
Viana et al. Journal of Software Engineering Research
and Development (2015) 3:4
DOI 10.1186/s40411-015-0017-y

RESEARCH Open Access

F3T: a tool to support the F3 approach on the
development and reuse of frameworks
Matheus C Viana1,2*, Rosângela AD Penteado2, Antônio F do Prado2 and Rafael S Durelli3

*Correspondence:
matheus_viana@dc.ufscar.br
1Federal Institute of Sao Paulo,
Campus Sao Carlos, Rod.
Washington Luis, km 235, Block AT6,
13565-905 Sao Carlos, Brazil
2Department of Computing,
Federal University of Sao Carlos,
Rod. Washington Luis, km 235,
13565-905 Sao Carlos, Brazil
Full list of author information is
available at the end of the article

Abstract

Background: Frameworks are used to enhance the quality of applications and the
productivity of the development process, since applications may be designed and
implemented by reusing framework classes. However, frameworks are hard to develop,
learn and reuse, due to their adaptive nature. From Feature to Frameworks (F3) is an
approach that supports framework development in two steps: Domain Modeling, to
model domain features of the framework; and Framework Construction, to develop
framework source-code based on the modeled domain and on patterns provided by
this approach.

Methods: In this article, it is presented the From Features to Framework Tool (F3T),
which supports the use of the F3 approach on framework development.

Results: This tool provides an editor for domain modeling and generates framework
source-code according to the patterns of the F3 approach. In addition, F3T also
generates a Domain-Specific Modeling Language that allows the modeling of
applications and the generation of their source-code. F3T has been evaluated in two
experiments and the results are presented in this article.

Conclusions: F3T facilitates framework development and reuse by omitting
implementation complexities and performing code generation.

Keywords: Reuse; Framework; Domain; Feature; Generator

1 Introduction
Frameworks are reusable software composed of abstract classes that implement the basic
functionality of a domain. When an application is developed through framework reuse,
the functionality provided by the framework classes is complemented with the application
requirements. As this application has not been not developed from scratch, the time spent
in its development was reduced and its quality was improved (Abi-Antoun 2007; Johnson
1997; Stanojevic et al. 2011).
Frameworks are often used to implement common application requirements, such as

persistence Hibernate 2013 and user interface (Spring Framework 2013). Besides, frame-
works are also used as core assets in the development of closely related applications in a
Software Product Line (SPL) (Kim et al. 2004; Weiss and Lai 1999). The common features
of the SPL domain are implemented in the framework and applications implement these
features by reusing framework classes.

© 2015 Viana et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto: matheus_viana@dc.ufscar.br
http://creativecommons.org/licenses/by/4.0

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 2 of 26

Despite those advantages, frameworks are hard to develop since their classes must be
abstract enough to be reused by applications that are unknown beforehand. Therefore, it
is necessary to define two things (Parsons et al. 1999; Weiss and Lai 1999): 1) the domain
of applications the framework is able to instantiate; and 2) how the framework accesses
application-specific classes. Frameworks are also hard to reuse because they have a steep
learning curve (Srinivasan 1999). They may be very complex, composed by a large num-
ber of classes and modules that even developers who are conversant with it may make
mistakes.
In a previous paper, an approach for building Domain-Specific Modeling Languages

(DSML) was proposed to support framework reuse (Viana et al. 2012). A DSML can be
built by identifying framework features and the information required to instantiate them.
Then, the application source-code can be generated frommodels created with this DSML.
Experiments have shown that DSMLs protect developers from framework complexities
and reduce the time spent on framework instantiation.
In another paper, the From Features to Framework (F3) approach was presented. It

aims to reduce framework development complexities (Viana et al. 2013). In this approach,
framework domain is defined in an F3 model, as described in Section 2.1. A set of pat-
terns guides the developer when designing and implementing a white box framework
according to its domain. Besides showing how developers shall proceed, the F3 patterns
systematizes framework development process, allowing it to be automatized by a tool.
In this article, the From Features to Framework Tool (F3T) is presented as a plug-in

for the Eclipse IDE that supports the F3 approach on framework development and reuse.
By using this tool, developers can define a domain in an F3 model. Then, framework
source-code and DSML are generated from this model. This DSML can be used to model
applications and to generate their source-code, which reuses the framework previously
generated.
Two experiments have also been carried out in order to evaluate F3T. In the first one, it

was analyzed whether F3T facilitates framework development or not and, in the second
presents a comparison between F3T and Pure::variants (Pure::Variants 2013).
The remainder of this article is organized as follows: background concepts are discussed

in Section 2; the F3 approach is described in Section 2.1; F3T is presented in Section 3; two
experiments to evaluate F3T are presented in Section 4; the related works are discussed
in Section 5; and the conclusions and future work are presented in Section 6.

2 Background
The basic concepts applied to F3T and its approach are presented in this section. Reuse
is a practice that aims: to reduce the time spent in the development process, since soft-
ware was not developed from scratch; and to increase the software quality, since reusable
practices, models or code were previously tested (Shiva and Shala 2007). Patterns, frame-
works, generators and domain engineering are common ways to apply reuse to software
development (Frakes and Kang 2005).
Patterns are successful solutions that may be reapplied to different contexts (Johnson

1997). They provide reuse of experience, which helps developers to solve recurrent prob-
lems (Fowler 2003). A pattern documentation mainly contains its name, the context it
may be applied, the problem it intends to solve, the solution it proposes, illustrative class
models and examples of use. There are patterns for several purposes, such as design,

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 3 of 26

analysis, architectural, implementation, process and organizational patterns (Pressman
2009).
Frameworks act like skeletons that can be instantiated to implement applications

(Johnson 1997). Their classes embody an abstract design that provides solutions for appli-
cation domains (Srinivasan 1999). Applications are connected to a framework by reusing
its classes. According to the way a framework is reused, it is classified as: white box, when
its classes need to be extended; black box, when it works like a set of components; and
gray box, when it is reused on the two previous ways (Abi-Antoun 2007).
Despite the advantages frameworks offer, they are more complex to develop than appli-

cations (Kirk et al. 2007), since frameworks demand an adaptable design. Their classes
will be reused by applications that are unknown during framework development, thereby
frameworks needmechanisms to identify and to access application-specific classes. Thus,
design patterns and advanced resources of programming languages, such as abstract
classes, interfaces, polymorphism, generics and reflection, are often used in framework
development. In addition to design and implementation complexities, it is also necessary
to determine the domain of applications the framework will be able to instantiate, the
features that compose this domain and the rules that constrain these features (Stanojevic
et al. 2011). Some solutions to this issue propose adaptations of the traditional software
development process (Amatriain and Arumi P 2011) or the refactoring of applications
that share common features in order to implement a framework (Xu and Butler 2006).
The reuse of frameworks provides higher quality and efficiency to software develop-

ment process. However, frameworks require the developer to have detailed knowledge
about their internal structure and their hot spots so that they can be properly used
(Abi-Antoun 2007; Srinivasan 1999). Some solutions have been applied in order to facil-
itate the difficulties in reusing frameworks, such as manuals, cookbooks and pattern
languages. These solutions may guide the application developer through framework
instantiation. However, the task of identifying and configuring the hot spots according to
the application requirements is still executed by the developer and relies on his/her skills
and knowledge (Antkiewicz et al. 2009).
Generators are tools that transform an artifact into another (Lolong and Kistijantoro

2011; Sarasa-Cabezuelo et al. 2012. There are many types of generators. As frameworks,
generators are also related to domains, although some are configurable and may change
their domain (Liem and Nugroho 2008). In this case, templates are used to define the
artifacts that can be generated.
A domain of software consists of a set of applications that share common features. A

feature is a distinguishing characteristic that aggregates value to applications (Bayer et al.
1999; Gomaa 2004; Jezequel 2012; Kang et al. 1990; Lee et al. 2002). Domain features are
defined in feature models. Features may be mandatory or optional, have variations and
require or exclude other features. The feature that represents the purpose of the domain
is added to the root and a top-down approach is applied to add the other features.
Domains may also be modeled with metamodel languages, which are used to create

Domain-Specific Modeling Languages (DSML). Metamodels, as defined in the MetaOb-
ject Facility (MOF) (OMG’s MetaObject Facility 2013), are similar to class models, which
makes them more appropriate to developers accustomed to UML. While in feature
models, only features and their constraints are defined, metaclasses in the metamodels
may contain attributes and operations. On the other hand, feature models can define

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 4 of 26

dependencies between features, while metamodels depend on declarative languages to do
so (Gronback 2009).

2.1 F3 Approach

From Features to Framework (F3) is a Domain Engineering approach that aims to develop
domain specific frameworks. It has two steps: 1) Domain Modeling, to define and model
a domain of applications; and 2) Framework Construction, to design and implement a
framework for the domain defined in the previous step.
In Domain Modeling step, the domain is defined as an extended version of feature

model, called F3 model. This extended version is used in the F3 approach since fea-
ture models are too abstract to contain enough information for framework development
and also because metamodels depend on other languages to define dependencies and
constraints. F3 models incorporate characteristics from both feature models and meta-
models. As in conventional featuremodels, features in the F3modelsmay also be arranged
in a tree-view. The root feature is the main one and it is placed on top of the tree. How-
ever, F3 models do not necessarily form a tree, since a feature may have a relationship
targeting a sibling or even itself, as in metamodels. The elements and relationships in F3
models are:

• Feature: graphically represented by a rounded square, it must have a name and it
may contain any number of attributes and operations;

• Decomposition: relationship that indicates that a feature is composed of another
feature. This relationship specifies a minimum and a maximum multiplicity. The
minimum multiplicity indicates whether the target feature is optional (0) or
mandatory (1). The maximum multiplicity indicates how many instances of the
target feature may be associated to each instance of the source feature. Valid values of
the maximum multiplicity are: 1 (simple), for a single feature instance; * (multiple),
for a list of instances of a single feature subclass; and ** (variant), for a list of
instances of different subclasses of a feature.

• Generalization: relationship that indicates a feature is a variation generalized by
another feature.

• Dependency: relationship that defines a condition for a feature to be instantiated.
There are two types of dependency: requires, when feature A requires feature B,
an application that contains feature A also has to include feature B; and excludes,
when feature A excludes feature B, no application may include both features.

Framework Construction step has a white box framework as output. The F3 approach
defines patterns that assist developers to design and implement frameworks from F3
models as well as to know the code units that shall be created to implement domain func-
tionality and its variability. F3 patterns address problems that range from the creation of
classes that represent features to the definition of framework interface. Some of the F3
patterns are presented in Table 1.
Besides indicating the code units that shall be created to implement framework

functionality, F3 patterns also determine how the framework may be reused by the appli-
cations. For instance, some patterns suggest implementing abstract operations that allow
the framework to access application-specific information. In addition, F3 patterns make
the process of framework development systematical, allowing it to be automatized. Thus,

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 5 of 26

Table 1 Some of the F3 patterns

Pattern Purpose

Domain Feature Indicates structures that should be created for a feature.

Mandatory Decomposition Indicates code units that should be created when there is a mandatory
decomposition linking two features.

Optional Decomposition Indicates code units that should be created when there is an optional
decomposition linking two features.

Simple Decomposition Indicates code units that should be created when there is a simple
decomposition linking two features.

Multiple Decomposition Indicates code units that should be created when there is a multiple
decomposition linking two features.

Variant Decomposition Indicates code units that should be created when there is a variant
decomposition linking two features.

Variant Feature Defines a class hierarchy for features with variants.

Modular Hierarchy Defines a class hierarchy for features with common attributes and
operations.

Requiring Dependency Indicates code units that should be created when a feature requires another
one.

Excluding Dependency Indicates code units that should be created when a feature excludes another
one.

F3T was created to automatize the use of the F3 approach, enhancing the processes of
framework development.

3 From features to frameworks tool
Although all advantages provided by the F3 approach make framework development eas-
ier, it still requires developers to model domains and apply the F3 patterns properly to
implement the frameworks. For instance, a developer could forget to apply an F3 pattern
during Framework Construction step. Thus, computational support should be provided
during code implementation, in order to improve productivity and reduce the occurrence
of human errors.
F3T assists developers to apply the F3 approach in the development of white box frame-

works and in the reuse of these frameworks through their DSML (Viana et al. 2012, 2013).
In order to use the tool it is necessary to follow the steps of this approach. The tool
provides an editor to F3 models and generates framework source-code based on the F3
patterns. The role of the framework DSML is to facilitate framework instantiation.
F3T is a plug-in for Eclipse IDE, so developers may make use of F3T resources, such

as domain modeling, framework construction, application modeling through framework
DSML, application construction and other resources provided by Eclipse IDE. F3T is
composed of three modules, as seen in Figure 1: 1) Domain Module; 2) Framework Mod-
ule; and 3) Application Module. Each module represents a resource that developers may
use to create the artifacts required by the F3 approach to develop and reuse frameworks.

3.1 Domain module

Domain Module (DM) is an editor for developers to create an F3 model with the domain
features, as illustrated in Figure 1. This module has been developed with the support of
the Eclipse Modeling Framework (EMF) and the Graphical Modeling Framework (GMF)
(Gronback 2009). EMF was used to create the metamodel that defines the elements, rela-
tionships and rules of F3models, as described in the Section 2.1. Thismetamodel is shown

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 6 of 26

Figure 1 Modules of F3T. This figure shows the modules of F3T: Domain Module, Framework Module and
Application Module. Each module is composed by a set of Eclipse IDE plug-ins.

in Figure 2. From this metamodel, EMF generated the source-code of the Model and the
Controller layers of the F3 model editor.
GMF has been used to define the graphical notation of F3 models. This graphical nota-

tion may also be seen as the View layer of the F3 model editor, as it defines how features
and relationships are graphically represented. Then, GMF generates the source-code of
the graphical notation. The F3 model editor is shown in Figure 3 and it is composed of
three parts: 1) editor panel, which is used to create and visualize F3 models; 2) menu
bar, which provides the F3 elements and relationships to be included in the models; and
3)properties panel, which displays all properties of a selected element or relationship in
the model.
For instance, the F3 model for the domain of rental and trade transactions is shown

in Figure 3. This domain deals with rental and trade transactions of resources to desti-
nation parties. The root feature is a generic ResourceTransaction, specialized by
the features ResourceTrade and ResourceRental. The DestinationParty fea-
ture represents the party that requires the transaction. For instance, a destination party
may be treated as a customer in an application. DestinationParty is optional by
default. However, once ResourceRental is used, DestinationParty is mandatory.
That is why there is a requires relationship between these features. The Resource

feature represents the resources that may be traded or rented. One or more resources
participate in a transaction, so the TransactionItem feature was defined to represent

Figure 2 Metamodel containing elements, relationships and rules of F3 models. This figure shows the
metamodel whose metaclasses and relationships define how F3 models can be created.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 7 of 26

Figure 3 F3 model for the domain of trade and rental transactions. This figure shows an example of F3
model created by using F3T.

that. A resource can have classifications, so the ResourceType feature can be extended
many times in an application to define any type of classification, such as category, genre,
location and so on.

3.2 Framework module

Despite their graphical notation, F3 models actually are XML files, which makes them
more accessible to other tools, such as generators. Therefore, Framework Module (FM)
has been designed as a Model-to-Text (M2T) generator that transforms an F3 model into
framework source-code and DSML.
FM has been developed with the support of Java Emitter Templates (JET) in the Eclipse

IDE (The Eclipse Foundation Eclipse Modeling Project). JET contains a framework that
works as a generic generator and a compiler that translate templates into Java files. These
templates are XML files, in which tags are instructions to generate an output based on
input information and text is a fixed content inserted in the output independently of
the input. The Java files originated from the JET templates reuse the JET framework to
compose a domain-specific generator. Thus, FM depend on the JET plug-in to work.
The hierarchy of the FM templates is shown in Figure 4. These templates are organized

in two groups: one related to framework source-code (DSC); and the other related to
framework DSML. Both groups are invoked from the Main template. The DSC template
invokes the templates that originate the framework classes. Part of the JET template that
generates Java classes in the framework source-code from the features found in the F3
models are seen as follows:

public <c:if test="($feature/@abstract)">abstract </c:if>

class <c:get select="$feature/@name"/> extends

<c:choose select="$feature/@variation">

<c:when test="’true’">DVariation</c:when>

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 8 of 26

Figure 4 Hierarchy of the templates which compose FM. This figure shows how the FM templates are
hierarchically organized.

<c:otherwise>

<c:choose>

<c:when test="$feature/dSuperFeature">

<c:get select="$feature/dSuperFeature/@name"/>

</c:when>

<c:otherwise>DObject</c:otherwise>

</c:choose>

</c:otherwise>

</c:choose> { ... }

Framework classes are generated according to F3 patterns (Viana et al. 2013). For
instance, FM generates a class for each feature found in an F3 model. The rea-
son is that, since a white-box framework is generated, these classes are directly
extended by the application classes. These classes also contain the attributes and oper-
ations, as specified in its correspondent feature. Besides the classes that represent
features, others are also generated to provide code flexibility and to implement non-
functional requirements, such as the DObject class that is, directly or indirectly,
extended by all feature classes in order to provide data persistence functionality to
them. Generalization relationships result in inheritances, whereas decomposition rela-
tionships result in associations between the involved classes. Additional operations
are included in framework classes to implement feature variations and constraints
defined in F3 models. For instance, according to the Variant Decomposition F3 pat-
tern, the getResourceTypeClasses operation was included in the code of the
Resource class (Figure 3) so that the framework recognizes which classes implement the
ResourceType feature in applications. Part of the Resource class code is presented as
follows:

public abstract class Resource extends DObject {

private int id;

private Sting name;

private List<ResourceType> types;

public abstract Class<?>[] getResourceTypeClasses();

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 9 of 26

The DSML template invokes a set of templates that originate EMF/GMF models to
the framework DSML. An example of these models is illustrated in Figure 5a, which was
generated from the F3 model shown in Figure 3. Then, DSML source-code is be gen-
erated by EMF/GMF in three steps: 1) using the EMF generator from the genmodel file
(Figure 5a); 2) using the GMF generator from the gmfmap file (Figure 5b); and 3) using
the GMF generator from the gmfgen file (Figure 5c). After that, the DSML will be com-
posed of 5 plug-in projects in the Eclipse IDE. The projects that contain the framework
source-code and the DSML plug-ins for the domain of trade and rental transactions are
shown in Figure 5d. The Java project in which the framework source-code was gener-
ated is identified by the domain name and the suffix “.framework”. The others are DSML
plug-ins.

3.3 Application module

Application Module (AM) has also been developed with the support of JET. It generates
application source-code from an applicationmodel created from a frameworkDSML. The
AM templates generate classes that extend framework classes and override operations
that configure framework hot spots. After the DSML plug-ins are installed in the Eclipse
IDE, AM recognizes the model files created from the DSML. An application model cre-
ated with the DSML of the framework for the domain of trade and rental transactions
is shown in Figure 6. This application is intended for a small store that trades products.
Therefore, the ProductTrade application class extends the ResourceTrade frame-
work class. TradeItem represents the products in a trade transaction, so it extends
TransactionItem. Product is the resource in this application. Each product in
the store may be classified by Category and by Manufacturer. As this store keeps
no register of its customers, the DestinationParty feature was not used in this
application.
The application source-code is generated in the source folder of the project, in which the

application model is. AM generates a class for each feature instantiated in the application
model. Since the framework is a white box, the application classes extend the framework
classes indicated by the stereotypes in the model. It is expected that most of the class
attributes requested by the application requirements have already been defined in the
domain. Thus, these attributes are in the framework source-code and they must not be
defined in the application classes again. Part of the code of the Product class is presented
as follows:

Figure 5 Generation of the DSML plugins. This figure shows how DSML plug-ins are generated by F3T:
a) EMF/GMF models generated by F3T to create DSML plug-ins; b) Gmfmap model is used to create
generator model; c) Generator model (gmfgen) is used to create the DSML graphical editor plug-in; d) all
DSML plug-ins and the framework source-code project (trade.framework).

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 10 of 26

Figure 6 Application model created with the framework DSML. This Figure shows the Shop application
model created with the DSML of trade and rental transactions.

public class Product extends Resource {

private float value;

public Class<?>[] getResourceTypeClasses() {

return new Class<?>[] {

Category.class, Manufacturer.class };

}

4 Evaluation
In this section, two experiments are presented: one to evaluate the advantages of
using F3T to develop frameworks; and the other to compare F3T with Pure::variants
(Pure::Variants 2013). These experiments were conducted by following all steps described
by Wohlin et al. 2000.

4.1 Experiment 1

In the first experiment, the use of F3T for framework development has been evaluated,
since framework reuse supported by DSML was evaluated in a previous paper (Viana
et al. 2012). This experiment was defined as: (i) analysis of F3T, described in Section 3; (ii)
for the purpose of evaluation; (iii) with respect to time spent and number of problems;
(iv) from the point of view of the developer; and (v) in the context of MSc and PhD
Computer Science students.

4.1.1 Planning

The experiment was planned to answer two research questions:

• RQ1: Does F3T reduce the effort to develop a framework?
• RQ2: Does F3T result in a outcome framework with a fewer number of

problems?

All of the subjects had to develop two frameworks applying the F3 approach. One of
them should be done manually and the other by using F3T. In order to answer the first

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 11 of 26

question, the time spent to develop each framework was measured. To answer the second
question, the frameworks developed by the subjects have been analyzed and the problems
found in their source-code have been identified. The planning phase was divided into
seven parts, as follows:

Context selection The subjects of this experiment were 26 MSc and PhD students
of Computer Science. All of them had prior experience in software development, Java
programming, patterns and framework reuse.

Formulation of hypotheses The experiment questions have been formalized as follows:

• RQ1, Null Hypothesis, H10: Considering the F3 approach, there is no significant
time difference when developing frameworks with the support of F3T or manually.
Thus, F3T does not reduce the time spent to develop frameworks. This hypothesis
may be formalized as:H10: τF3T = τmanual

• RQ1, Alternative Hypothesis 1, H11: The time spent to develop frameworks by
applying the F3 approach with the support of F3T is significantly lower than when
applying the F3 approach manually. Thus, F3T reduces the time spent to develop
frameworks. This hypothesis is formalized as:H11: τF3T < τmanual

• RQ1, Alternative Hypothesis 2, H12: The time spent to develop frameworks by
applying the F3 approach with the support of F3T is significantly greater than when
applying the F3 approach manually. Thus, F3T does not reduce the time spent to
develop frameworks. This hypothesis is formalized as:H11: τF3T > τmanual

• RQ2, Null Hypothesis, H20: There is no significant difference in the number of
problems found in the frameworks developed manually or using F3T. Thus, F3T does
not reduce the number of mistakes made by the subjects during framework
development. This hypothesis is formalized as:H20: ρF3T = ρmanual

• RQ2, Alternative Hypothesis 1, H21: The number of problems found in the
frameworks developed with the support of F3T is significantly lower than when
applying the F3 approach manually. Thus, F3T reduces the number of mistakes made
by the subjects during framework development. This hypothesis is formalized as:
H21: ρF3T < ρmanual

• RQ2, Alternative Hypothesis 2, H22: The number of problems found in the
frameworks developed by with the support of F3T is significantly greater than when
applying the F3 approach manually. Thus, F3T increases the number of mistakes
made by the subjects during framework development. This hypothesis is formalized
as:H21: ρF3T > ρmanual

Variable selection The dependent variables of this experiment were:

• time spent to develop a framework;
• number of problems found in the frameworks.

The independent variables were:

• Application: Each subject had to develop two frameworks: one (Fw1) for the domain
of trade and rental transactions and the other (Fw2) for the domain of automatic
vehicles. Both Fw1 and Fw2 had 10 features.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 12 of 26

• Development Environment: Eclipse 4.2.1, Astah Community 6.4, F3T.
• Technologies: Java version 6.

Selection of subjects The subjects were selected through a non probabilist approach by
convenience. Therefore, the probability of all population elements belong to the same
sample is unknown.

Experiment design The subjects were grouped in two groups of 13 subjects:

• Group 1, development of Fw1 manually and development of Fw2 with the support of
F3T;

• Group 2, development of Fw2 manually and development of Fw1 with the support of
F3T.

We have chosen to use groups in order to reduce the effects of the subjects experience.
In order to measure this, the subjects answered a form about their level of experience
in software development. This form was given to the subjects one week before the pilot
experiment herein described. The goal of this pilot experiment was to ensure that the
experiment environment and materials were adequate and the tasks could be properly
executed.
To use the F3 approach manually, the subjects had to model the domain by using the

class diagram of Astah and apply the F3 patterns on this model to implement framework
source-code. On the other hand, to develop the frameworks by using F3T, the subjects had
to create the F3 model of the domain using the editor provided by the tool and generate
the framework source-code.

Design types The design type of this experiment was one factor with two treatments
paired (Wohlin et al. 2000). The factor in this experiment is the way how the F3 approach
was used to develop a framework and the treatments are the support of F3T in contrast
with the manual development.

Instrumentation All the necessary materials used during the execution of this exper-
iment were given to the subjects beforehand. These materials consisted of forms for
collecting experiment data, domain requirements, F3 approach documentation and test
units code. In the end of the experiment, all subjects received a questionnaire, in which
they should report about the F3 approach and F3T.

4.2 Operation

The operation phase was divided into two parts, Preparation and Execution, as described
in the subsections Preparation and Execution.

Preparation Firstly, the subjects received a characterization form, containing questions
on their knowledge about Java programming, Eclipse IDE, patterns and frameworks.
Then, the subjects were introduced to the F3 approach and F3T.

Execution Initially, the subjects signed a consent form and then answered the character-
ization form. After this, they watched a presentation about frameworks, which included

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 13 of 26

the description of some popular examples and their hot spots. The subjects were also
trained on how to develop frameworks using the F3 approach with and without the
support of F3T.
After the training, the pilot experiment was executed. The subjects were split into two

groups considering the results of the characterization forms. The subjects were not told
about the nature of the experiment, but were verbally instructed on the F3 approach and
its tool. The pilot experiment was intended to simulate the real one, except that the appli-
cations were different, however equivalent. Beforehand, all subjects were given ample
time to read the approach and to ask questions on the experimental process. This could
affect the experiment validation, therefore, this data was only used to balance the groups.
During the experiment execution, the subjects who had to develop the framework man-

ually used a class diagram of the Astah Community to create the F3 model of the domain.
Then, they used the documentation of the F3 patterns to apply them and implement the
framework based on the features they defined in the F3 model. On the other hand, the
subjects who had access to F3T had to create the F3 model and generate the framework
source-code by using the resources of this tool. In both cases, after finishing the imple-
mentation, the subjects had to pause the chronometer and ran the test units to verify
whether their code was correct or not. In case of success, their task was done. Otherwise,
they had to continue measuring the time and fix the problems of the framework.

4.3 Analysis of data

This section presents the experimental findings. The analysis is divided into two subsec-
tions: (1) Descriptive Statistics and (2) Hypotheses Testing.

Descriptive statistics The time each subject spent to develop a framework and the num-
ber of problems found in the outcome frameworks are shown in Table 2. From this
table, one may notice that the subjects spent more time to develop the frameworks when
they were doing it manually (M) then when using F3T, 72.5% against 27.5%, respectively.
This result was expected, since F3T generates framework source-code from F3 models.
However, it is worth highlighting that most of the time spent in the manual framework
development was due to the framework implementation and the effort to fix the prob-
lems found in the frameworks, while in the framework development supported by F3T
it was due to domain modeling. The dispersion of time spent by the subjects are also
represented graphically in a boxplot on the left side of Figure 7.
In Table 2, the four types of problems that were analyzed in the outcome frameworks

are presented: (i) incoherence, (ii) structure, (iii) bad smells, (iv) interface.
The incoherence problem indicates that, during the experiment, the subjects did not

model the domain of the framework as expected. In other words, the subjects did not
develop the frameworks with the correct domain features and constraints (mandatory,
optional, and alternative features). As the ability to model the framework domains depend
more on the subject skills than on tool support, incoherence problems could be found in
equivalent proportions, approximately 50%, when the framework was developed either
manually or with the support of F3T.
The structure problem indicates that the subjects did not implement the frameworks

properly during the experiment. For instance, either they implemented classes with no
constructor and with incorrect relationships or they forgot to declare the classes as

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 14 of 26

Table 2 Data obtained from framework development applying two approaches:
Manual(M) and F3T

Number of problems

Subject Time spent Incoherence Structure Bad smells Interface Total

M F3T M F3T M F3T M F3T M F3T M F3T

S1 72 26 1 1 0 0 1 0 0 0 2 1

S2 74 32 1 2 1 0 1 0 1 0 4 2

S3 83 31 3 3 1 1 1 0 1 0 6 4

S4 78 29 1 1 2 0 1 0 2 0 6 1

S5 67 26 0 1 0 0 0 0 0 0 0 1

S6 81 32 4 3 3 1 2 0 3 0 12 4

S7 79 24 3 3 1 0 1 0 0 1 5 4

S8 73 23 1 0 0 0 0 0 0 0 1 0

S9 79 26 1 2 2 0 1 0 1 0 5 2

S10 69 27 2 1 0 0 1 0 1 0 4 1

S11 71 29 1 2 1 0 0 0 1 0 3 2

S12 83 31 3 2 1 0 3 0 1 0 8 2

S13 74 26 1 0 1 0 1 0 0 0 3 0

S14 72 29 1 2 0 0 0 0 1 0 2 2

S15 76 31 3 4 2 0 1 0 2 0 8 4

S16 68 26 1 1 0 0 0 0 0 0 1 1

S17 80 33 5 4 4 1 3 0 4 1 16 6

S18 75 27 1 1 2 0 2 0 2 0 7 1

S19 73 29 0 1 1 0 1 0 0 0 2 1

S20 81 32 2 1 3 0 2 0 1 0 8 1

S21 86 35 3 4 3 0 3 0 2 0 11 4

S22 76 28 2 1 1 0 1 0 1 0 5 1

S23 83 31 4 3 3 1 2 0 3 1 12 5

S24 79 28 2 2 1 0 1 0 1 0 5 2

S25 77 29 3 2 1 0 1 0 1 0 6 2

S26 78 33 2 3 2 0 1 0 3 0 8 3

AVG 76.42 28.96 1.96 1.92 1.38 0.15 1.19 0 1.23 0.12 5.77 2.19

% 72.52 27.48 50.50 49.50 90 10 100 0 91.43 8.57 72.46 27.54

abstract. This kind of problem occurred when the subjects did not properly follow the
instructions provided by the F3 patterns. From Table 2, one may observe that F3T helped
the subjects to develop frameworks with less structure problems, i.e., 10% in opposition
to 90%.
The bad smell problem indicates design weaknesses that do not affect functionality,

however it makes the frameworks harder to maintain. In the experiment, this kind of
problem occurred when the subjects forgot to apply some of the F3 patterns related to
the organization of the framework classes, such as the Modular Hierarchy F3 pattern. In
Table 2, one can notice F3T made a design with higher quality than the manual approach,
i.e, 0% against 100%, because F3T automatically identified which patterns should be
applied from the F3 models.
The interface problem indicates absence of getter/setter operations and also of opera-

tions that allow the framework to access the application-specific classes. Frequently, this
kind of problem is a consequence of structure problems, hence the results of these two
problems are quite similar. As shown in Table 2, the subjects designed a better framework
interface when using F3T, i.e., 8.6% against 91.4%.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 15 of 26

Figure 7 Dispersion of the total time and number of problems. This figure show a box plot created from
experiment 1 data.

In the last two columns of Table 2, one may observe that F3T reduced the total number
of problems found in the frameworks developed by the subjects. This is also graphically
represented in the boxplot on the right side of Figure 7.

Testing the hypotheses The objective of this section is to verify, based on the data
obtained in the experiment, whether it is possible to reject the null hypotheses in favor of
the alternative hypotheses. All the tests were applied in the experiment data by using the
software Action (Portal Action 2015). Since some statistical tests are applicable only in
case the population follows a normal distribution, we applied the Shapiro-Wilk test and
created a Q-Q chart to verify whether or not the experiment data departs from linearity
before choosing a proper statistical test. When the p-value of this Shaphiro-Wilk test is
greater than 0.05, it means that data is normally distributed and we can apply the Paired
T-Test to verify which hypothesis is valid. Otherwise, the Paired Wilcoxon Signed Rank
test is used. More details about these tests are found in the site of Action (Portal Action
2015). The tests have been carried out as follows:

• Time: The Shapiro-Wilk test has been applied to the experiment data that represents
the time spent by each subject to develop a framework manually or using F3T, as
shown in Table 2. Considering that the p-values were 0.8780 (Manual) and 0.6002
(F3T), the Shapiro-Wilk test confirmed that the time spent in framework
development is normally distributed, as illustrated in the Q-Q charts (a) and (b) in
Figure 8. Then, the Paired T-Test was applied to verify which hypothesis is accepted
for RQ1. The Paired T-Test resulted in a p-value 1,11E-28. It means that the chance
of H10 to be accepted is lesser than 5% and the average values in columns “Time
Spent” in manual development and F3T in Table 2 are valid. Therefore, when the F3
approach is applied, one spends less time developing a framework by using F3T than
doing it manually.

• Problems: Similarly, the Shapiro-Wilk test has been applied to the experiment data
shown in the last two columns of Table 2, which represent the total number of
problems found in the outcome frameworks. The resulting p-values were 0.1522 in

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 16 of 26

Figure 8 QQ-Plots of the normality tests applied to the time spent in framework development when (a) the
manual approach was applied and when (b) F3T was used. This figure shows 2 QQ Plots illustrating the result
of normality tests applied to the time spent on framework development.

manual development and 0.0075 with F3T, as represented by the QQ-Plots in
Figure 9. Thus, the data related to manual development is normally distributed, but
the same does not happen with the data related to F3T. Therefore, the Wilcoxon
Signed Rank test was applied to verify whether the null hypothesis of RQ2 may be
accepted or not. As a result, the p-value was 2.87E-05, which means that the chance
of H20 to be accepted is lesser than 5% and the average values in column “Number of
Problems - Total” in Table 2 are valid. It reinforces that F3T reduces the number of
problems found in the outcome frameworks.

Opinion of the subjects The opinion of the subjects has been in order to evaluate the
impact of using F3T. After the experiment operation, all subjects received a questionnaire,
in which they could report their perception about applying the F3 approach manually or
supported by F3T. As shown in Figure 10, when asked if they encountered difficulties in

Figure 9 QQ-Plots of the normality tests applied to the number of problems on the outcome frameworks
when (a) the manual approach was applied and when (b) F3T was used. This figure shows 2 QQ-Plots
illustrating the result of normality tests applied to the number of problems on the outcome frameworks.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 17 of 26

Figure 10 Level of difficulty of the subjects. This figure shows a chart illustrating the difficulties of the
students while developing the frameworks of the experiment.

framework development by applying the F3 approach manually, approximately 52% of the
subjects reported having significant difficulty, 29% mentioned partial difficulty and 19%
had no difficulty. In contrast, when asked the same question with concerning the use of
F3T, 73% subjects reported having no difficulty, 16%mentioned partial difficulty and only
11% had significant difficulty.
The subjects also specified the kind of difficulties they faced during framework devel-

opment. The most common difficulties pointed out in the manual task were: 1) too much
effort spent on coding; 2) mistakes they made due to lack of attention; 3) lack of expe-
rience for developing frameworks; and 4) time spent identifying the F3 patterns in F3
models. In contrast, the most common difficulties faced by the use of F3T were: 1) lack
of practice with the tool; and 2) some actions in the tool interface, for instance, there are
many steps in order to open the F3 model editor. The subjects said that the F3 patterns
helped them to identify the necessary structures to implement the frameworks manually.
They also said F3T automatized the tasks of identifying which F3 patterns should be used
as well as of implementing the framework source-code. Thus, they could focus on domain
modeling.

4.4 Experiment 2

In the second experiment, F3T has been compared to Pure::variants in a software prod-
uct line environment. Pure::variants (Pure::Variants 2013) is a tool that supports the
development of application variants. From the application source-code, Pure::variants
generates a feature model, that specifies the features found in the application, as well
as a family model, which defines the components that implement these features. Then,
applications, variants of the base one, may be generated by selecting a subset of fea-
tures of the feature model. Although these tools are based in different approaches,
they have been chosen since both of them can be used to generate several appli-
cations in a domain. However, due to the differences of the tools, only the time to
perform Domain and Application Engineering steps was taken into consideration in this
experiment.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 18 of 26

Therefore, this second experiment was defined as: (i) analyse F3T; (ii) for the pur-
pose of evaluation; (iii) with respect to time spent; (iv) from the point of view of the
developer; and (v) in the context ofMSc and undergraduate Computer Science students.

4.4.1 Planning

The experiment aimed to answer the following research question:

• RQ1: Which tool allows a more efficient development of Domain and
Application Engineering steps in terms of time?

In this experiment, all the subjects had to carry out Domain Engineering (DE)
and Application Engineering (AE) steps of software product lines by using F3T and
Pure::variants. In order to answer the research question, the time spent in carrying out DE
and AE steps with each tool were measured. The planning phase was divided into seven
parts, which are described as follows.

Context selection The subjects of this experiment were 32 MSc and undergraduate stu-
dents of Computer Science. All of them had prior experience in software development,
Java programming, patterns and framework reuse.

Formulation of hypotheses The experiment questions have been defined as follows:

• RQ1, Null Hypothesis, H10: There is no significant difference in the time spent
carrying out DE and AE steps using F3T or Pure::variants. Thus, using F3T is not more
efficient than Pure::variants. This hypothesis may be formalized as:H0: τF3T = τpure

• RQ1, Alternative Hypothesis 1, H11: The time spent to carry out DE and AE steps
by using F3T is significantly lower than by using Pure::variants. Thus, it is more
efficient to use F3T than Pure::variants. This hypothesis may be formalized as:
H1: τF3T < τpure

• RQ1, Alternative Hypothesis 2, H12: The time spent to carry out DE and AE steps
by using F3T is significantly greater than by using Pure::variants. Thus, it is more
efficient to use Pure::variants than F3T. This hypothesis may be formalized as:
H1: τF3T > τpure

Variable selection The dependent variables of this experiment were:

• time spent to carry out DE and AE steps;
• usability, related to the opinion of the subjects.

The independent variables were as follows:

• Domain: Each subject had to develop two software product lines: in the first, they
had to develop the artifacts for the domain of trade and rental transactions (DE1) and
a library application (AE1); and in the second, they had to develop the artifacts for
the domain of medical care (DE2) and a veterinary clinic application (AE2). These
domains had 10 features each and the applications presented a similar complexity
level.

• Development Environment: Eclipse 4.2.1 with F3T, Pure::variants evaluation
version 3.2.

• Technologies: Java version 6.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 19 of 26

Selection of subjects The subjects were selected through a non probabilist approach by
convenience, so that the probability of all population elements belong to the same sample
is unknown.

Experiment design The subjects were grouped in two groups of 16 subjects:

• Group 1, development of DE1/AE1 using F3T and development of DE2/AE2 using
Pure::variants;

• Group 2, development of DE1/AE1 using Pure::variants and development of
DE2/AE2 using F3T;

As in Experiment 1, the subjects were grouped in groups according to the level of
experience, which was measured from a form in which they had to inform the software
development techniques they had already used. This form was given to the subjects one
week before the pilot experiment. The goal of this pilot experiment was to ensure that
the experiment environment and materials were adequate and that the tasks could be
properly executed.
While using F3T in DE, the subjects should create an F3 model based on the domain

requirements, generate the framework source-code and DSML plug-ins from this model
and install the DSML plug-ins in the Eclipse IDE. In AE, the subjects should cre-
ate an application model by using the framework DSML according to the application
requirements.
Pure::variants creates software product line artifacts from the source-code of a base

application. Therefore, while using this tool, the first thing the subjects had to do was to
implement this base application. Then, in DE they should generate the feature and the
architectural models of the domain and define its variant environment. Finally, in AE the
subjects should select the domain featured according to the application requirements and
generate this application source-code.

Design types The design type of this experiment was one factor with two treatments
paired (Wohlin et al. 2000). The factor was the tool used to carry out DE and AE steps
and the treatments were the tool used in this experiment: F3T and Pure::variants.

Instrumentation All the necessary materials to assist the subjects during the execution
of this experiment were given to the subjects beforehand, including tool manuals and
domain/application requirements and models. They also received a form for collecting
experiment data, in which the subjects have to report the time spent to carry out DE and
AE steps and their opinion about the tools. All the subjects were also trained in the use of
F3T and Pure::variants.

4.5 Operation

The operation phase was divided into two parts, Preparation and Execution, as described
in the subsections Preparation and Execution.

Preparation Firstly, the subjects received a characterization form, containing questions
on their knowledge about Java programming, Eclipse IDE, patterns, frameworks, F3T and

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 20 of 26

Pure::variants. A pilot experiment had also been previously performed so that the subjects
could get more used to the experiment activities.

Execution In the first activity, the subjects should carry out DE for trade and rental trans-
actions domain and develop an application for a library in AE. The subjects in Group
1 used F3T while the ones in Group 2 used Pure::variants. Each subject measured the
time spent using the tools to carry out DE and AE steps. The subjects who were using
Pure::Variants also measured the time spent on the implementation of the base appli-
cation. The second activity was carried out in a similar way. However, in this activity,
the subjects of the two groups should work with the domain of medical care in DE and
with the veterinary clinic application in AE. Besides, the subjects in Group 1 were using
Pure::variants and those in Group 2 were using F3T.

4.6 Analysis of data

This section presents the experimental findings. The analysis is divided into two subsec-
tions: (1) Descriptive Statistics and (2) Hypotheses Testing.

Descriptive statistics The time spent by each subject to develop the base Application
Implementation (AI), Domain Engineering (DE) and Application Engineering (AE) is
shown in Table 3. Considering DE and AE, one can observe that the subjects spent 45.27%
of the total time using Pure::variants and 54.73% using F3T. The main reason for this is
that most of the models in Pure::variants are generated from the base application code.
Only in EA, the subjects had to decide which domain features should be included in
the outcome application. While using F3T, they had to interpret domain requirements
in order to create an F3 model and interpret the application requirements to create its
model by using the framework DSML. The time spent by the subjects is also represented
graphically in the boxplot in Figure 11.

Testing the hypotheses As in Experiment 1, the software Action has been used to verify
whether it was possible to reject the null hypotheses in favor of the alternative hypotheses
(Portal Action 2015). The Experiment 2 tests have been carried out as follows:

• Time: The Shapiro-Wilk test has been applied to the data that represents the time
spent with each tool, as shown in columns “DE+AE" of Pure::variants and F3T in
Table 3. Considering that the p-values were 0.6133 for Pure::variants and 0.4990 for
F3T, the test confirmed that the time spent to carry out DE and AE steps was
normally distributed, as shown in the Q-Q charts (a) and (b) in Figure 12. Then, the
Paired T-Test was applied to verify which hypothesis would be accepted for RQ1.
The Paired T-Test resulted in a p-value 1.19E-3. It means that the chance of H1_0 to
be accepted is lower than 5% and the average values in columns “DE+AE" of
Pure::variants and F3T in Table 3 are valid. Therefore, the time spent to carry out a
software product line is lower with Pure:variants than with F3T.

Positive and negative characteristics of each tool After each experiment, the subjects
had to write their opinion on Pure::variants and F3T and highlight positive and negatives

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 21 of 26

Table 3 Data obtained from using Pure::variants and F3T

Domain
Time spent (min.)

Pure::variants F3T

Sub. AI DE AE DAE Sub. DE AE DAE

Medical S1 35 19 10 29 S17 39 19 58

Care S2 13 32 16 48 S18 20 8 28

S3 31 30 8 38 S19 26 21 47

S4 32 18 14 32 S20 18 10 28

S5 15 15 9 24 S21 31 19 50

S6 18 20 12 32 S22 36 26 62

S7 28 31 11 42 S23 23 14 37

S8 30 27 14 41 S24 35 22 57

S9 17 26 18 44 S25 36 24 60

S10 14 30 9 39 S26 32 18 50

S11 17 23 13 36 S27 28 12 40

S12 10 18 11 29 S28 23 16 39

S13 19 22 10 32 S29 26 13 39

S14 26 25 11 36 S30 31 22 53

S15 22 21 15 36 S31 21 15 36

S16 19 29 13 42 S32 24 19 43

Trans. S17 21 30 10 40 S1 33 18 51

S18 9 14 11 25 S2 25 20 45

S19 14 24 12 36 S3 38 18 56

S20 6 33 10 43 S4 30 12 42

S21 15 20 8 28 S5 30 9 39

S22 25 28 15 43 S6 26 13 39

S23 16 24 12 36 S7 31 20 51

S24 22 33 16 49 S8 28 17 45

S25 30 18 10 28 S9 20 11 31

S26 31 32 17 49 S10 21 10 31

S27 16 30 9 39 S11 24 13 37

S28 32 29 15 44 S12 24 14 38

S29 18 23 10 33 S13 27 16 43

S30 19 25 12 37 S14 35 22 57

S31 13 19 13 32 S15 29 17 46

S32 17 22 14 36 S16 32 14 46

AVG 20.31 24.69 12.13 36.81 28.19 16.31 44.50

% 35.56 43.22 21.23 45.27 63.34 36.66 54.73

characteristics of each tool. Most of the subjects mentioned that the models in both
Pure::variants and F3T demand toomany steps to be created. The reason is that both tools
are based on the Eclipse IDE, in which every file/model is created through a set menu
items and wizard forms.
The subjects also mentioned that the main positive characteristic of Pure: variants is

that all DE models are generated from the base application source-code, whereas in F3T,
an F3 model is created manually. However, each of the Pure::variants models is generated
in a sequence of 4-5 steps. Therefore, the subjects argued that they needed to consult the
manual tool very often to know how to proceed.
About F3T, the subjects mentioned the following positive characteristics: an appli-

cation source-code is not needed to develop ED models; the number of models to be

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 22 of 26

Figure 11 Dispersion of sum the time spent in DE and AE. This figure shows a box plot created from sum the
time spent in DE and AE in experiment 2 data.

created in F3T ED (1 model) is smaller if compared with Pure::variants (4 models); the
DE step in F3T results in a framework that may be reused in any Java environment
besides the Eclipse IDE; and it is easier to customize the outcome applications in AE.
The subjects also mentioned that they had some difficulties in creating F3 models. How-
ever, this may be attributed to two factors: 1) their lack of experience with domain
modeling; and 2) the difficulty in interpreting the domain requirements used in the
experiment.

Figure 12 QQ-Plots of the normality tests applied to the time spent in DE and AE. This figure shows a
QQ-Plot illustrating the result of normality tests applied to the time spent in DE+AE.

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 23 of 26

4.7 Threats to the validity of the experiments

Internal validity:

• Experience level of the subjects: the subjects had different levels of knowledge and it
could affect the data collected. To mitigate this threat, the subjects were divided into
two balanced groups considering their level of knowledge and the groups were
rebalanced considering the preliminary results. Moreover, all the subjects had prior
experience in application development by reusing frameworks, but no experience in
developing frameworks. Thus, the subjects were trained with common framework
implementation techniques and how to use the F3 approach and F3T.

• Productivity under evaluation: this might have influenced the experiment results
since subjects tend to think they are being evaluated by experiment results. In order
to mitigate this, the subjects were told that no one was being evaluated and their
participation was considered anonymous.

• Facilities used during the study: different computers and installations could affect the
recorded timings. Thus, the subjects used the same hardware configuration and
operating system.

Validity by construction:

• Hypothesis expectations: the subjects already knew the researchers and that F3T was
supposed to ease framework development, which reflects one of our hypothesis.
These issues could affect the data collected and cause the experiment to be less
impartial. In order to keep impartiality, the participants were asked to keep a steady
pace during the whole study.

External validity:

• Interaction between configuration and treatment: there is a chance that the exercises
performed in the experiment are not accurate for every framework development for
real world applications. Only two frameworks were developed and they had the same
complexity. To mitigate this threat, the exercises were designed considering
framework domains based on real world.

Conclusion validity:

• Measure reliability: it refers to metrics used to measure the development effort. To
mitigate this threat, only the time spent was used, which was obtained in forms filled
out by the subjects;

• Low statistic power: the ability of a statistic test in revealing reliable data. To mitigate
this threat, two tests were applied: T-Tests to statistically analyze the time spent to
develop the frameworks and the Wilcoxon signed-rank test to statistically analyze the
number of problems found in the outcome frameworks.

5 Related work
In this section, some work related to F3T and the F3 approach are presented.
Amatriain and Arumi 2011 proposed amethod for the development of a framework and

its DSL through iterative and incremental activities. In this method, the framework has
its domain defined from a set of applications and it is implemented by applying a series
of refactorings in the source-code of these applications. The advantage of this method is

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 24 of 26

a small initial investment and the reuse of the applications. Although it is not mandatory,
the F3 approach may also be applied in iterative and incremental activities, starting from
a small domain and then adding features. Applications may also be used to facilitate the
identification of the features of the framework domain. However, the advantage of the F3
approach is that the design and the implementation of the frameworks are supported by
the F3 patterns and it is automatized by F3T.
Oliveira et al. 2011 presented the ReuseTool, which assists framework reuse by manip-

ulating UML diagrams. The ReuseTool is based on the Reuse Description Language
(RDL), a language created by these authors to facilitate the description of framework
instantiation processes. Framework hot spots may be registered in the ReuseTool with
the use of RDL. In order to instantiate the framework, application models may be cre-
ated based on the framework description. Application source-code is generated from
these models. Thus, RDL works as a meta language that registers framework hot spots
and the ReuseTool provides a more friendly interface to develop applications by reusing
the frameworks. In comparison, F3T supports framework development through domain
modeling and application development through framework DSML.
Common Variability Language (CVL) is an Object Manager Group (OMG) standard-

ization used for specifying and resolving domain variability (Rouille et al. 2012). Like
F3 models in F3T, CVL is an extended feature model. However, CVL uses a mecha-
nism similar to OCL to implement domain constraints. In comparison, F3 models define
domain constraints through relationships and properties. Moreover, since F3 models and
F3T focus on framework development, the features in this kind of model may contain
attributes and operations.

6 Conclusions
F3T supported framework development and reuse through the generation of code from
models. This tool provided an F3 model editor for developers to define the features of the
framework domain. Then, framework source-code and DSML may be generated from F3
models. Framework DSML may be installed in the F3T to allow developers to model and
to generate the source-code of applications that reuse the framework.
F3T has been created to semi-automatize the application of the F3 approach. Here,

domain features are defined in F3 models in order to separate the framework ele-
ments from the complexities involved when developing them. F3 models incorporate
elements and relationships from feature models and properties and operations from
metamodels.
Framework source-code is generated based on patterns that propose solutions to design

and implement domain features defined in F3 models. A DSML is generated along with
the framework source-code and it includes all domain features. Developers may create
models by mapping application requirements to these features to configure framework
hot spots. Thus, F3T supports both Domain Engineering and Application Engineering,
which improves productivity and the quality of the outcome frameworks and applications.
Apart from this, F3T may be used to help the construction of software production lines.
It provides an environment to model domains as well as to create frameworks that may
be used as core assets for application development.
In addition to the advantages of the F3 approach, F3T improves the framework effi-

ciency and the application development, since the implementation steps of the approach

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 25 of 26

are executed through code generation. It also results in better quality artifacts, due to the
model validations provided by the tool and to the fact that code generated is less likely to
contain defects.
The first experiment has shown that, besides the gain of efficiency, F3T reduces the

complexities surrounding framework development, since, by using this tool, developers
are more concerned about defining framework features in a graphical model. F3T gen-
erates classes that provide flexibility to the framework and allows it to be instantiated in
several applications.
In the second experiment, F3T was compared to Pure::variants. Each tool applies dif-

ferent approaches and artifacts to carry out DE and AE and both tools present pros and
cons. In conclusion, F3T is more useful when there is no previous artifact and when the
domain architecture is needed as a software artifact, such as a framework. Pure::variants
is more useful when variations of an existing application need to be developed.
The current version of F3T only generates the model and persistent layers of frame-

works and applications. As future work, it is intended to include the generation of a
complete multi-portable Model-View-Controller architecture.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MV developed the F3 approach and F3T and wrote most of the manuscript and carried out the experiments. RD
participated in the planning of the experiments and performed the statistical analysis. RD was also responsible to write
about the experiments in the manuscript. RP helped to execute the experiments. RP and AP helped in the design of the
manuscript. All authors read and approved the final manuscript.

Acknowledgments
We would like to thank CAPES and FAPESP for sponsoring our research. We also want to thank all students who
participated in the experiments presented in this article.

Author details
1Federal Institute of Sao Paulo, Campus Sao Carlos, Rod. Washington Luis, km 235, Block AT6, 13565-905 Sao Carlos, Brazil.
2Department of Computing, Federal University of Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, Brazil.
3Institute of Mathematical and Computer Sciences, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, 13566-590,
Sao Carlos, Brazil.

Received: 3 June 2014 Accepted: 28 March 2015

References
Abi-Antoun M (2007) Making Frameworks Work: a Project Retrospective. In: ACM SIGPLAN Conference on

Object-Oriented Programming Systems and Applications. ACM, New York, NY, USA. pp 1004–1018
Amatriain X, Arumi P (2011) Frameworks Generate Domain-Specific Languages: A Case Study in the Multimedia Domain.

IEEE Trans Softw Eng 37(4):544–558
Antkiewicz M, Czarnecki K, Stephan M (2009) Engineering of Framework-Specific Modeling Languages. IEEE Trans Softw

Eng 35(6):795–824
Bayer J, Flege O, Knauber P, Laqua R, Muthig D, Schmid K, Widen T, DeBaud J (1999) PuLSE: a Methodology to Develop

Software Product Lines. In: Symposium on Software Reusability. ACM, New York, NY, USA. pp 122–131
Fowler M (2003) Patterns. IEEE Software 20(2):56–57
Frakes W, Kang K (2005) Software Reuse Research: Status and Future. IEEE Trans Softw Eng 31(7):529–536
Gomaa H (2004) Designing Software Product Lines with UML: From Use Cases to Pattern-Based Software Architectures.

Addison-Wesley, Boston, MA, USA. p 736
Gronback RC (2009) Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-Wesley,

New York. p 736
Hibernate. http://www.hibernate.org
Jezequel JM (2012) Model-Driven Engineering for Software Product Lines. ISRN Softw Eng 2012:1–24
Johnson RE (1997) Frameworks = (Components + Patterns). Commun ACM 40(10):39–42
Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-Oriented Domain Analysis (FODA): Feasibility Study.

Technical report, Carnegie-Mellon University Software Engineering Institute, Pittsburgh, Pennsylvania, USA
Kim SD, Chang SH, Chang CW (2004) A Systematic Method to Instantiate Core Assets in Product Line Engineering. In:

11th Asia-Pacific Conference on Software Engineering. IEEE Computer Society, Los Alamitos, CA, USA. pp 92–98

http://www.hibernate.org

Viana et al. Journal of Software Engineering Research and Development (2015) 3:4 Page 26 of 26

Kirk D, Roper M, Wood M (2007) Identifying and Addressing Problems in Object-Oriented Framework Reuse. Empir Softw
Eng 12(3):243–274

Lee K, Kang KC, Lee J (2002) Concepts and Guidelines of Feature Modeling for Product Line Software Engineering. In: 7th
International Conference on Software Reuse: Methods, Techniques and Tools. Springer, London, UK. pp 62–77

Liem I, Nugroho Y (2008) An Application Generator Framelet. In: 9th International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’08). pp 794–799

Lolong S, Kistijantoro AI (2011) Domain Specific Language (DSL) Development for Desktop-Based Database Application
Generator. In: International Conference on Electrical Engineering and Informatics (ICEEI). IEEE Computer Society, Los
Alamitos, CA, USA. pp 1–6

Oliveira TC, Alencar P, Cowan D (2011) Design Patterns in Object-Oriented Frameworks. ReuseTool: An Extensible Tool
Support for Object-Oriented Framework Reuse 84(12):2234–2252

OMG’s MetaObject Facility. http://www.omg.org/mof
Parsons D, Rashid A, Speck A, Telea A (1999) IEEE Computer Society. In: Technology of Object-Oriented Languages and

Systems, Los Alamitos, CA, USA. pp 141–151
Portal Action. http://www.portalaction.com.br/en
Pressman RS (2009) Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-Hill Science, New York. p 928
Pure::Variants. http://www.pure-systems.com/pure_variants.49.0.html
Rouille E, Combemale B, Barais O, Touzet D, Jezequel J-M (2012) Leveraging CVL to Manage Variability in Software Process

Lines. In: 19th Asia-Pacific Software Engineering Conference (APSEC) Vol. 1. pp 148–157
Sarasa-Cabezuelo A, Temprado-Battad B, Rodríguez-Cerezo D, Sierra JL (2012) Building XML-Driven Application

Generators with Compiler Construction. Comput Sci Inform Syst 9(2):485–504
Shiva SG, Shala LA (2007) IEEE Computer Society. In: Fourth International Conference on Information Technology, Los

Alamitos, CA, USA. pp 603–609
Spring Framework. http://www.springsource.org/spring-framework
Srinivasan S (1999) Design patterns in object-oriented frameworks. ACM Comput 32(2):24–32
Stanojevic V, Vlajic S, Milic M, Ognjanovic M (2011) Guidelines for Framework Development Process. In: 7th Central and

Eastern European Software Engineering Conference. IEEE Computer Society, Los Alamitos, CA, USA. pp 1–9
The Eclipse Foundation Eclipse Modeling Project. http://www.eclipse.org/modeling/
Viana M, Penteado R, do Prado A (2012) Generating Applications: Framework Reuse Supported by Domain-Specific

Modeling Languages. In: 14th International Conference on Enterprise Information Systems.
doi:10.5220/0003990000050014

Viana M, Durelli R, Penteado R, do Prado A (2013) F3: From Features to Frameworks. In: 15th International Conference on
Enterprise Information Systems. doi:10.5220/000441770110011

Weiss DM, Lai CTR (1999) Software Product Line Engineering: A Family-Based Software Development Process.
Addison-Wesley, New York. p 448

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in Software Engineering: an
Introduction. Kluwer Academic Publishers, Norwell, MA, USA

Xu L, Butler G (2006) Cascaded Refactoring for Framework Development and Evolution. ASWEC, Australian Software
Engineering Conference. pp 319-330, doi:10.1109/ASWEC.2006.19

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.omg.org/mof
http://www.portalaction.com.br/en
http://www.pure-systems.com/pure_variants.49.0.html
http://www.springsource.org/spring-framework
http://www.eclipse.org/modeling/

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	Background
	F3 Approach

	From features to frameworks tool
	Domain module
	Framework module
	Application module

	Evaluation
	Experiment 1
	Planning
	Context selection
	Formulation of hypotheses
	Variable selection
	Selection of subjects
	Experiment design
	Design types
	Instrumentation

	Operation
	Preparation
	Execution

	Analysis of data
	Descriptive statistics
	Testing the hypotheses
	Opinion of the subjects

	Experiment 2
	Planning
	Context selection
	Formulation of hypotheses
	Variable selection
	Selection of subjects
	Experiment design
	Design types
	Instrumentation

	Operation
	Preparation
	Execution

	Analysis of data
	Descriptive statistics
	Testing the hypotheses
	Positive and negative characteristics of each tool

	Threats to the validity of the experiments

	Related work
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

