)4, but finally decided to use an ad-hoc
solution loosely based on the OSGi model. Components were implemented as shared
libraries (DLL files in the Microsoft Windows operating system) that can be loaded or
unloaded dynamically upon request. These components are based on the computer vision
components defined in (Rocha et al. 2011) that use the OpenCV libraries (Opencv project
2015). OpenCV is a collection of efficient algorithms and data types for implementing
image processing and computer vision systems.
Each component manages its own internal state and resources, and performs a specific

task within the processing chain, like image acquisition, segmentation, motion or face
detection, etc. All components implement a common interface defined by specific C++
declarations, so that a given component can be replaced by another one with the same
interface, if necessary. This interface consists of 4 functions: (i) component initialization,
called when the component is added to a system assembly; (ii) component release, called
when it is going to be removed or replaced by other; (iii) component update, called when
component parameters are modified; and (iv) execution of the main task of the compo-
nent. The latter basically involves performing some processing on an input image (video
frame).

4 Evaluation: methods, results and discussion
In (Sanchez et al. 2013), we evaluated the optimization aspect of the approach by conduct-
ing some experiments in which we analyzed scalability, efficiency, and optimality of CSA
using automatically generated scenarios. In this article, we complement this evaluation
with concrete measures and analyze the accuracy of the additive and maximum metric
functions for estimating two properties of interest in a video processing chain: frame pro-
cessing time and reconfiguration time. Specifically, we performed four experiments with
the additive and maximum metrics: two for frame processing time, and other two for
reconfiguration time. The goal was to compare predicted against measured properties of
the running system. To do so, we stated the following research questions:

Q1. What is the average accuracy of the additive metric for predicting frame
processing time in sequential execution?
Q2. What is the average accuracy of the maximum metric for predicting frame
processing time in parallel execution?
Q3. What is the average accuracy of the additive metrics for predicting
reconfiguration time?
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4.1 Application system and quality attribute Properties

For experimental purposes, we used the Component Manager implementation presented
in Section 3.3 that controls a pipeline of software components for processing a sequence
of video frames. The corresponding feature model is depicted in Fig. 10. This model only
includes deployment and component aspects of the system, showing the software ele-
ments that conforms it: platform executable, OpenCV libraries, the stages that conforms
the pipeline, and the components that can be assembled in each stage.
The CM implements two different execution modes for processing the pipeline of video

frames: sequential and parallel execution. In the former, each video frame is processed
sequentially in a single thread. It starts in the Image Adquisition stage, which captures
images from a physical camera or a video file. Then the image is preprocessed in the Filter
stage before performing some task of interest to the user in the Task Dependent stage.
Finally, the resulting image is visualized in the Visualization stage. For parallel execution,
the producer-consumer concurrency pattern is applied: each stage is performed by an
independent physical thread and is connected to each other with a FIFO queue for storing
the frames that are required by next stage. In this way, the required time for processing a
single frame is bounded to the maximum response time of the involved components.
As it can be appreciated from the model, the second and third stages are optional, and

the components EdgeDetection and MotionDetection are incompatible with the image
output format of ImageSmoothing, what is expressed by cross-tree constraints. This
implies a set of 14 valid configurations. Inputs and outputs of these components are
OpenCV structures that represent images or video frames. As an example, output images
of some of these components are shown in Fig. 11.
The configuration of components can be tuned by the update operation. For instance,

theCameraReader source can be set to either a physical camera or a video file. As another
example, the FaceDetection component, based on a Haar feature-based cascade classi-
fier (Viola and Jones 2001), can be configured with different classifiers in order to detect
frontal or profile faces, upper, lower part or full bodies, among others. For simplicity, in
the model and therefore in the experiments, the variability of components is limited to
their default configuration.

Fig. 10 Feature model of the vision system used as case study
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Fig. 11 Output examples of some vision components. a Original frame from CameraReader. b Output of
EdgeDetection component. c Output of FaceDetection component. d Output of MotionDetection
component

We chose reconfiguration time (rtime) and frame processing time (fptime) for a num-
ber of reasons. First, both are directly composable properties (as explained in Section 4):
reconfiguration time is estimated as the sum of the startup and shutdown time of added
and removed components respectively; while, due to the linear arrangement of compo-
nents, frame processing time can be computed as the sum or maximum response time
of all components involved in the processing chain, depending on whether it performs
a sequential or parallel execution respectively. Second, performance measures in C++
programs are very accurate (in comparison to other languages, like Java), since they are
compiled directly to machine code that is directly executed by the central processing unit.
Besides, the allocation and de-allocation of resources, like memory and library modules,
can be done manually (no automated garbage collection).

4.2 Experiment setup

The experiments were divided into four steps, namely: (i) measuring the properties of
each component in isolation; (ii) using these property values and the additive/maximum
metric function for estimating frame processing time of each configuration, and reconfig-
uration time of each transition between configurations; (iii) measuring the actual frame
processing time and reconfiguration time of the same instances; and (iv) comparing esti-
mated and actual property values to evaluate the accuracy of the metric functions and
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thus answering questions Q1, Q2 and Q3. For reconfiguration time we performed two
experiments with different models –one being an extension of the other– in order to
observe how the metric accuracy is affected when the model is extended with addi-
tional features. All measurements were performed on the same PC with processor AMD
FX-6300 CPU 3.5 GHz, 16 GB RAM, and running Windows 7 OS.
For the first step, we performed a set of repetitive measurements on every components

so as to compute the following values: startup time, i.e., time required by the Component
Manager to load the component; shutdown time, i.e., time required to unload the com-
ponent; and response time, i.e., time required by the component to process a video frame.
These values are summarized in Table 2. For startup and shutdown time, the components
were loaded and unloaded 100 times, and then we computed their average values to vali-
date their stability. These values involve the time required by the ComponentManager for
loading and unloading the library modules, allocating and de-allocating the components
to the processing chain, and calling the init and release procedures of the component
library. Recall that each component is responsible for managing its own set of variables
and resources through the init and release procedures. Furthermore, the response time
was calculated as the average of the time required by each component to process a set of
approximately 1350 frames that composes a video sample of 48 seconds (28 frames per
second), each frame with a resolution of 640x480 pixels and a color depth of 24 bits. It is
a long video sequence from an office with a person coming in and out of scene.
In the following steps we evaluate the accuracy of the metrics for computing the quality

attribute properties. For frame processing time, we considered the measurement of the
14 configurations. The estimated frame processing time value (step ii) is computed with
the additive (sequential execution) and maximum (parallel execution) metrics over the
feature model in Fig. 10 considering response time values in Table 2. Thus, the metric
functions are defined as follows:

M+
fptime(C) =

∑

f∈S
fptimeS

(
f
) +

∑

f∈D
fptimeD

(
f
)

(2)

MM
fptime(C) = max

(
maxf∈SfptimeS

(
f
)
,maxf∈DfptimeD

(
f
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where fptimeS
(
f
)
and fptimeD

(
f
)
are 0, except for concrete features where fptimeS

(
f
) =

responseTime
(
f
)
, i.e., only selected concrete features contribute to the frame processing

time value. The actual value (step iii) of each configuration was computed as the average
time for processing each frame in the video sample. Finally, in Fig. 12(a) and (b) we present

Table 2 Performance properties of individual components

Component Startup time (ms) Shutdown time (ms) Response time (ms)

CameraReader.dll 1.805 ± 0.069 0.047 ± 0.007 1.648 ± 0.328

ImageSmoothing.dll 0.819 ± 0.060 0.037 ± 0.004 12.972 ± 0.509

BackgroundSubtraction.dll 0.813 ± 0.041 0.037 ± 0.004 37.887 ± 3.758

PyramidSegmentation.dll 1.397 ± 0.107 0.055 ± 0.006 52.478 ± 1.902

FaceDetection.dll 27.833 ± 0.538 0.056 ± 0.004 313.260 ± 36.708

MotionDetection.dll 0.848 ± 0.052 0.038 ± 0.004 11.853 ± 0.770

EdgeDetection.dll 0.802 ± 0.036 0.034 ± 0.004 6.543 ± 0.354

ImageWindow.dll 4.692 ± 0.524 1.310 ± 0.195 0.536 ± 0.102

OpenCV libraries 19.543 ± 0.615 0.373 ± 0.019 NA
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Fig. 12 Measured and estimated properties. Dotted black lines are regression curves and solid red lines
represent the ideal trend. a Frame processing time (sequential execution). b Frame processing time (parallel
execution). c Reconfiguration time (preloading OpenCV libraries). d Reconfiguration time (loading OpenCV
libraries on demand)

two scatter plots to compare actual and estimated values of the frame processing time of
these configurations in both execution modes (step iv).
For reconfiguration time, we have a total of 210 transitions among a set of 15 valid states

(14 system configurations plus 1 for system shutdown). The estimated reconfiguration
time value is also computed with an additive metric over the feature model in Fig. 10
enriched with startup and shutdown time values in Table 2. Thus, the metric function is
defined as follows:

M+
rtime(C) =

∑

f∈S
rtimeS(f ) +

∑

f∈D
rtimeD(f ) (4)

where rtimeS(f ) and rtimeD(f ) are 0, except for concrete features where fperiodS(f ) =
startupTime(f ), if f was deselected in a previous configuration, and fperiodD(f ) =
shutdownTime(f ), if f was selected in a previous configuration. As third step, each tran-
sition was performed and measured 30 times to get a statistical value of the actual
reconfiguration time.
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We performed two experiments predicting reconfiguration time with two different fea-
turemodels: the one depicted in Fig. 10 and a refinement of it that consists of replacing the
feature OpenCVlibraries with the sub-model presented in Fig. 13. This new model breaks
down the OpenCV library component into a set of 10 libraries with dependencies among
them. For instance, opencv_video requires functionality provided by opencv_imgproc
which in turn depends on opencv_core. Components in the processing chain require dif-
ferent subsets of these libraries. For instance, CameraReader and ImageWindow require
opencv_highgui, while MotionDetection requires opencv_video. These dependencies are
expressed in terms of cross-tree constraints in the model.
With these two models, we defined two different ways for managing OpenCV libraries.

In the former, OpenCV libraries are considered as a single component, therefore all
libraries are loaded and unloaded together when the system is initialized and released
respectively, although not all libraries are necessarily used. We called it the preloaded
model. In Fig. 12(c) we present a scatter plot to displays actual and estimated values of the
reconfiguration time of the 210 possible configuration transitions in this model.
In the refined model, OpenCV libraries are managed separately so that they are loaded

just when a component requires it. Thus initializing and releasing the system imply
smaller times than the preloaded model. We called it the on demand model. In Fig. 12(d)
we present a scatter plot that display actual and estimated values of reconfiguration time
considering this model. For estimating reconfiguration time, the startup and shutdown
time of individual OpenCV libraries were measured, but they are not included in Table 2
for the sake of brevity.

4.3 Results and discussion

In Fig. 12 we clearly observe a linear correlation between measured and predicted values
of frame processing time and reconfiguration time properties. Regression lines (dotted
black curves) slightly deviate from the ideal trend (solid red curves) that represents the
perfect match of estimated and actual property values. Besides linear correlation, we
analyzed the Accuracy of the metrics. The accuracy is a ratio between 0 and 1 that is
computed as 1 − FaultRate, being the fault rate the average relative difference between
estimated and actual property values:

FaultRate = 1
n

n∑

i=1

|actuali − estimatedi|
actuali

(5)

In Table 3, we summarize the results of the four experiments.
For our research question Q1, the additive function is quite accurate (94.1%) for pre-

dicting frame processing time on sequential execution. Regarding Q2, the maximum

Fig. 13 Refinement of feature OpenCVlibraries
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Table 3 Results of experiments

Experiment Frame proc. time Frame proc. time Reconf. time Reconf. time
(sequential execution) (parallel execution) (preloaded) (on demand)

Slope regression 0.869 0.866 0.962 0.935

Y-intercept regression 4.770 ms 4.060 ms 0.042 ms 0.207 ms

Pearson coefficient + 0.976 + 0.973 + 0.995 + 0.993

Fault rate 0.059 0.094 0.095 0.124

Average accuracy 0.941 0.906 0.905 0.876

metric is adequate for estimating frame processing time on parallel execution with an
accuracy of 90.6%. Finally, regarding Q3, the results show that the additive metric pre-
dicts reconfiguration time with an average accuracy of 90.5% and 87.6% on the original
and refined model respectively.
We observe that the additivemetrics is more accurate for frame processing time than for

reconfiguration time, and for the latter, it is better in the simplest model. We believe this
is due to the complexity of the underlying experiment. For the former, we only evaluated
14 scenarios (valid configurations) involving the response time of 8 components. Besides,
processing video frames requires more CPU (and GPU) operations, whose execution time
measurement is more accurate, than input/output operations. For reconfiguration time,
we evaluated 210 scenarios (transitions among valid configurations) and loading shared
libraries required additional input/output operations that affected the accuracy of mea-
surements. Particularly, the experiment with the refined model is more complex since it
manages the 10 OpenCV libraries independently, when compared to the simplified model
that loads and unloads all libraries at once.
From the linear regression analysis, we observe that the Pearson correlation coefficient

is very close to 1. For both frame processing and reconfiguration time, the estimated val-
ues are slightly higher than the measured ones on average. At first sight, the opposite
should be expected due to the overheads introduced by the ComponentManager for con-
trolling component execution and reconfiguring the processing chain. However, these
overheads are negligible with respect to component response, startup and shutdown time.
The CameraReader component creates one image object per frame, while ImageWindow
destroys them, so, for the sequential processing of video frames, the overhead introduced
by the CM only involves invoking each component in order with a reference to the image
frame objects. For parallel processing, we expected an overhead due to the synchroniza-
tion of threads on the FIFO queues. On the other hand, reconfiguration requires to iterate
and parse a list of operations instructed by the Configuration Adapter module. These
overhead times are not considered in the experiment model, since they are orders of
magnitude lower than performance properties values in Table 2.
The reason for these deviations are feature interactions (Siegmund et al. 2013), i.e.,

the selection of one feature influences non-functional properties of other features. The
impact of these interactions is better observed when estimating frame processing time.
The response time of components in the task dependent stage varies depending on the
image output of the component in the filter stage. These components apply some image
preprocessing filters that change image characteristics and so reducing the response time
of the following components. For instance, the configurations using FaceDetection with
and without ImageSmoothing have an average processing time of 252.78 ms and 306.81
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ms respectively in parallel execution, what shows that smoothing reduces face detection
response time considerably.

4.4 Threats to validity

The experiments above had some drawbacks. The application system is composed of
a total of 19 components, namely the platform executable, 8 component libraries, and
10 OpenCV libraries. This leads to 14 possible configurations. Although our experiments
represent a realistic vision system, we might imagine a case study with hundred of com-
ponents and parameters in order to provide a deeper statistical analysis of the accuracy of
metric functions on feature models, and how it is affected when the model scale in terms
of number of features and configurations.
With the additive and maximum metric functions we demonstrate predictability of

performance properties such as reconfiguration time and frame processing time on
sequential and parallel execution contexts. However, we leave aside the remaining set of
metrics for other non-functional properties.
Thesemetric functions do not contemplate the interaction between features.We rely on

aggregate functions where features contribute to configuration property values depending
only on their own state (selected or deselected). The problem of prediction on feature
models when the influence of features on configuration properties depends on the states
of other features has been studied in (Siegmund et al. 2013). In this regard, there is a clear
need to extend the metrics set to consider general objective functions in order to compute
complex properties in other software architectures where feature interaction influences
are more complex.
Finally, the properties values depicted in Table 2 are hardware-dependent performance

properties because they rely heavily on the hardware characteristics of the execution envi-
ronment. Besides, the response time of each component depends on the characteristic
of the input video, such as frame resolution, color depth, scene elements, etc. Therefore,
values in Table 2 are not suitable for execution environments in general. However, it is
important to emphasize that the goal of our approach is not to provide accurate pre-
dictions of non-functional properties, but rather to provide a “good enough” mechanism
for comparing configurations based on quality criteria. Our experiments were performed
with the purpose of showing how a simple metric function can be used for estimating
performance properties of a system configuration represented by a feature model.

5 Related work
Related work is separated into three categories, namely: (i) use of models and QoS criteria
at runtime for adaptive systems; (ii) management and variability of non-functional prop-
erties on feature models; (iii) and predictability of quality attributes on component-based
software systems and software product lines. Related work on algorithms for feature
model optimization was previously discussed in (Sanchez et al. 2013).
In the first category, several approaches have proposed the use of models and QoS

criteria at runtime for specifying and executing adaptive systems, such as architecture-
based self-adaptation (da Silva et al. 2012; Garlan et al. 2009) and DSPL (Morin et al.
2009). In (Garlan et al. 2009), Garlan et al. propose an approach that uses the software
architecture of a system as a model for dynamic adaptation. This approach provides a
framework that supports mechanisms for self-adaptation and allows adaptation expertise
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to be specified and reasoned about. Similarly, in (da Silva et al. 2012), Silva et al. address
the dynamic selection of architecture configurations based on QoS criteria but they
describe the system architecture with Arquitecture Description Languages (ADL) instead
of architectural models like (Garlan et al. 2009). In (Morin et al. 2009), Morin et al.
present an approach for managing DSPL at runtime, which combines model-driven
and aspect-oriented techniques. Besides feature models for DSLPs, this approach uses
additional models for representing system context, architecture and reasoning (i.e., con-
figuration selection), while we instead appeal to a unified model for representing context,
architecture and reasoning.
Besides system and context representation, these works differ mainly in the reason-

ing process for configuration selection: (Garlan et al. 2009) and (da Silva et al. 2012) rely
on utility theory to decide among multiple potential adaptation alternatives considering
business objectives and priorities with regard to runtime attributes; whereas the reason-
ing framework in (Morin et al. 2009) is based on a goal-based model but no optimization
strategy is explicitly described. Unlike them, we formalize and resolve this issue as a
feature model optimization problem.
In the second category about management and variability of non-functional prop-

erties, different works have addressed this issue by means of software product lines
conceptualized as feature models (Bartholdt et al. 2009; Siegmund et al. 2008, 2012).
These works propose several techniques and tools for specifying properties as feature
attributes, measuring them for partial and full configurations, dealing with trade-offs,
and assisting the user in the product configuration process. For instance, Bartholdt
et al. 2009 propose a tool for dealing with trade-offs and measuring non-functional
properties in the configuration process of SPLs, based on aggregate functions computed
over feature attributes. According to (Siegmund et al. 2012), non-functional proper-
ties can be specified following any of the three classes mentioned in Section 2.3.1.
Siegmund et al. 2008 propose a similar categorization to select an appropriate mea-
surement technique for these properties, and provide an optimization process based
on Constraint Satisfaction Problem (CSP) solvers. The main difference between these
works and our proposal is that they consider non-functional properties on fea-
ture models for design decisions, while we address runtime adaptation where con-
figuration selection algorithms must meet correctness, completeness, and efficiency
requirements.
Finally, regarding the third category, predictability of quality attributes was already

addressed for both component-based systems and software product lines. In (Crnkovic
et al. 2005), Crnkovic et al. analyze the relation between the quality attributes of com-
ponents and those of their compositions. They provide a classification of properties
according to the principles applied in deriving system properties from the properties of
the involved components. This classification is illustrated with several examples of run-
time properties, some of which are directly derived from component properties with
some kind of aggregate function. Siegmund et al. address predictability of properties
on software product lines (Siegmund et al. 2013). They highlight the fact that a predic-
tion cannot be exact if the interaction among features is not taken into account, because
the selection (or deselection) of one feature may influence non-functional properties of
other features. Thus, they propose an approach for predicting a configuration property
from a small set of generated andmeasured configurations. By comparing measurements,
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they approximate the influence of each feature on the property in question instead of
measuring feature properties in isolation.
The metric functions and properties that we evaluate on feature models conform to

the classification proposed in (Crnkovic et al. 2005). However we do not consider more
expressive functions to deal with the feature interaction concern addressed in (Siegmund
et al. 2013) that affects predictability on feature models. This is an important concern
that might cause unpredictable anomalies when estimating non-functional properties in
software product lines.

6 Conclusions
This article presents an approach to improve the dynamic adaptation of component-based
systems by dealing with runtime quality attributes on feature models. The main contri-
bution is the provision of a simple but still expressive framework to specify, quantitatively
evaluate and balance multiple quality attributes to reach a better system configura-
tion. This is especially important for applications that exhibit high variability at the
specification and implementation levels, leading to a large number of configurations.
Our approach works integrated into a component-based platform that provides mech-

anisms for event handling and self-adaptation. We used this platform to implement
a computer vision system as a linear arrangement of components following the pipe-
and-filter architectural style. However, we consider that it can be tailored to different
component assemblies by providing a more sophisticated Component Manager imple-
mentation. In this respect, we plan to further analyze approach limitations and extend its
applicability to other architectural styles. This would probably require to analyze more
complex mappings among features and software elements. In addition, we should note
that the approach requires an extra engineering effort at development time for designing
the model, mapping it to system elements, and specifying attribute values, metrics and
weights for the optimization step. Along this line, we expect to further develop the tooling
support for system developers.
The configuration selection is supported by a heuristic search algorithm that ensures

correctness and completeness while addressing time efficiency and scalability for large
scale instances of the problem.With a different algorithm strategy, even optimality can be
achieved at expense of a lower performance. The use of admissible heuristics on feature
models guarantees optimal solutions, but a limitation is that the objective function is
restricted to a linear combination of the basic aggregate functions (as depicted in Table 1).
An interesting improvement is then to provide support for general objective functions to
cover more complex properties. Since several algorithms have been proposed for dealing
with the feature model optimization problem, a comparative evaluation of our current
algorithm against other alternatives is needed in order to compare their efficiency and
optimality.
The aggregate functions that we have considered are appropriate for several proper-

ties that are directly derived from properties of individual components. For instance, we
showed evidence that the additive and maximum functions are reasonably accurate for
measuring performance properties on a realistic component-based computer vision sys-
tem. Anyway, more evaluations remain to be done to study the effectiveness of these
functions and the influence of feature interactions on larger models. Furthermore, other
metrics and runtime properties need to be assessed.
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On the application side, we plan to adapt our approach to the domain of service-
oriented computing for assisting the development, composition and integration of com-
puter vision applications. A challenge here is how to deal with concerns related to mobile
and distributed computing. In a distributed context, quality attributes such as security,
availability, scalability and battery consumption can be more difficult to manage than in
centralized systems.

7 Consent
Written informed consent was obtained from the person involved in the video sample
used for experimental purposes.

Endnotes
1https://github.com/EmilianoSanchez/FeatureModelOptimization
2For simplicity, terms such as quality attribute, quality attribute property, and

non-functional property are treated as synonymous.
3http://sof.tiddlyspot.com/
4http://www.commontk.org/index.php/Documentation/Plugin_Framework
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