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Abstract

Background: Due to the characteristics of the maintenance process followed in open
source systems, developers are usually overwhelmed with a great amount of bugs. For
instance, in 2012, approximately 7,600 bugs/month were reported for Mozilla systems.
Improving developers’ productivity in this context is a challenging task. In this paper,
we describe and evaluate the new version of NextBug, a tool for recommending similar
bugs in open source systems. NextBug is implemented as a Bugzilla plug-in and it was
design to help maintainers to select the next bug he/she would fix.

Results: We evaluated the new version of NextBug using a quantitative and a
qualitative study. In the quantitative study, we applied our tool to 130,495 bugs
reported for Mozilla products, and we consider as similar bugs that were handled by
the same developer. The qualitative study reports the main results we received from a
survey conducted with Mozilla developers and contributors. Most surveyed developers
stated their interest in working with a tool like NextBug.

Conclusion: We achieved the following results in our evaluation: (i) NextBug was able
to provide at least one recommendation to 65% of the bugs in the quantitative study,
(ii) in 54% of the cases there was at least one recommendation among the top-3 that
was later handled by the same developer; (iii) 85% of Mozilla developers stated that
NextBug would be useful to the Mozilla community.

Keywords: Bugs; Recommendation systems; Bug mining techniques

Background
Softwaremaintenance requests can be grouped and implemented as part of large software
projects (Aziz et al. 2009; Marques-Neto et al. 2013; Junio et al. 2011; Tan and Mookerjee
2005). open source projects typically adopt continuous maintenance policies where the
maintenance requests are addressed by maintainers with different skills and commitment
levels, as soon as possible, after being registered in an issue tracking platform, such as
Bugzilla and Jira (Tan and Mookerjee 2005; Mockus et al. 2002; Liu et al. 2012).
This process is usually uncoordinated, which results in a high number of issues from

which many are invalid or duplicated (Liu et al. 2012). In 2005, a certified maintainer
from the Mozilla Software Foundation made the following comment on this situation:
“Everyday, almost 300 bugs appear that need triaging. This is far too much for only the
Mozilla programmers to handle” (Anvik et al. 2006). The dataset with bugs reported
for the Mozilla projects indicates that, in 2011, the number of issues reported per year
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increased approximately 75% when compared to 2005. In this context, tools to assist in
the issue processing would be very helpful and can contribute to increase the productivity
of open source systems development.
Furthermore, software developers are often involved in situations of changes of context

in a typical workday. These changes normally happen due tomeetings, mails, instant mes-
saging, etc., or when a given task is concluded and developers need to choose a new task
to work on. Regardless the reasons, the negative effect of context changes on developers’
productivity are well-known and studied. For example, in a recent survey with developers
of the industry, more than 50% of the participants answered that a productive workday
is one that flows without context-switches and having no or few interruptions (Meyer
et al. 2014). Another study shows that developers spent at least two thirds of their time
in activities related to task context, i.e., searching, navigating, and understanding the
code relevant to the current task at hand (Ko et al. 2005). We argue that this time can
be reduced if developers consistently decide to work on new tasks similar to the one
previously concluded.
More specifically, context switches can be reduced by guiding developers to work on a

set of bugs B0, B1, . . . ,Bn, where Bi requires changes on parts of the system related to a
previous bug Bi−1, for i > 0. By following this workflow, context changes could be miti-
gated because the order of handled bugs naturally fosters a kind of periodic maintenance
policy, i.e., a bug that is selected, comprehended, and changed at a given time helps other
bug corrections in a near future.
In this paper, we claim that a simple form of periodic maintenance policy can be

promoted in open source systems by recommending similar maintenance requests to
maintainers whenever they manifest interest in handling a given request. Suppose that a
developer has manifested interest in a bug with a textual description di. In this case, we
rely on text mining techniques to retrieve open bugs with descriptions dj similar to di and
we recommend such bugs to this maintainer.
More specifically, we present NextBug, a tool to recommend similar bugs to maintain-

ers based on the textual description of each bug stored in Bugzilla, an issue tracking
system widely used by open source projects. The proposed tool is compatible with the
software development process followed by open source systems for the following rea-
sons: (a) it is based on recommendations and, therefore, maintainers are not required
to accept extra bugs to fix; (b) it is a fully automatic and unsupervised approach which
does not depend on human intervention; and (c) it relies on information readily available
in Bugzilla. Assuming the recommendations effectively denote similar bugs and suppos-
ing that the maintainers would accept the recommendations pointed out by NextBug, the
tool can contribute to introduce gains of scale in the maintenance of open source sys-
tems similar to the ones achieved with periodic policies (Banker and Slaughter 1997). We
also report a quantitative and qualitative study focusing on the Mozilla ecosystem. In the
quantitative study, we applied NextBug to a dataset of 130,495 bugs reported for Mozilla
systems. In the qualitative study, we performed a survey asking Mozilla developers if they
would use a tool to recommend similar bugs to work on.
We also present in this paper the following improvements over our first work on

NextBug (Rocha et al. 2014): (a) new features introduced in NextBug version 0.9, includ-
ing recommendation filters and logging files; (b) an extended section presenting the tool
and its architecture in more detail; (c) more tools presented and analysed in the related
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tools section; (d) a new quantitative study using the full dataset of 130,495 bugs (the pre-
vious conference paper used a subset of this dataset); (e) a new section describing the
qualitative study.
The remainder of this paper is organized as follows. Section 2 discusses related tools,

including tools for finding duplicated issue reports in bug tracking systems and also tools
proposed to assign bugs to developers. The architecture, the central features, and an
example of usage of NextBug are described in Section 2. We present the dataset and the
evaluation of the tool in Section 2. Conclusions and future work are offered in Section 2.
Finally, the availability and requirements for NextBug are presented in Section 2.

Related tools
Most open source systems adopt an Issue Tracking System (ITS) to support their mainte-
nance process. Normally, in such systems both users and testers can report modification
requests (Liu et al. 2012). This practice usually results in a continuous maintenance
process where maintainers address the change requests as soon as possible. The ITS pro-
vides a central knowledge repository which also serves as a communication channel for
geographically distributed developers and users (Anvik et al. 2006; Ihara et al. 2009).
Recent studies focused on finding duplicated issue reports in bug tracking systems.

Duplicated reports can hamper the bug triaging process and may drain maintenance
resources (Cavalcanti et al. 2013). Typically, tools for finding duplicated issues rely on
traditional information retrieval techniques such as natural language processing, vector
space model, and cosine similarity (Alipour et al. 2013; Sun et al. 2011; Wang et al. 2008).
One of such approaches, called REP, analyzes both the textual information (using tra-
ditional techniques) along such with categorical information available in bug reports to
improve the accuracy when finding duplicated reports (Sun et al. 2011).
When we compare techniques to find duplicated reports (Alipour et al. 2013; Sun et

al. 2011; Wang et al. 2008) with NextBug, some differences emerge. First, duplicated bug
techniques exclude bugs before they become available for developers to work on, i.e.,
duplicated techniques are applied in earlier stages of the maintenance process. On the
other hand, NextBug is applied at later stages in the maintenance process, i.e., it shows
bug recommendations when the developer is selecting bugs to work on. Second, NextBug
only executes if the developer actively clicks on it. Therefore, NextBug causes no addi-
tional overhead unless the user wants to see its recommendations. The duplicate bug
techniques do not specify whether their approach will be always executed and the over-
head costs for such techniques. The third difference is the design objective; techniques to
detect duplicated bugs need to be very precise to sort out duplicated bugs and not similar
ones. NextBug aims to do the opposite and therefore needs to be precise to find similar
bugs and not duplicated ones.
Tools to recommend the most suitable developer to handle a software issue are also

reported in the literature (Anvik andMurphy 2011; Tamrawi et al. 2011; Kagdi et al. 2012).
Most of them can be viewed as recommendation systems that suggest developers to han-
dle a reported bug. For instance, Anvik and Murphy (2011) proposed an approach based
on supervised machine learning that requires training to create a classifier. This classifier
assigns the data (bug reports) to the closest developer.
Tools to recommend developers are usually applied at the same stages of the mainte-

nance process as NextBug. However, these tools are more appropriate to organizations
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where most of the maintenance work is assigned to developers by their manager. NextBug
is design to help in open source projects, where most developers usually have the liberty
to chose what to work on.
We found in the literature few studies dealing with similar issue reports. There is one

approach that suggests the fixing effort (in person-hours) required to correct an issue by
using similar issues already fixed as training data (Weiss et al. 2007). Another approach
also tries to predict the fixing time of bugs but to classify them as fast or slow fixing (Giger
et al. 2010). These approaches could also improvemaintenance productivity like NextBug,
particularly if developers decide to work on fast fixing bugs. However, unlike NextBug,
they do not help to reduce context switches which may reduce their productivity gains.
Another study that deals with similar issue reports relies on similarity to extract terms
and locate source code methods that may cause defects based on polymorphism (Wang
et al. 2010). This is a completely different application domain than NextBug, as this study
tries to predict defects, while NextBug aims to help developers address bugs in a more
productive manner.
BugMaps is a tool that extracts information about bugs from bug tracking systems,

link this information to other software artifacts, and provides many interactive visualiza-
tions of bugs, which are called bug maps (Hora et al. 2012). BugMaps-Granges extends
BugMaps with visualizations for causal analysis of bugs (Couto et al. 2014b; Couto et al.
2014a).
To conclude, to the best of our knowledge, no available tools are capable of recommend-

ing similar bugs to help maintainers of open source systems.

Implementation
In this section, we present NextBug version 0.9, an open source tool available under the
Mozilla Public License (MPL). In Section 2, we describe the main features.We present the
tool’s architecture and its main components in Section 2. Finally, in Section 2, we present
an example of NextBug recommendation.

Main features

Currently, there are several ITSs that are used in software maintenance such as Bugzilla,
Jira, Mantis, and RedMine. NextBug is implemented as a Bugzilla plug-in because this
ITS is used by theMozilla project, which was used to validate our tool. However, NextBug
could be extended and applied to other ITS.
When a developer is analysing or browsing an issue, NextBug can recommend similar

bugs in the usual Bugzilla web interface. NextBug uses a textual similarity algorithm to
verify the similarity among bug reports registered in Bugzilla. This algorithm is described
in Section 2.
Figure 1 shows an usage example of our tool. This figure shows a real bug from the

Mozilla project, which refers to a FirefoxOS application issue related to a mobile device
camera (Bug 937928). As we can observe, Bugzilla shows detailed information about this
bug, such as a summary description, creation date, product, component, operational sys-
tem, and hardware information. NextBug extends this original interface by showing a list
of bugs similar to the browsed one. This list is shown on the lower right corner. Another
important feature is that NextBug is only executed if its Ajax link is clicked and, thus, it
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Figure 1 NextBug Screenshot. A screenshot showing the original Bugzilla interface for browsing a bug
enhanced with the NextBug plug-in. Similar bugs are shown in the lower right corner.

does not cause additional overhead or hinder performance to developers who do not wish
to follow similar bug recommendations.
In Figure 1, NextBug suggested three similar bugs to the one which is presented on the

screenshot.
As we can note, NextBug not only detects similar bugs but it also reports an index to

express this similarity.
By proposing NextBug, our final goal is to guide the developer’s workflow by suggesting

similar bugs to the one he/she is currently browsing. If a developer chooses to handle one
of the recommended bugs, we claim he/she can minimize the context change inherent to
the task of handling different bugs and, consequently, improve his/her productivity.
An important new feature of NextBug regarding its first released version (Rocha et al.

2014) is the support of filters to configure the provided recommendations. We imple-
mented this feature after conducting a survey with Mozilla developers. Many developers
said the previous version of our tool is indeed useful but we should provide a feature to
customize the search results. The following comments show a sample feedback received
from 66 Mozilla developers:
“It would not be bad, as long as it could be configured to do the recommendations according
to a set of parameters.” – R.C.* (We show only the initials from survey subjects to preserve
their anonymity).
“If it presented similar bugs that I did not file, and which were not assigned to anyone, that
might be useful.” – B.B.
“It would probably need to be able to at least check if a bug is already assigned to the
current user (or to another user, which probably makes them ineligible, too).” – T.S.
The recommendations produced by NextBug follow the established criteria set up by

the filters. By clicking on the gear icon next to the NextBug label, a dialog popup shows the
configuration options for the filters (Figure 2). These filters include the following options:
(a) similarity threshold, i.e, the minimum similarity index required for a recommendation
to be considered valid, (b) maximum number of recommendations given by NextBug, (c)
maximum and minimum bug severities considered valid for the recommendations, (d)
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Figure 2 NextBug Config. The NextBug dialog showing the configuration options for filtering
recommendations. These filter options are highlighted in (a) – (f).

option to consider enhancements requests along with with bugs when presenting the rec-
ommendations for similar bugs, (e) searching only for unassigned bugs, i.e., recommend
only bugs that no one is currently working on, and (f ) shows only bugs that have not been
reported by the current user; this filter might be useful because the current user is proba-
bly aware of the bugs he/she reported and he/she may not want them to be recommended
back to him/her. Except for the first and second filters, all other filters are optional, e.g.,
the user is not required to check for unassigned bugs if he/she doesn’t want to.
Moreover, the similarity threshold (i.e., the first filter) needs some experimentation

from the user to fit his preferences. We suggest an initial value of 10%, which usually
results in a good number of relevant recommendations. As the user increases this value,
NextBug gives less recommendations but more precise ones as the tool becomes more
strict. The decision is up to the user, who can decide if he/she wants fewer but more
precise recommendations, or more recommendations but not as precise.
Figure 3 shows NextBug’s architecture, including the system main components and the

interaction among them. As described in Section 2, NextBug is a plug-in for Bugzilla.

Figure 3 NextBug Architecture. Main NextBug components, their interaction with other components and
with the Bugzilla system.
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Therefore, it is implemented in Perl, the same language used in the implementation of
Bugzilla. Basically, NextBug instruments the Bugzilla interface used for browsing and for
selecting bugs reported for a system. NextBug registers an Ajax event in this interface
that calls NextBug passing the browsed issue and the filter options as input parameters.
We opt for an Ajax event because it is executed only if it is called by the developer and
therefore it does not cause additional overhead.

Architecture and Algorithms

Algorithm 1 summarizes the processing of a NextBug Ajax event. It selects the fil-
tered open issues that follows the criteria defined by the filter options (line 3), and then
performs standard IR techniques on these open issues along with the browsed issue
(lines 4-9). The processed issues are passed to the recommender system which selects
the ones that are more relevant to the browsed issue (line 10). Finally, the produced
recommendations are returned to the Bugzilla interface (line 14).

Algorithm 1 Recommendation Algorithm
1: function NEXTBUG-EVENT( BrowsedIssue, Options)
2: StartTime = get-System-Time-Milisecs( );
3: FilteredOpenIssues = get-Open-Issues( Options );
4: q = IR-Processing( BrowsedIssue );
5: D = ∅;
6: for each issue d′ ∈ FilteredOpenIssues do
7: dj = IR-Processing(d′);
8: D = D ∪ dj ;
9: end for

10: Recommendations = recommender( q, D, Options );
11: EndTime = get-System-Time-Milisecs( );
12: ExecutionTime = EndTime − StartTime;
13: log( q, Recommendations, ExecutionTime );
14: return Recommendations ;
15: end function

Figure 3 shows that NextBug architecture has two central components: Information
Retrieval (IR) Process and Recommender. We discuss these two components in the
following subsections.

Information retrieval process component

The IR Process component obtains the filtered open issues currently available on the
Bugzilla system along with the browsed bug. Then it relies on the following standard
IR techniques for natural language processing: tokenization, stemming, and stop-words
removal (Wang et al. 2008; Runeson et al. 2007). We implemented all such techniques in
Perl. After this initial processing, the issues are transformed into vectors using the Vector
Space Model (VSM) (Runeson et al. 2007; Baeza-Yates and Ribeiro-Neto 1999). VSM is a
classical information retrieval model to process documents and to quantify their similar-
ities. The usage of VSM is accomplished by decomposing the data (available bug reports
and queries) into t-dimensional vectors, assigning weights to each indexed term. The
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weights wi are positive real numbers that represent the i-th index term in the vector. To
calculate wi we used the following equation, which is called a tf-idf weighted formula:

wi = (1 + log2 fi) × log2
N
ni

where fi is the frequency of the i-th term in the document, N is the total number of
documents, and ni is the number of documents in which the i-th term occurs.

Recommender component

The Recommender component receives the processed issues and verifies the ones simi-
lar to the browsed one. The similarity is computed using the cosine similarity measure
(Baeza-Yates and Ribeiro-Neto 1999; Runeson et al. 2007). More specifically, the simi-
larity between the vectors of a document dj and a query q is described by the following
equation, which is called the cosine similarity because it measures the cosine of the angle
between the two vectors:

Sim(dj, q) = cos(�) =
−→
dj • −→q

||−→dj || × ||−→q ||
=

∑t
i=1 wi,d × wi,q√∑t

i=1(wi,d)2 ×
√∑t

i=1(wi,q)2

Since all the weights are greater or equal to zero, we have 0 ≤ Sim(dj, q) ≤ 1, where zero
indicates that there is no relation between the two vectors, and one indicates the highest
possible similarity, i.e., both vectors are actually the same.
The issues are then ordered according to their similarity before being returned to

Bugzilla. Since NextBug executes as an Ajax event, the recommendations are showed in
the same Bugzilla interface used by developers when browsing and selecting bugs to fix.
Logging files are also updated with anonymous information about the process before

the recommendations return to Bugzilla interface. The anonymity is important to pre-
serve the user’s privacy and to prevent NextBug being perceived as a spyware program.
The logging files register execution time data, the browsed issue, and the recommen-
dations given. Therefore, it is possible to monitor how long it takes for NextBug event
to execute. The anonymous data collected can also be used in future studies to support
further analysis and evaluation on NextBug.

Example of recommendation

Table 1 presents an example of a bug opened for the component DOM:Device

Interfaces of the CoreMozilla product and the first three recommendations (top-3)
suggested by NextBug for this bug. As we can observe in the summary description, both
the query and the recommendations require maintenance in the Device StorageAPI,

Table 1 Example of Recommendation

Sim Bug ID Summary Creation Fixed

Bug – 788588

Device Storage - Default location for
device storage on windows should
be NS_WIN_PERSONAL_DIR

2012-09-05 2012-09-06

Top-1 56% 754350
Device Storage - Clean up error
strings 2012-05-11 2012-10-17

Top-2 47% 788268
Device Storage - Convert tests to
use public types 2012-09-04 2012-09-06

Top-3 42% 786922
Device Storage - use a properties
file instead of the mime service 2012-08-29 2012-09-06
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used by Web apps to access local file systems. Moreover, all four issues were handled by
the same developer (Dev ID 302291).
We can also observe that the three recommended issues were created before the original

query. In fact, the developer fixed the bugs associated to the second and the third recom-
mendations in the same date on which he/she fixed the original query, i.e., on 2012-09-06.
However, he/she only resolved the first recommended bug (ID 754350) 41 days latter, i.e.,
on 2012-10-17. Therefore, NextBug could have helped this maintainer to discover quickly
the related issues, which probably demandedmore effort without a recommendation tool.

Results and discussion
In this section, we initially describe the dataset used to evaluate NextBug in quantitative
terms (Section 2). Section 2 presents the main results from this quantitative study. Finally,
Section 2 shows the main findings of a qualitative study with Mozilla developers.

Dataset

We used a dataset with bugs from the Mozilla project to evaluate NextBug. Mozilla is
composed of 69 products from different domains which are implemented in different
programming languages. TheMozilla project includes some popular systems such as Fire-
fox, Thunderbird, SeaMonkey, and Bugzilla. We considered only issues that were actually
fixed from January 2009 to October 2012, in a total of 130,495 issues. More specifically,
we ignored issue types such as “duplicated”, “incomplete”, and “invalid”. Figure 4 shows
the monthly number of issues fixed in this time frame.
Mozilla issues are also classified according to their severity in the following scale:

blocker, critical,major, normal,minor, and trivial. Table 2 shows the number and the per-
centage of each of these categories in our dataset. This scale also includes enhancements
as a particular severity category.
Table 2 also shows the number of days required to fix the issues in each category. We

can observe that blocker bugs are quickly corrected by developers, showing the lowest
values for maximum, average, standard deviation, and median measures among the con-
sidered categories. The presented lifetimes also indicate that issues with critical andmajor
severity are closer to each other. Finally, enhancements are very different from the others,
showing the highest values for average, standard deviation, and median.

Figure 4 Fixed issues per month. Bar chart showing fixed issues per month for Mozilla systems between jan
2009 to oct 2012.
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Table 2 Issues per severity

Severity
Issues Days to resolve

Number % Min Max Avg Dev Med

blocker 2,720 2.08 0 814 15.44 52.25 1

critical 7,513 5.76 0 1258 37.87 99.52 6

major 7,508 5.75 0 1275 41.59 109.83 5

normal 103,385 79.23 0 1373 46.27 108.84 8

minor 3,660 2.80 0 1355 77.05 161.72 11

trivial 2,109 1.62 0 1288 80.84 164.74 11

enhancement 3,600 2.76 0 1285 126.14 195.25 40

Total 130,495 100 – – – – –

Quantitative study

For the quantitative part of our study, we simulated the use of NextBug for each bug in
the dataset, i.e., all bugs were processed as if they were the browsed issue selected by a
developer and processed by Algorithm 1 (described in Section 2). We considered bugs
that were open when the browsed issue was created for the filtered open issues used by the
Algorithm 1. For this study, we configured NextBug with a similarity threshold of 10%.
In this evaluation, we defined a relevant recommendation as one that shares the same

developer with the browsed issue. More specifically, we consider that a recently created
issue is related to a second opened issue when they are handled by the same developer.
The assumption in this case is that NextBug fosters gains of productivity whenever it
recommends issues that are later fixed anyway by the same developer.
We used three metrics in our evaluation: Feedback, Precision, and Likelihood. These

metrics are inspired by the evaluation followed by the ROSE recommendation sys-
tem (Zimmermann et al. 2004). Although, ROSE targets a different context, their metrics
are appropriate to evaluate any kind of recommendation system.
Before we present the equations to calculate the metrics, we must first define the

following sets:

• Aq: the set of recommendations provided by NextBug.
• Aq(k): top-k issues in Aq ordered by textual similarity (only defined for |Aq| ≥ k).
• Rq: the set of open issues when the query (or browsed issue) is processed, ordered by

textual similarity. These open issues must also share the same developer as the query.
This is the formal definition of relevant recommendations used in our evaluation.

• Z: the set of all processed queries. For our evaluation, the Z set is composed by
130,495 queries (i.e., the same size as our dataset).

• Zk : a subset of Z with the queries that returned at least k recommendations.

Feedback: measures the number of recommendations provided to a given query. For-
mally, the feedback Fb(k) is the percentage of queries with at least k recommendations,
as follows:

Fb(k) = |Zk|
|Z|

For example, suppose a recommendation system that executed 100 queries (|Z| = 100).
If all those queries returned at least 1 recommendation each, then Feedback for k = 1,
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i.e., Fb(1) would be 100%. On the other hand, if only 40 of those queries returned at lest 3
recommendations, then Fb(3) = 40%.
Precision:measures the ratio of relevant recommendations. More specifically, we define
the precision of the first k recommendations provided by NextBug as follows:

Pq(k) = |Aq(k) ∩ Rq|
|Aq(k)|

Moreover, the overall precision in our dataset is defined as the average of the precisions
achieved for each query, as follows:

P(k) = 1
|Zk|

∑
q∈Zk

Pq(k)

Suppose that a query returned 4 recommendations. If the first recommendation is a
relevant one, then Pq(1) = 100%. Otherwise, if the first recommendation is not relevant,
then Pq(1) = 0%. Moreover, if among all 4 recommendations only the second one is
relevant, then the precision values would be Pq(2) = 50%, Pq(3) = 33%, and Pq(4) = 25%.
Likelihood: is a common measure to assess the usefulness of recommendations. In our
particular approach, it checks whether there is a relevant recommendation among the
top-k suggested issues. Formally, we define the likelihood of the top-k recommendations
provided by our approach as follows:

Lq(k) =
{
1 if Aq(k) ∩ Rq 
= ∅
0 otherwise

Therefore, Lq(k) is a binary measure. If there is at least a relevant recommendation
among the top-k recommendations, it returns one; otherwise, it returns zero.
The overall likelihood in our dataset is defined as the average of the likelihoodmeasured

for each query, as follows:

L(k) = 1
|Zk|

∑
q∈Zk

Lq(k)

Suppose that a query returned 4 recommendations but only the third one is relevant.
Then the likelihood values would be Lq(1) = 0%, Lq(2) = 0%, Lq(3) = 100%, and Lq(4) =
100%.
Summary: Feedback is the ratio of queries where NextBug makes at least k recommen-
dations. Precision is the ratio of relevant recommendations among the top-k recommen-
dations provided by NextBug. Finally, Likelihood indicates whether at least one relevant
recommendation is included among NextBug’s top-k suggestions.
Results: Figure 5 shows the average feedback (left chart), precision (central chart) and
likelihood (right chart) up to k = 5. The results presented in this figure are summarized
as follows:

• NextBug achieves a feedback of 0.65 for k = 1. Therefore, on average, NextBug
makes at least one suggestion for 65% of the bugs, i.e., for every five bugs NextBug
provides at least one similar recommendation for three of them. Moreover, NextBug
shows on average 3.2 recommendations per query.

• NextBug achieves a precision of at least 0.31 for all values of k. In other words, 31% of
NextBug recommendations are on average relevant (i.e., further handled by the same
developer), no matter how many suggestions are given.
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Figure 5 Evaluation Results. Average results for Feedback, Precision, and Likelihood considering k = 1 to
k = 5.

• NextBug achieves a likelihood of 0.54 for k = 3. Therefore, in about 54% of the cases,
there is a top-3 recommendation that is later handled by the same developer
responsible for the original bug.

Since we are not aware of other next bug recommendation tool, we compared our
results with a recommender system targeting other software engineering tasks. For exam-
ple, ROSE (Zimmermann et al. 2004) achieved the following results for recommending
co-change relations in the Eclipse system: feedback 64% (k = 1), precision 30% (k = 1),
and likelihood 57% (k = 3). Therefore, we believe our results are good enough to
encourage developers to adopt NextBug in their maintenance tasks.

Qualitative study

For the qualitative part of our study, we conducted a survey with Mozilla developers.
During one week, we analysed bugs that were fixed for Mozilla systems on their official
Bugzilla website (<https://bugzilla.mozilla.org/>, verified 2014-11-01). For each fixed
bug, we used NextBug to give recommendations based on the bugs that were still open at
each day.
We sent by e-mail the top-3 recommendations suggested by NextBug to Mozilla main-

tainers with two questions. The first question asked whether the recommendations given
were relevant, i.e., if the recommendations were similar bugs that could be fixed next. The
second question asked if they thought a tool like NextBug to recommend similar bugs
would be useful for developers from their community. A total of 66 maintainers (from
176) answered our survey. The following comments show a sample of the feedback we
received from those developers:
“(...) this would help contributors to discover and be active on the code.” – N.P.
“(...) anything that would make parsing and organising bugs easier would be amazing –
they’re currently very hard for some of the staff to keep track of!” – K.B.
Our results in this survey are summarized as follows: (i) 77% of the developers found

our recommendations relevant, i.e., they answered yes for our first question; (ii) 85% of
the developers confirmed that a tool to recommend similar bugs would be useful to the
Mozilla community, i.e., they answered yes for the second question.

Conclusion
This paper presented NextBug version 0.9, a tool for recommending similar bugs.
NextBug is implemented in Perl as a plug-in for Bugzilla, a widely used Issue Tracking

https://bugzilla.mozilla.org/
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Systems (ITS), specially popular in open source systems. NextBug relies on informa-
tion retrieval techniques to extract semantic information from issue reports in order to
identify the similarity of open bugs with the one that is being handled by a developer.
We evaluate NextBug with a dataset of 130,495Mozilla bugs, achieving feedback results

of 65%, precision results around 31%, and likelihood results greater than 54% (consid-
ering top-3 recommendations for likelihood). We also conducted a survey with Mozilla
developers using recommendations provided by NextBug. From such developers, 77% of
them ranked our recommendations as relevant and 85% confirmed that NextBug would
be useful to the Mozilla community.

Future work

First, we plan to make NextBug an official Bugzilla extension. We believe that once
NextBug becomes an official plug-in, real open source projects will install the tool in
their Issue Tracking System (ITS). Second, we want to acquire log data from real work-
ing projects using our tool. We plan to use this data to better analyse the tool’s usage
by developers, and thus, propose future improvements for NextBug. Third, we want
to apply our tool algorithm in a slightly different context, creating another tool called
PreviousBug. Instead of looking for similar open issues, PreviousBug would look for sim-
ilar resolved bugs. Thus, PreviousBug would help developers implement a given task by
looking at similar tasks already resolved in the past. PreviousBug would require an inte-
gration with Version Control System to retrieve the parts of code related to resolved
tasks.

Availability and requirements
Availability information and requirements are as follows:

• Project name: NextBug
• Project home page: <http://aserg.labsoft.dcc.ufmg.br/nextbug/>
• Operating system(s): NextBug is a plugin for Bugzilla, and as such it executes in the

same operating systems as Bugzilla.
• Programming language: Perl
• License:Mozilla Public License.
• Other requirements: Bugzilla 3.6 or higher.
• Any restrictions to use by non-academics: no additional restrictions as described

in the license.
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