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alternative ways could improve the overall accuracy of the prediction models.

Objectives: In this study, we validate an automated genetic framework, and then
conduct a sensitivity analysis across different genetic configurations. Following is the
comparison of the framework with a baseline random guessing and an exhaustive
framework. Lastly, we investigate the performance results of the best learning schemes.

Methods: In total, six hundred learning schemes that include the combination of
eight data preprocessors, five attribute selectors and fifteen modeling techniques
represent our search space. The genetic framework, through the elitism technique,
selects the best learning schemes automatically. The best learning scheme in this
context means the combination of data preprocessing + attribute selection + learning
algorithm with the highest coefficient correlation possible. The selected learning
schemes are applied to eight datasets extracted from the ISBSG R12 Dataset.

Results: The genetic framework performs as good as an exhaustive framework. The
analysis of the standardized accuracy (SA) measure revealed that all best learning
schemes selected by the genetic framework outperforms the baseline random
guessing by 45-80%. The sensitivity analysis confirms the stability between different
genetic configurations.

Conclusions: The genetic framework is stable, performs better than a random
guessing approach, and is as good as an exhaustive framework. Our results confirm
previous ones in the field, simple regression techniques with transformations could
perform as well as nonlinear techniques, and ensembles of learning machines
techniques such as SMO, M5P or M5R could optimize effort predictions.

Keywords: Software effort estimation, Machine learning, Effort prediction model,
Genetic approach, Learning schemes, Function points, ISBSG dataset, Empirical study

1 Background

Providing accurate software effort prediction models is complex but necessary for the
software industry (Molekken and Jergensen 2003). Software effort prediction models
have been studied for many years, but empirical evaluation has not led to simple nor
consistent ways to interpret their results (Shepperd and MacDonell 2012). Many soft-
ware companies are still using expert judgment as their preferred estimation method,
thus producing inaccurate estimations and severe schedule overruns in many of their
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projects (Boehm 1981). Software project managers need to be able to estimate the effort
and cost of development early in the life cycle, as it affects the success of software project
management (Huang et al. 2015).

Several prediction models have been evaluated in the literature and inconsistent find-
ings have been reported regarding which technique is the best (Jorgensen and Shepperd
2007; Shepperd 2007; Dejaeger et al. 2012; Shepperd and MacDonell 2012). The results
of these studies are not univocal and are often highly technique-and dataset-dependent.
Since there are many models that can fit to certain datasets, the selection of the most effi-
cient prediction model is crucial (Shepperd 2007; Mittas and Angelis 2008). Additionally,
the results of different studies are difficult to compare due to different empirical setups
and data preprocessing, possibly leading to contradictory results. The issue of which mod-
eling technique to use for software effort estimation remains an open research question
(Dejaeger et al. 2012).

The automated selection and combination of techniques in alternative ways could
improve the overall accuracy of the prediction models for specific datasets (Dejaeger et
al. 2012; Malhotra 2014). The motivation behind the use of these methods is to make
minimal assumptions about the data used for training. In this sense, genetic algorithms
are search-based algorithms that are much faster than exhaustive search procedures
(Malhotra 2014). According to Harman (2007), search based (SB) optimization tech-
niques have been applied to a number of software engineering (SE) activities, of all
optimization algorithms, genetic algorithms have been the most widely applied search
technique in SBSE.

In our genetic approach, we address how to select the data preprocessing,
attribute selection techniques and the learning algorithms automatically according
to the characteristics of a specific data set. The main goal is to increase predic-
tion performance optimizing processing time. In this case, the automatic selection
of the learning scheme (preprocessing + attributes selection + learning algorithms)
is determined by using a genetic approach. For example, the decision of how to
select the different techniques considering the characteristics of a specific dataset
through of genetic algorithms could be considered a search-based problem for software
engineering.

This paper reports an empirical validation of an automated genetic framework. In total,
600 learning schemes that include the combination of 8 data preprocessors, 5 attribute
selectors, and 15 modeling techniques represented our search space. The genetic frame-
work through the elitism technique selects the best learning schemes automatically based
on the highest correlation coefficient.

In this study, we conducted a sensitivity analysis across different genetic configura-
tions to evaluate the stability of an automated genetic framework and to discover which
genetic configurations report best performance. Further, we compared the automated
genetic framework performance with a baseline random guessing (Langdon et al. 2016)
and an exhaustive framework (Quesada-Lopez et al. 2016). Then, we analyzed the per-
formance of the best learning schemes. We aim to find the best framework configuration
(generation and population, mutation levels, crossover levels) according to given data
set context. After that, we want to compare the genetic framework results with the
exhaustive framework results in order to determine if our genetic approach presents
similar solutions to the best solutions found by the exhaustive approach. Besides, we
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would like to evaluate if evaluation and prediction phases reported similar results as it
would mean that our approach is reliable between phases. Finally, we would like to know
the most frequently learning schemes selected and the learning schemes that reports
the best performance in the effort prediction domain. The main contribution of this
empirical study is that it presents a genetic framework, which can be used to automat-
ically determine the best learning schemes to use according to the characteristics of a
specific data set. Our approach is different respect to others because we use a full model
(data preprocessing + attribute selection + learning algorithm) in our fitness function thus
maximizing the three components.

This study generates through genetic algorithms software effort prediction mod-
els based on function point measure using the International Software Benchmarking
Standards Group (ISBSG R12) Dataset (Hill 2010; ISBSG 2015) and evaluates their
effectiveness. We analyze the performance of effort prediction models based on the
base functional components (BFC) and unadjusted function point size (UFP) (Albrecht
1979; Jeng et al. 2011). We have established the following research questions as the
focus of our analysis. We address each of these questions in the section referenced in
parentheses.

e RQ1. Which genetic framework configuration (generation and population, mutation
levels, crossover levels) did report the best performance when compared to the
baseline exhaustive framework? (Section 5.1).

® RQ2. Is the performance of the genetic framework similar between evaluation and
prediction phases? (Section 5.2).

e RQ3. Which are the learning schemes (data preprocessors, attribute selectors,
learning algorithms) more frequently selected by the genetic framework? (Section 5.3).

® RQ4. Which learning schemes did report the best performance according evaluation
criteria metrics? (Section 5.4).

The remainder of the paper is structured as follows: Section 2 briefly provides informa-
tion on previous studies in effort prediction. Section 3 describes the genetic framework
to select and evaluate automatically effort prediction models. Section 4 details the exper-
imental design, and Section 5 presents the analysis and interpretation of results. Finally,
Section 6 outlines conclusions and future work.

2 Related work

Several formal models have been employed in software effort prediction using a num-
ber of data mining techniques (Jorgensen and Shepperd 2007; Wen et al. 2012).
These include several regression analysis techniques, neural networks, instance-based
learners, tree/rule-based models, case-based reasoners, lazy learning, bayesian classi-
fiers, support vector machines, and ensembles of learners (Jorgensen and Shepperd
2007; Shepperd and MacDonell 2012). Most studies evaluate only a limited num-
ber of modeling techniques on a dataset, which limits the generalization of results.
In addition, the results of different studies are difficult to compare due to their
different empirical setups, data preprocessing, and dataset characteristics (Shepperd
and MacDonell 2012; Langdon et al. 2016). Therefore, the issue of which modeling
technique to use for software effort estimation remains an open research question
(Dejaeger et al. 2012).
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2.1 Frameworks for benchmarking prediction models

Several prediction models have been evaluated in the literature and inconsistent findings
have been reported regarding which technique is the best (Shepperd and MacDonell 2012;
Dejaeger et al. 2012). For example, in (Jorgensen 2004) differences between model-based
and expert-based estimation results were found. In (Mair and Shepperd 2005) regression
and analogy methods for effort estimation where compared and conflicting evidence were
found. In (Dejaeger et al. 2012) the authors conducted a large scale benchmarking study
using different types of techniques and analyzed aspects related with the selection of fea-
tures. The results indicated that ordinary least squares regression in combination with a
logarithmic transformation performs best; however, the combination of other techniques
could obtain similar results. Similar results were found in previous work conducted for the
authors of this paper (Quesada-Lopez et al. 2016; Murillo-Morera et al. 2016a; Quesada-
Lopez et al. 2016). In (Keung et al. 2013), ninety predictors are evaluated with 20 datasets,
they used 7 performance measures to determine stable rankings of different predictors.
They concluded that regression trees or analogy-based methods are the best perform-
ers and offered means to address the conclusion instability issue. In (Huang et al. 2015)
several data preprocessing techniques were empirically assessed on the effectiveness of
machine learning methods for effort estimation. The results indicate that data prepro-
cessing techniques may significantly influence the predictions, but sometimes it might
have negative impacts on prediction performance. They concluded that a careful selec-
tion is necessary according to the characteristics of machine learning methods, as well as
the datasets.

In consequence, a number of frameworks for benchmarking prediction models in
software effort estimation have been proposed. The main motivation of these stud-
ies is to achieve an unbiased criterion when comparing different software estimation
models and evaluate the effectiveness of data preprocessing techniques, data attribute
selectors, and machine learning algorithms in the context of software effort estima-
tion. For example, in (Shepperd and MacDonell 2012) the authors proposed a frame-
work for evaluating prediction systems to reduce the inconsistency amongst validation
study results and provide a more formal foundation to interpret results on contin-
uous prediction systems. The use of an unbiased statistic will assist in performing
future meta-analyses and in providing more robust and usable recommendations to
practitioners. In (Menzies and Shepperd 2012; Keung et al. 2013), conclusion insta-
bility in prediction systems is discussed with the intention of providing a framework
for studies in the area. The paper analyzed known sources of instability such as the
bias measures, variance from sampling, pre-processing and others; after that, it pro-
vided recommendations in order to reduce the instability problems. The authors state
that an interesting research possibility is to tune the data mining and machine learn-
ing techniques using feedback from the domain. This approach generates the learner for
a particular dataset. Finally, they concluded that learning learners is an active research
area and much further work is required before we can understand the costs and benefits
of this approach. In (Song et al. 2013) the authors proposed a framework to inves-
tigate to what extent parameter settings affect the performance of learning machines
in software effort estimation, and what learning machines are more sensitive to their
parameters. They concluded that different learning machines have different sensitivity
to their parameter settings. Finally, (Dolado et al. 2016; Langdon et al. 2016) proposed
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a measure based on a random guessing framework to compare methods for software

estimation.

2.2 Effort prediction approaches using genetic algorithms

Harman and Jones (2001) stated that software engineering is ideal for the application
of metaheuristic search techniques, such as genetic algorithms, simulated annealing and
tabu search. They argued that such search-based techniques could provide solutions to
the difficult problems of balancing competing (and sometimes inconsistent) constraints
and may suggest ways of finding acceptable solutions in situations where perfect solutions
are either theoretically impossible or practically infeasible. In their work they briefly set
out key ingredients for successful reformulation and evaluation criteria for search-based
software engineering.

In (Harman 2007), Harman described a study on the application of optimization tech-
niques in software engineering. The optimization techniques in Harman’s work came
from the operations research and metaheuristic computation research communities. His
research reviewed the used optimization techniques and the key ingredients required for
their successful application to software engineering, providing an overview of existing
results in eight software engineering application domains. Harman’s paper also described
the benefits that are likely to accrue from the growing body of work in this area and pro-
vided a set of open problems, challenges and areas for future work. He stated that for new
areas of software engineering that have yet to be attacked using search based approaches
it remains acceptable to experiment with a variety of search algorithms in order to obtain
baseline data and to validate the application of search. But, in order to develop the field of
search-based software engineering, a reformulation of classic software engineering prob-
lems as search problems is required. In (Harman et al. 2012), the authors argued that
search based software engineering has proved to be a very effective way of optimizing
software engineering problems. Nevertheless, its full potential as a means of dynamic
adaptivity remains under explored.

In (Lefley and Shepperd 2003), the authors investigated the use of various techniques
including genetic programming with public data sets. They attempted to model and esti-
mate software project effort. They analyzed when a genetic program can offer better
solution search using public domain metrics rather than company specific ones. The
study also offered insights into genetic programming performance. They determined
that genetic programming performed consistently well, but was harder to configure. In
(Arcuri and Fraser 2011; Sayyad et al. 2013), the authors conducted a comprehensive
study analyzing the impact of parameter settings in machine learning and software effort
estimation. They performed a large study of parameter settings using genetic algorithms.
Their results showed that parameter tuning can have critical impact on algorithmic per-
formance, and that overfitting of parameter tuning is a serious limitation of empirical
studies in search-based software engineering. In (Aljahdali and Sheta 2013), the authors
argued that recently, computational intelligence paradigms were explored to handle the
software effort estimation problem with promising results. In this paper they evolve two
new models for software effort estimation using Multigene Symbolic Regression Genetic
Programming. One model utilizes the source line of code as input variable to estimate
the effort; while the second model utilizes the inputs, outputs, files, and user inquiries
to estimate the function points. Finally, in (Chen et al. 2017), the authors proposed
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that instead of mutating a small population, building a large initial population which is
then culled using a recursive bi-clustering binary chop approach. They evaluated this
approach on multiple software engineering models, unconstrained as well as constrained,
and compared its performance with standard evolutionary algorithms. Using just a few
evaluations (under 100), they can obtain the comparable results to standard evolutionary
algorithms.

In (Singh and Misra 2012), the authors argued that COCOMO is used as algorithmic
model and an attempt is being made to validate the soundness of genetic algorithm tech-
nique using NASA project data. The main objective of this research is to investigate the
effect of crisp inputs and genetic algorithm techniques on the accuracy of system’s output
when a modified version of the famous COCOMO model is applied to the NASA dataset.
In (Ghatasheh et al. 2015), a firefly algorithm is proposed as a metaheuristic optimization
method for optimizing the parameters of three COCOMO-based models. These mod-
els include the basic COCOMO model and other two models proposed in the literature
as extensions of the basic model. The developed estimation models are evaluated using
different evaluation metrics. Experimental results show high accuracy and significant
error minimization of firefly algorithm over other metaheuristic optimization algorithms
including genetic algorithms and particle swarm optimization.

2.3 Techniques and algorithms applied to software effort estimation models

Several techniques have been applied to the field of software effort prediction. In our
study, we applied and evaluated different data preprocessing approaches, attribute selec-
tor techniques, and machine learning algorithms, some of them representing groups of
learning algorithms. In Table 1, we present a summary of techniques and algorithms
based on previous literature in the domain of software effort prediction and other pre-
diction contexts (Witten and Frank 2005; Song et al. 2011; Dejaeger et al. 2012). The
data preprocessing approaches are represented by the tag (PP), the attribute selector
techniques are represented by the tag (AS), and the learning algorithms are repre-
sented by the tag (LA). In the following sections, we briefly discuss each of the included
techniques.

Table 1 Data mining techniques for learning schemes

DP Id Name AS Id Name LA Id Name
1 None None 1 GS  GeneticSearch 1 GP GaussianProcesses
2 Log Logartihmic 2 BF BestFirst 2 LMS LeastMedSq
3 BC(-2) Box-Cox(A = -2) 3 LFS  LinearForwardSelection 3 LR LinearRegression
4 BC(-1)  Box-Cox(A =-1) 4 BE Backward Elimination 4 MP MultilayerPerceptron
5 BC(-5) Box-Cox(A =-05) 5 FS Forward Selection 5 RBFN  RBFNetwork
6 BC(.5) Box-Cox(A = 0.5) 6 SMO  SMOreg
7 BC(1) Box-Cox(A = 1) 7 AR AdditiveRegression
8 BC(2) Box-Cox(A = 2) 8 BGN Bagging
9 CR ConjunctiveRule
10 DT DecisionTable
11 M5R  M5Rules
12 ZR ZeroR
13 DS DecisionStump
14 M5P  M5P
15  RT REPTree
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2.3.1 Data preprocessing (PP)

According to (Witten and Frank 2005), Data preprocessing is a group of techniques for
clean the data set with different noise levels, delete missing values, and processing out-
liers among others funcionalities. Table 2 presents a summary of the data preprocessing
techniques. For more details see (Witten and Frank 2005), p.432.

2.3.2 Attribute Selector (AS)

According to (Witten and Frank 2005), most machine learning algorithms are designed
to learn which are the most appropriate attributes to use for making their decisions. For
example, decision tree methods choose the most promising attribute to split on at each
point and should in theory never select irrelevant or unhelpful attributes. Table 3 presents
a summary of the attribute selector techniques. For more details, see (Witten and Frank
2005 )p.487.

2.3.3 Learning Algorithm (LA)

According to (Witten and Frank 2005), learning algorithms are models that help to build
classifiers. The main categories of classifiers are: Beyesian, Trees, Rules, Functions, Lazy,
multi-instance and miscellaneous. Table 4 presents a summary of the learning algorithms
techniques.

3 Genetic effort prediction framework

This section presents the main characteristics and steps of the automated genetic
effort prediction framework. Our framework consists of two components: 1) Learning
Scheme Generator and Evaluator and 2) Effort Prediction. The component of the learn-
ing schemes, generator and evaluator, is characterized by the generation and evaluation
of learners. The best learning scheme is selected according to the maximum Correla-
tion Coefficient (CC) computed in the fitness function. Moreover, the effort prediction
component is characterized by the generation of the predictor (see Fig. 1).

The effort prediction models are built before and then evaluated. After that, the pre-
dictive performance of the learning schemes could be used as a reference, particularly for
future data. The framework was constructed to support a continuous value as an output
variable. It divides the datasets randomly into historical data represented by the 90% and
the new data represented by the 10% before the N-PASS process (number N of PASS (exe-
cutions) of our approach. The objective to avoid performance variability calculating the
average of the executions (Song et al. 2011) generating the same subsets of instances per
each dataset before each evaluation. Finally, the framework evaluates the 10% of the whole

data, avoiding the overfitting. The overfitting refers to the condition where a predictive

Table 2 Data preprocessing

PP Description

None(None) This data preprocessing presents the data unchanged.

Logarithmic(Log)  In this data preprocessing, all the numeric values are replaced by their logarithmic values.

Box-Cox(BC) Is a parametric power transformation technique in order to reduce anomalies such as
non-normality and heteroscedasticity. This data preprocessing was introduced by Tukey

(1957) as a family of power transformations such that the transformed values are a
monotonic function of the observations over admissible range. (Sakia 1992)
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Table 3 Attribute selector

AS Description

Genetic Search (GS) Uses a simple genetic algorithm. Parameters include population size, number
of generations, and probabilities of crossover and mutation.

BestFirst (BF) This attribute selector performs greedy hill climbing with backtracking. It is
possible to specify how many consecutive non-improving nodes must be
encountered before the system backtracks.

LinearForwardSelection (LFS)  This attribute selector is an extension of BestFirst that considers a restricted
number of the remaining attributes when expanding the current point in the
search.

Backward Elimination (BE) This attribute selector starts with the whole set of attributes and eliminates
one attribute in each iteration until no single attribute elimination improves
the evaluation of the subset.

Forward Selection (FS) This attribute selector starts from an empty set and evaluates each attribute
individually to find the best single attribute. It then tries each of the remaining
attributes in conjunction with the best pair to find the best group of the three
attributes.

model (e.g., for predictive data mining) is so “specific” that it reproduces various idiosyn-
crasies (random “noise” variation) of the particular data from which the parameters of the
model were estimated; as a result, such models often may not yield accurate predictions
for new observations (e.g., during deployment of a predictive data mining project). The
effort prediction part of the automated framework consists of predictor construction and
effort prediction.

In this study, we improved the implementation of the framework proposed in (Murillo-
Morera et al. 2016a) (Fig. 1, Learning Scheme Evaluator, Step-3 to Step-7). The main
difference between this framework and others consisted of the use of a genetic algo-
rithm to select the parts of the learning scheme, instead of evaluating only a group
of pre-established combinations. The main extensions of this paper with respect to
(Murillo-Morera et al. 2016a) are: (a) the extension of the search space to 600 learn-
ing schemes, (b) the sensibility analysis of the genetic operators (generation, population,
crossover and mutation) to find learning algorithms with better performance and (c)
the comparison of our approach against an exhaustive and a random guessing approach
(performance and runtime).

3.1 Learning schemes generator and evaluator

The learning scheme generator is characterized by the selection of the best learning
scheme according to the maximum Correlation Coefficient (CC) value computed and
the configuration selected by the genetic approach (Fig. 1, Learning Scheme generator).
The evaluator component (Fig. 1, Learning Scheme Evaluator) is represented by the fit-
ness function based on Song methodology (Song et al. 2011). The main steps of this
component are detailed below (Fig. 1):

1. Historical data was randomized and divided into a training set and a test set. This
was done using a M x N-fold cross-validation (Evaluation, Step-3).

2. The selected data preprocessing technique was applied to both the training and the
test set (Evaluation, Step-4), resulting in modified training and test data.

3. The chosen attribute selection technique was applied only to the training set
(Evaluation, Step-5) and the best subset of attributes was selected.
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LA

Description

GaussianProcesses (GP)

LeastMedSq (LMS)

LinearRegression (LR)

MultilayerPerceptron (MP)

RBFNetwork (RBFN)

SMOreg (SMO)

AdditiveRegression (AR)

Bagging (BAG)

ConjunctiveRule (CR)

DecisionTable (DT)

M5Rules (M5R)

ZeroR (ZR)

DecisionStump (DS)

M5P (M5P)

REPTree (RT)

This algorithm implements the Bayesian Gaussian process technique for
non-linear regression. This method is equivalent to kernel ridge regression.

Is a robust linear regression algorithm that minimizes the median (rather than
mean) of the squares of divergences from the regression line. It repeatedly
applies standard linear regression to subsamples of the data and outputs the
solution that has the smallest median-square error.

This algorithm performs standard least-squares multiple linear regression and
can optionally perform attribute selection, either greedily using backward
elimination or by building a full model from all attributes and dropping the terms
one by one, in decreasing order of their standardized coefficients.

Is a neural network that trains using back-propagation. This network can be built
by hand, created by an algorithm or both. The network can also be monitored
and modified during training time. The nodes in this network are all sigmoid
(except for when the class is numeric in which case the output nodes become
unthresholded linear units).

Is an algorithm that implements a Gaussian radial basis function network,
deriving the centers and widths of hidden units using k-means and combining
the outputs obtained from the hidden layer using logistic regression, if the class
is nominal and, linear regression if it is numeric.

This method implements the sequential minimal-optimization algorithm for
learning a support vector regression model. The parameters can be learned using
various algorithms. The algorithm is selected by setting the RegOptimizer.

It is an algorithm that enhances the performance of a regression base classifier.
Each iteration fits a model to the residuals left by the classifier on the previous
iteration. Prediction is accomplished by adding the predictions of each classifier.

Is an algorithm that reduces variance. This method can work for both classifica-
tion and regression, depending on the base learner. In the case of classification,
predictions are generated by averaging probability estimates, no by voting.

The algorithm learns a single rule that predicts either a numeric or a nominal
class value. Uncovered test instances are assigned the default class value (or
distribution) of the uncovered training instances.

This algorithm consists of a hierarchical table in which each entry in a higher level
table gets broken down by the values of a pair of additional attributes to form
another table. The structure is similar to dimensional stacking (Becker 1998).

This algorithm obtains regression rules from model trees built using M5 Ridor
(Ripple Down Rule learner). This means that method learns rules with exceptions
by generating the default rule, using incremental reduced-error pruning to find
exceptions with the smallest error rate, finding the best exceptions for each
exception, and iterating. (More details (Quinlan and et al. 1992; Holmes et al. 1999;
Wang and Witten 1997))

This algorithm predicts the test data’s majority class (if nominal) or average value
(if numeric). It is the simplest classification method, which relies on the target
and ignores all predictors. ZeroR algorithm simply predicts the majority category
(class).

It is an algorithm designed for use with the boosting method. It builds one-level
binary decision trees for datasets with a categorical and numeric class, dealing
with missing values by treating them as separate values and extending a third
branch from the stump.

This algorithm combines a conventional decision tree with the possibility of
linear regression functions at the nodes. First, a decision-tree induction algorithm
is used to build a tree, but instead of maximizing the information gain at each
inner node, a splitting criterion is used that minimizes the intra-subset variation
in the class values down each branch.

This algorithm builds a decision or regression tree using information
gain/variance reduction and prunes it using reduced-error pruning. Optimized
for speed, it only sorts values for numeric attributes once. It deals with missing
values by splitting instances into pieces.

4.  The attributes selected were then extracted for both the training and the test set

(Evaluation, Step-6).

5. The Learning algorithm was built using the training set and evaluated with the test

set. (Evaluation, Step-7).
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Fig. 1 Learning Schemes Generator and Evaluator: This figure represents the learning scheme generator and
evaluator component. The generator is characterized by the selection of the best learning scheme according
to the maximum Correlation Coefficient (CC) value computed and the configuration selected by the genetic

approach. On the other side, the evaluator is represented by the fitness function based on Song methodology

3.2 Effort prediction

The main objective of this component is to build a predictor for new data, while the main
objective of the generator of the learning scheme (first component) is to build a learner
and select the best one with regard to its Correlation Coefficient (CC). A predictor is built
using the best learning scheme identified in the previous stage. Once it is ready, this pre-
dictor can be used to compute the final performance score using new data (i.e. predicting
on new data). This is simulated by running the predictor on the newData dataset that
was reserved when doing the (90-10%) splits. We applied a N-PASS, where N = 10. The
mean is computed after N iterations. This final CC represents our CC of prediction. This
component is represented by (Effort Prediction, Step-0, Step-1).

3.3 Genetic approach

This section describes the genetic configuration used in this paper: Chromosome,
Operators and Fitness Function. The genetic configuration and the proposed framework
of this research is an adapted version of the framework presented in (Murillo-Morera
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et al. 2016a). A Genetic Algorithm (GA) is a search approach that mimics the biologi-
cal process of natural selection in order to find a suitable solution in a multidimensional
space. Genetic algorithms are, in general, substantially faster than exhaustive search pro-
cedures. In previous studies (Murillo-Morera et al. 2016¢; 2016b), we have corroborated
this experimentally in the area of software prediction.

Chromosome. The Chromosome of a genetic algorithm represents the set of possible
combinations within the search space. It is commonly represented as a binary chain of Os
and 1s. In this paper, the Chromosome consists of three parts: Data preprocessing (DP),
Attribute Selector (AS), and Learning Algorithms (LA); effectively constructing a triplet
of < DP,AS, LA >. For DP, we considered two possibilities, represented by a binary chain
of 1 bit (2! = 2). For AS, we considered five possible techniques, also represented by a
binary chain of 3 bits (22 = 8). For LA, we considered fifteen different possibilities, which
required 4 bits to represent (2* = 16). With this Chromosome representation, the goal
of the GA is to find the Chromosome that maximizes a fitness function. We only worked
with combinations within the proposed range. For example, the range of the attribute
selection is between 1 — 5. This means that combinations with the attribute selection set
6 — 8 are not valid.

Fitness Function. The final value of the Correlation Coefficient (CC) is computed in
the prediction phase. The N-PASS is a strategy to avoid variability of the final result of the
Correlation Coefficient (CC) (Song et al. 2011), where the fitness score of a Chromosome
is computed as the average of 10 runs. The whole dataset is split randomly in two data
sets: histData and newData. The histData set represents 90% of the whole dataset used for
training and testing. The newData set represents 10% of the whole dataset, representing
a new project; we repeat this for each PASS in the evaluation phase. This algorithm per-
forms a M x N-fold cross-validation, where multiple rounds are performed with different
partitions to reduce variability. Validation of results is averaged over rounds. Finally, in the
prediction phase we generated the final value of the CC using the unseen new data and
the best learning scheme (LS) computed in the evaluation phase. This solution is used in
the prediction phase.

Operators. The operators of selection, reproduction, crossover and mutation used were
configured using the default values provided by the WEKA genetic search (Witten and
Frank 2005). The Learning Scheme Generator, shown in Fig. 1, is responsible for evalu-
ating and selecting the different learning schemes. Selection is done through the elitism
technique of the genetic algorithm.

Finally, the best learning scheme, in our case the Chromosome (with its data prepro-
cessing, attribute selector and learning algorithm), was selected by the genetic algorithm.

3.4 Geneticsetup

The genetic approach was implemented using JGAP-API (Meffert and Rotstan 2005). We
generated the populations and generations randomly, using the standard configuration
of WEKA’s geneticSearch. However, our selection of population, generation, mutation
and crossover levels is based on (Bala and Sharma 2015) (Table 5). We used tournament
as operator of selection, with tournamentk = 2 and tournamentp = 0.5 and we set
elitism to true. In the generation-evaluation phase, we applied a strategy for the selec-
tion of attributes called Wrapper (Witten and Frank 2005). It was used with the objective
of selecting the attributes for each subset using an internal cross-validation. Wrappers
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Table 5 Framework configuration for the sensibility analysis

Id Population x Generation Mutation Crossover
1 10x10 0.01 0.6
2 20x20 0.01 0.6
3 40 x40 0.01 06
4 20x 20 0.01 0.6
5 20x 20 0.033 0.6
6 20x 20 0.1 06
7 20x20 0.01 0.6
8 20x20 0.01 0.7
9 20x 20 0.01 0.9

generally provide better results than filters, but they are computationally more intensive
(Song et al. 2011).

4 Methods

This section presents the design of the empirical study we carried out to validate the
automated genetic framework. The controlled experiment follows the recommendations
detailed in (Dejaeger et al. 2012). First, we present the experimental procedure. Second,
we describe the datasets and learning schemes used. Finally, we detail the evaluation crite-
ria and statistical tests used to assess the results. We provide an overview of the evaluation
process in the Fig. 2.

4.1 Experimental procedure

The empirical validation assesses different learning schemes according to specific data
sets. We analyzed the performance of effort prediction models based on different evalu-
ation criteria detailed in Section 4.4. Then, we compared our genetic framework results
with a baseline exhaustive framework (Quesada-Lopez et al. 2016) and a baseline random
guessing framework based on (Langdon et al. 2016) to evaluate its performance. Finally,
we applied a sensitivity analysis with the objective to find which genetic configurations
reported best performance. We executed the following specific steps for the experimental
procedure to collect the results (Fig. 2):

e Step-1. We selected n = 8 sub datasets from the ISBSG R12 database according the
procedure and characteristics detailed in Section 4.2.

e Step-2. We executed the three frameworks: (a) genetic, (b) exhaustive and (c)
random guessing using these 8 datasets and collected the performance measures
detailed in Section 4.4.

e Step-3. The (a) genetic and (b) exhaustive frameworks used 600 learning schemes
that included the combination of 8 Data Preprocessing, 5 Attribute Selectors and 15
Learning Algorithms detailed in Section 4.3.

e Step-4. We executed the (a) genetic framework with nine different configurations
that included 3 levels of Generation, 3 levels of Population, 3 levels of Mutation and 3
levels of Crossover as shown in Table 5.

e Step-5. After the results were collected, each analysis was conducted according to
Section 4.5.
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Fig. 2 Experimental Design Steps: This figure represents the experimental design steps. In this experiment,
the set N — PASS = 10 and computed the Correlation Coefficient (CC) average is set after N — PASS runs. For
each PASS, 90% of the data as historical at random is selected. An N = 10 x M = 10-fold cross-validation is
used to evaluate each learning scheme. The evaluation metrics were computed after N x M-fold
cross-validation. The fitness function of each genetic individual was executed in 1000 holdout experiments,
(N — PASS = 10) and N = 10 x M = 10-fold cross-validation. The mean of the 1000 CC measures was
reported as the evaluation performance per genetic individual. The historicalData (90%) was preprocessed
considering preprocessing techniques. Then, the predictor was used to predict with the newData (10%),
which was preprocessed the same way as the historical data

In our experiment, we set N — PASS = 10 and computed the Correlation Coefficient
(CC) average after N — PASS runs. For each PASS, we selected 90% of the data as historical
at random. An N = 10 x M = 10-fold cross-validation was used to evaluate each learning
scheme. The evaluation metrics were computed after N x M-fold cross-validation. The
fitness function of each genetic individual was executed in 1000 holdout experiments,
(N — PASS = 10) and N = 10 x M = 10-fold cross-validation. The mean of the 1000
CC measures was reported as the evaluation performance per genetic individual. The
historicalData (90%) was preprocessed considering preprocessing techniques. Then, the
predictor was used to predict with the newData (10%), which was preprocessed the same

way as the historical data (Section 3).

4.2 Dataset selection

This study evaluates the effectiveness of software effort prediction models based on func-
tion point measures using the ISBSG R12 Dataset (Hill 2010; ISBSG 2015). ISBSG has
collected and refined its database over many years based on the metrics that have proven
to be most useful in management of software development and processes. ISBSG R12 con-
tains projects from 24 countries and several organizations. Due to the heterogeneousness
of the data, ISBSG recommends extracting a suitable subset of projects. We analyzed the



Murillo-Morera et al. Journal of Software Engineering Research and Development (2017) 5:4 Page 14 of 33

performance of effort prediction models based on base functional components and unad-
justed function point size (Albrecht 1979; Jeng et al. 2011). The subset of data projects
for our study was selected according to the criteria shown in Table 6 based on recom-
mendations presented in (Dejaeger et al. 2012; Murillo-Morera et al. 2016a; Mendes et al.
2005; Mendes and Lokan 2008; Seo et al. 2013; Quesada-Loépez and Jenkins 2014; 2015;
2016). Projects for which all functional components (UFP and BFC) of function points
were missing were discarded.

For our study, we selected the variables related to FPA functional size components
(BFC), effort of software development, and context attributes according to recommen-
dation in (Gonzélez-Ladrén-de-Guevara and Fernandez-Diego 2014). The list of selected
variables is: Input count (EI), Output count (EO), Interface count (EIF), File count (ILF),
Enquiry count (EQ), Functional size in Unadjusted Function Points (UFP), Work Effort in
man-hours, Development Type, Relative Size, Team Size Group, Development Platform,
Architecture, Language Type, Program Language, and others. The description of context
variables can be found in (Hill 2010; ISBSG 2015). The variables selected in this study are
reported in Appendix A.

Two groups of datasets were used. The first dataset group is represented by 72 projects
(> 2008, Rating A). Twenty-nine of them are from 2008, twenty-five from 2009, thirteen
from 2010, and five from 2011. The smallest project size is 24 UFPs, the average is 240
UFPs, and the largest project is 1,337 UFPs. The second dataset group is represented by
202 projects (> 2005, Ratings A or B). Forty-three of them are from 2005, 34 from 2006,
46 from 2007, 35 from 2008, 26 from 2009, 13 from 2006, and 5 from 2011. The smallest
project size is 6 UFP, the average is 247 with a median of 184 UFP, and the largest project
is 1,337 UFP. The dataset is positively skewed for all variables indicating that the quantity
of small and medium projects is higher than the number of large projects. Most of the
projects were small (between 32-99 UFP) and medium size (between 102-993 UFP). Extra
small projects (between 6-28 UFP) and large projects (between 1,018-1,337 UFP) show
lower productivity than small and medium size projects. Data indicates that the use small
teams in small and medium size projects is better in terms of productivity. Descriptive
statistics for both datasets are presented in Appendix B. A completed description of the
ISBSG database could be found in (Hill 2010; ISBSG 2015).

Before applying the framework, the two used datasets were split in four subsets of
data (Table 7). In the first subset ([1]72-UFP and [5]202-UFP), unadjusted function
points size (UFP) was selected as a predictor and effort of software development as the
dependent variable. In the second subset selected ([2]72-BFC and [6]202-BFC), basic
functional components size (BFC) were selected as a predictor and effort of software
development as the dependent variable. In the third subset ([3]72-UFP-CTX and [7]202-
UFP-CTX), unadjusted function points size (UFP) and nominal context attributes (CTX)

Table 6 Project selection criteria

Criteria Values Motivation

Count Approach IFPUG 4+ Latest FPA standard and counting rules.

Data Quality A Only data with a high level of quality and integrity.

UFP Rating AorB, A Counting data with a high level of quality and integrity.
Year of project > 2005, > 2008 New projects using new technologies.

Application group BA Business application domain.

Resource Level 1 Only development team effort included.
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Table 7 DataSet description

DS Name S/M Domain Year FP Quality Metric N
1-4 ISBSG R12 Multi MIS 2009-2011 IFPUG A FPA 72
5-8 ISBSG R12 Multi MIS 2006-2011 IFPUG AB FPA 202

were selected as predictors and effort of software development as the dependent variable.
In the fourth subset ([4]72-BFC-CTX and [8]202-BFC-CTX), basic functional compo-
nents size (BFC) and nominal context attributes (CTX) were selected as predictors and
effort of software development as dependent variable, as shown in Table 8. Nominal vari-
ables were transformed by dummy coding, where each variable was coded as a 0 or 1 by
applying a nominal to binary filter.

4.3 Learning schemes

The learning schemes are composed of three parts: Data Preprocessing (DP), Attribute
Selector (AS) and Learning Algorithm (LA). In total, we tested in a search space of 600
different learning schemes (8 Data Preprocessing * 5 Attribute selectors * 15 Learning
algorithms). The details of the different techniques used for each learning scheme are

presented in the Section 2.3.

4.4 Evaluation criteria

The prediction accuracy of the models was tested following the criteria applied in
(Shepperd and MacDonell 2012; Dejaeger et al. 2012; Langdon et al. 2016; Seo et al.
2013; Lavazza et al. 2013; Lokan and Mendes 2006). The differences between the actual
effort (e;) and the predicted effort (¢;) should be as small as possible because large devia-
tions between ei and éi will have a significant impact on the software development costs
(Dejaeger et al. 2012). The criterion applied in our evaluation were Spearman’s rank cor-
relation (SC), mean of the magnitude of relative error (MRE), median of the magnitude
of relative error (MdMRE), mean of the absolute residuals (MAR), standardized accu-
racy (SA), and number of predictions within % of the actual ones (Pred25) as shown in
Appendix C.

MRE is the difference between the actual effort and the predicted effort. The MRE
value of individual predictions can be averaged, resulting in the Mean MRE (MMRE).
The MMRE is computed for each observation and is defined in Eq. 1. MMRE can be
highly affected by outliers and is considered a biased and deprecated accuracy statistics
(Shepperd and MacDonell 2012), but it has been extensively used by previous studies. To
address this shortcoming, some authors used the MdAMRE metric, which is the median of

Table 8 Attributes for dataSet

DS Total Size Context Variables

1 1 1 0 UFP

2 5 5 0 ELEO,EQ,ILFEIF
3 24 1 23 UFP

4 28 5 23 ELEO,EQ,ILFEIF
5 1 1 UFP

6 5 5 ELEO,EQ,ILFEIF
7 24 1 23 UFP

8 28 5 23 ELEOEQ,ILF EIF
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all MREs. This metric can be considered better for outliers, and it is therefore preferred
over the MMRE.

The Pred(%) measures the percentage of the estimates whose error is less than % and
it is usually set at 25. Pred is simply the percentage of estimates that are within m% of
the actual value (the % of the estimates with MRE < 0.25). The indicator reveals what
proportion of estimates are within a tolerance of 25% (Dejaeger et al. 2012). This eval-
uation is performed because the presence of an association does not necessarily imply
that an accurate predictive model can be built. It is defined in Eq. 2. Our study com-
pares results across the same empirical setup, data preprocessing and attribute selectors.
Typical Pred25 lies in the range of 10 to 60%, and MdMRE between 30% and 100%
(Dejaeger et al. 2012). Spearman’s rank correlation (SCC) measures the relationship
between (e;) and (¢;). It is a nonparametric correlation coefficient and is defined in Eq. 3.

Mean of the absolute residuals (MAR) and the standardized accuracy (SA) are new mea-
sures recommended to compare the performance of prediction models (Shepperd and
MacDonell 2012; Langdon et al. 2016). MAR is unbiased (towards over or underestima-
tion) since it is not based on ratios, but it is hard to interpret and comparisons cannot be
made across data sets since the residuals are not standardized. It is defined in Eq. 4.

SA is a standardized accuracy measure for prediction techniques (P;) based on MAR.
SA measures the accuracy as the MAR relative to random guessing Py. SA is defined
in Eq. 5, where MARp, is the unbiased exact version of MARp, (Shepperd and Mac-
Donell 2012) recommended for small datasets. It is defined in Eq. 6 as recommended by
(Langdon et al. 2016). This is a naive approach that provides a relevant baseline irrespec-
tive of the exact form of P;. SA represents how much better P; is than random guessing. A
value close to zero means that the prediction model P; is practically useless, performing
little better than a mere random guess. Effort estimation models should minimize MAE
and maximize SA (Shepperd and MacDonell 2012).

4.5 Statistical tests

A comparative procedure is followed to statistically test the performance of the models.
The nonparametric Wilcoxon Rank test was applied (Rédei 2008). This test substitutes t-
test for paired samples. The desirable minimal number of paired samples is 8-10 and it is
expected that the population would have a median, be continuous and symmetrical. The
differences between the variates are tabulated and ranked; the largest one receives the
highest rank. In the case of ties, each should be assigned to a shared rank. The smallest
group of signed-rank values is then summed as the T value. This T value is compared with
figures in a statistical table. If the value obtained is smaller than that in the body of the
table under probability and on the line corresponding to the number of pairs tested, then
the null hypothesis is rejected and the conclusion is justified that the performance of the
two samples are different.

4.6 Threads to validity

There are threats to validity that need to be considered in this study. Construct validity is
the degree to which the variables used in the study accurately measure the concepts they
are supposed to measure. The datasets analyzed have been used in several studies in effort
estimation, but the limited size and characteristics of the sub-dataset used in our analyses
should be considered. The datasets were preprocessed according some approaches in the
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literature but organizations should use our approach with subsets of data close to their
domain and type of software. Data were filtered to make sure only desirable and high-level
quality information were used in the analysis. We used evaluation measures and statistical
tests suggested in previous studies and robust statistical techniques were used to analyze
the prediction model results.

Internal validity refers to establishing that a certain observable event was responsible for
a change in behavior. We discuss internal validity in terms of threats to our experiments
designs. In our study, we followed a strong framework with statistical tests to evaluate the
performance. In the selection of the learning scheme combination, only the correlation
coefficient was used by the elitism technique. Our main issue has been the computational
time of the framework with the datasets, mainly the length of execution of the fitness
function. The parameters selection for all used techniques were the default configuration
because our aim was to validate the genetic framework. Several other range of parameters
could have been tuned to obtain the best estimates. However, the computational time
makes this difficult in practice.

External validity regards to generalizing the study results to other situations. The results
of this study only considered the ISBSG R12 database. The limited datasets caused some
difficulties when attempting to generalize our conclusions. It is necessary to perform
further experiments with other kinds of databases presenting different structures and
characteristics. The software project datasets used in our experiments were based on the
business application domain.

5 Results and discussion
This section reports the results of the genetic framework based on techniques discussed
in Section 2.3 and presents the results for each RQ.

5.1 RQ1.Which genetic framework configuration (generation and population, mutation
levels, crossover levels) did report the best performance when compared to the
baseline exhaustive framework?

5.1.1 Generation and population

Table 9 presents a summary of the best performances of the genetic framework (Gen)

and the exhaustive framework (Exh). We present the performance results for each dataset

(DS), genetic configuration (C), and leaning scheme (LS). We present the results of three

levels of generations and populations ([1] 10x10, [2] 20x20, [3] 40x40). For the configura-

tions of population and generation, we conducted three analyses: first, we compared the
performance between the genetic framework (population and generation of 10x10) and
the exhaustive framework. Second, we compared the performance between the genetic
framework (population and generation of 20x20) and the exhaustive framework. Finally,
we compared the performance between the genetic framework (population and genera-
tion of 40x40) and the exhaustive framework. Our hypotheses states that the performance
is similar between the exhaustive framework and each genetic framework configuration.

For the first hypothesis, Wilcoxon Rank test indicated that exhaustive framework
ranks were statistically significant higher than genetic framework (10x10). Our result
was Pyame = 0.01563 < o = 0.05. This means that we found a statistically sig-
nificant difference between the exhaustive framework analyzed and the configuration

(10x10).
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Table 9 Performance of the genetic and exhaustive frameworks

DS LS Exh C LS Gen C LS Gen @ LS Gen
1 7X2X6 0.79 1 6X3X8 0.72 4 1X1X11 0.79 7 1X1X11 0.79
2 1X1X14 0.77 1 1X2X8 0.71 4 7X3X14 0.77 7 7X3X14 0.77
3 2X1X1 0.85 1 2X4X6 0.84 4 2X5X1 0.85 7 2X5X1 0.85
4 2X2X1 0.83 1 6X5X3 0.80 4 6X5X3 0.80 7 6X5X3 0.80
5 7X1X2 0.70 1 7X1X3 0.69 4 6X5X1 0.69 7 6X5X1 0.69
6 6X5X1 0.70 1 6X3X1 0.71 4 6X4X1 0.71 7 6X4X1 0.71
7 6X4X6 0.78 1 7X5X14 0.75 4 6X4X6 0.76 7 6X4X6 0.76
8 6X4X6 0.75 1 2X3X1 0.74 4 1X5X3 0.71 7 1X5X3 0.71
1 7X2X6 0.79 2 1X1X11 0.79 5 1X5X11 0.79 8 6X2X4 0.77
2 1X1X14 0.77 2 7X3X14 0.77 5 7X1X14 0.77 8 7X3X11 0.74
3 2X1X1 0.85 2 2X5X1 0.85 5 7X4X6 0.84 8 1X4X6 0.84
4 2X2X1 0.83 2 6X5X3 0.80 5 2X2X1 0.83 8 6X1X3 0.81
5 7X1X2 0.70 2 6X5X1 0.69 5 1X3X4 0.69 8 7X2X3 0.69
6 6X5X1 0.70 2 6X4X1 0.71 5 6X2X1 0.71 8 6X4X3 0.68
7 6X4X6 0.78 2 6X4X6 0.76 5 6X2X3 0.75 8 1X3X14 0.74
8 6X4X6 0.75 2 1X5X3 0.71 5 2X1X1 0.75 8 2X2X6 0.72
1 7X2X6 0.79 3 7X5X6 0.79 6 6X2X4 0.78 9 TX1X2 0.78
2 1X1X14 0.77 3 6X2X14 0.78 6 7X1X14 0.77 9 1X5X14 0.77
3 2X1X1 0.85 3 2X5X1 0.85 6 2X5X6 0.84 9 2X4X1 0.85
4 2X2X1 0.83 3 7X1X6 0.82 6 5X2X1 0.79 9 7X5X6 081
5 7X1X2 0.70 3 7X1X3 0.70 6 1X1X3 0.70 9 1X1X6 0.69
6 6X5X1 0.70 3 6X1X1 0.71 6 6X5X1 0.71 9 1X2X6 0.68
7 6X4X6 0.78 3 6X2X6 0.78 6 6X2X3 0.76 9 1X3X14 0.76
8 6X4X6 0.75 3 2X5X1 0.74 6 2X4X1 0.75 9 2X5X1 0.75

For the second hypothesis, Wilcoxon Rank test indicated that exhaustive and genetic
framework (20x20) ranks were not statistically significant different. Our result was
Pyaiwe = 0.07813 > o = 0.05. This means that we did not find a statistically significant
difference between the exhaustive framework analyzed and the configuration (20x20).

Finally, for the third hypothesis, Wilcoxon Rank test indicated that exhaustive and
genetic framework (40x40) ranks were not statistically significant different. Our result
Was Pyaiye = 0.7422 > o = 0.05. This means that we did not find a statistically significant
difference between the exhaustive framework analyzed and the configuration (40x40).

According to performance, the best genetic configuration was (40x40) for all datasets
and the worst was (10x10) compared with the baseline exhaustive framework.

5.1.2 Mutation level(s)
For the mutation operator, we conducted three analyses: first, we compared the perfor-
mance of the genetic framework with the exhaustive framework (mutation 0.01). Second,
we compared the performance of the genetic framework with the exhaustive frame-
work (mutation 0.033). Finally, we compared the performance of the genetic framework
with the exhaustive framework (mutation 0.1). Our hypothesis is that the performance is
similar between the exhaustive framework and each genetic framework configuration.
For the first hypothesis, Wilcoxon Rank test indicated that exhaustive and genetic
framework (0.01) ranks were not statistically significant different. Our result was p,,1,e =
0.07813 > o = 0.05. This means that we did not find a statistically significant difference
between the exhaustive framework analyzed and the mutation (0.01).
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For the second hypothesis, Wilcoxon Rank test indicated that exhaustive and genetic
framework (0.033) ranks were not statistically significant different. Our result was
Pvaiue = 0.1484 > « = 0.05. This means that we did not find a statistically significant
difference between the exhaustive framework analyzed and the mutation (0.033).

Finally, for the third hypothesis, Wilcoxon Rank test indicated that exhaustive and
genetic framework (0.1) ranks were not statistically significant different. Our result was
Pvaiye = 0.07813 > o = 0.05. This means that we did not find a statistically significant
difference between the exhaustive framework analyzed and the configuration (0.1).

Table 9 shows the results of different levels of mutation in configuration (C) values [4]
0.01, [5] 0.033 and [6] 0.1. The mutation with the best performance was 0.033 compared
with the baseline exhaustive framework.

5.1.3 Crossover level(s)

For the crossover operator, we conducted three analyses: first, we compared the perfor-
mance of the genetic framework with the exhaustive framework (crossover 0.6). Second,
we compared the performance of the genetic framework with the exhaustive framework
(crossover 0.7). Finally, we compared the performance of the genetic framework with the
exhaustive framework (crossover 0.9). Our hypothesis says that the performance is similar
between the exhaustive framework and each genetic framework configuration.

For the first hypothesis, Wilcoxon Rank test indicated that exhaustive and genetic
framework (0.6) ranks were not statistically significant different. Our result was p,p,. =
0.07813 > «a = 0.05. This means that we did not find a statistically significant difference
between the exhaustive framework analyzed and the crossover (0.6).

For the second hypothesis, Wilcoxon Rank test indicated that exhaustive and genetic
framework (0.7) ranks were not statistically significant different. Our result was p,,p,. =
0.07813 > «a = 0.05. This means that we did not find a statistically significant difference
between the exhaustive framework analyzed and the mutation (0.7).

Finally, for the third hypothesis, Wilcoxon Rank test indicated that exhaustive frame-
work ranks were statistically significant different from genetic framework (0.9). Our result
was pPyae = 0.03906 < « = 0.05. This means that we found a statistically significant
difference between the exhaustive framework analyzed and the crossover (0.9).

Table 9 shows the results of different levels of crossover in configuration (C) values
[7] 0.6, [8] 0.7 and [9] 0.9. The crossovers with the best performance were 0.6 and 0.7
compared with the baseline exhaustive framework).

5.1.4 Runtime comparison between the exhaustive framework and the genetic framework
We compared the genetic and exhaustive framework selecting the runtime of the best
configuration according to performance on the same computer configuration (hardware
conditions). We used the same search space (600 combinations) and all the conditions
were equal for both approaches. Table 10 presents the runtimes reported for the genetic
and exhaustive framework according to each dataset evaluated. There is a clear differ-
ence between the runtimes of the genetic framework when compared to the exhaustive
framework. In all cases, the genetic framework reported better runtimes. As expected,
the datasets with context variables (3, 4, 7, 8) were computationally more expensive to
process, the datasets without context variables (1, 2, 5, 6) reported less runtime difference.
Our null hypotheses stated that runtime is similar between an exhaustive framework
and our framework. Our result was p,,;. = 0.007813 < o« = 0.05. This means
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Table 10 Runtime in milliseconds between genetic and exhaustive framework

DS Genetic Exhaustive Difference

1 10,758,772.0 26,896,930.0 161381580
2 5,654,127.0 14,385,317.5 8,731,190.5

3 6,931,549.0 17,328,872.5 10,397,3235
4 3,252,517.0 7,631,292.5 4,378,775.5

5 17,472918.0 87,364,790.0 69,891,872.0
6 12,307,627.0 61,538,385.0 49,230,758.0
7 34,767,810.0 173,839,200.0 139,071,390.0
8 3,237,250.0 16,186,275.0 12,949,025.0

that we found a statistically significant difference between runtimes, where our genetic
framework reports a better runtime than the exhaustive framework.

5.2 RQ2.Is the performance of the genetic framework similar between evaluation and
prediction phases?

Table 11 presents a summary of the best performance of our genetic framework for the
search space. We present the performance results for each dataset (DS), genetic config-
uration (C) and leaning scheme (LS). Our hypothesis is that the performance is similar
between the evaluation (Eval) and prediction (Pred) phases for both groups of datasets
studied (Section 4.2). The Wilcoxon Rank test indicated that evaluation and prediction
phases ranks were not statistically significant different. Our result was p, 1, = 0.1648 >
o = 0.05. This means that we did not find a statistically significant difference between the
evaluation and prediction phases for both groups of datasets. The results reported by the
genetic framework are very similar and reliable compared to exhaustive framework.

5.3 RQ3. Which are the learning schemes (data preprocessors, attribute selectors,
learning algorithms) more frequently selected by the genetic framework?

Figure 3 shows the best learning schemes selected by the genetic framework. Table 12

presents the frequency (F) of the best learning schemes (LS) by dataset (DS). The list of

the learning schemes tecnhiques is found in Table 1.

Best learning schemes by dataset were 7x5x6: [BC(1) x FS x SMO], 1x1x11: [None x GS x
M5R] and 6x2x4: [BC(0.5) x BE x MP] for DS=1: [72-UEP]; 6X2X14: [BC(0.5) x BE x M5P],
7X3X14: [BC(1) x LES x M5P], and 7X1X14: [BC(1) x GS x M5P] for DS=2: [72-BEC];
2X5X1: [Log x FS x GP] and 2X5X6: [Log x FS x SMO] for DS=3: [72-UFP-CTX]; 7X1X6:
[BC(1) x GS x SMO], 6X5X3: [BC(0.5) x FS x LR] and 6X1X3: [BC(0.5) x GS x LR] for
DS=4: [72-BFC-CTX]; 7X1X3: [BC(1) x GS x LR], 6X5X1: [BC(0.5) x FS x GP] and 1X1X6:
[None x GS x SMO] for DS=5: [202-UFP]; 6X1X1: [BC(0.5) x GS x GP], 6X4X1: [BC(0.5)
x BE x GP] and 1X2X6: [None x BF x SMO] for DS=6: [202-BFC]; 6X2X6: [BC(0.5) x BF x
SMO], 6X4X6: [BC(0.5) x BE x SMO] and 1X3X14: [None x LFS x M5P] for DS=7: [202-
UFP-CTX]; and 2X5X1: [Log x FS x GP], 1X5X3: [None x FS x LR] and 2X4X1: [Log x
BE x GP] for DS=8: [202-BFC-CTX]. According to the results, the predominant learning
scheme for all datasets is the configuration 6x5x6: [BC(0.5) x FS x SMO].

The frequency of the best learning schemes, according to their performance, was com-
puted considering the complete set of genetic configurations. For the group 72 (DS=1-4),
the main data preprocessors were BC(1) with 28%, BC(0.5) with 25% and None and Log
with 22% each. The main attribute selectors were FS with 36%, GS with 22% and BF with
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Table 11 Evaluation and prediction correlation values by framework configuration

DS C LS Eval Pred DS C LS Eval Pred
1 1 6X3X8 0.72 0.70 5 1 7X1X3 0.69 0.67
1 2 1X1X11 0.79 0.80 5 2 6X5X1 0.69 0.69
1 3 7X5X6 0.79 0.79 5 3 7X1X3 0.70 0.70
1 4 1X1X11 0.79 0.80 5 4 6X5X1 0.69 0.69
1 5 1X5X11 0.79 0.80 5 5 1X3X4 0.69 0.71

1 6 6X2X4 0.78 0.79 5 6 1X1X3 0.70 0.71

1 7 TX1X11 0.79 0.80 5 7 6X5X1 0.69 0.69
1 8 6X2X4 0.77 0.78 5 8 7X2X3 0.69 0.68
1 9 1X1X2 0.78 0.78 5 9 1X1X6 0.69 0.69
2 1 1X2X8 0.71 0.72 6 1 6X3X1 0.71 0.72
2 2 7X3X14 0.77 0.78 6 2 6X4X1 0.71 0.72
2 3 6X2X14 0.78 0.78 6 3 6X1X1 0.71 0.71

2 4 7X3X14 0.77 0.78 6 4 6X4X1 0.71 0.72
2 5 7X1X14 0.77 0.79 6 5 6X2X1 0.71 0.70
2 6 7X1X14 0.77 0.79 6 6 6X5X1 0.71 0.70
2 7 7X3X14 0.77 0.78 6 7 6X4X1 0.71 0.72
2 8 7X3X11 0.74 073 6 8 6X4X3 0.68 0.67
2 9 1X5X14 0.77 0.76 6 9 1X2X6 0.68 0.67
3 1 2X4X6 0.84 0.83 7 1 7X5X14 0.75 0.77
3 2 2X5X1 0.85 0.85 7 2 6X4X6 0.76 0.76
3 3 2X5X1 0.85 0.85 7 3 6X2X6 0.78 0.78
3 4 2X5X1 0.85 0.85 7 4 6X4X6 0.76 0.76
3 5 7X4X6 0.84 0.85 7 5 6X2X3 0.75 0.75
3 6 2X5X6 0.84 0.83 7 6 6X2X3 0.76 0.76
3 7 2X5X1 0.85 0.85 7 7 6X4X6 0.76 0.76
3 8 1X4X6 0.84 0.85 7 8 1X3X14 0.74 0.74
3 9 2X4X1 0.85 0.85 7 9 1X3X14 0.76 0.77
4 1 6X5X3 0.80 0.79 8 1 2X3X1 0.74 073
4 2 6X5X3 0.80 0.81 8 2 1X5X3 0.71 0.70
4 3 7X1X6 0.82 0.80 8 3 2X5X1 0.74 0.73
4 4 6X5X3 0.80 0.81 8 4 1X5X3 0.71 0.70
4 5 2X2X1 0.83 0.83 8 5 2X1X1 0.75 0.76
4 6 5X2X1 0.79 0.79 8 6 2X4X1 0.75 0.76
4 7 6X5X3 0.80 0.79 8 7 1X5X3 0.71 0.70
4 8 6X1X3 0.81 0.81 8 8 2X2X6 0.72 0.72
4 9 7X5X6 0.81 0.81 8 9 2X5X1 0.75 0.76

16%. Finally, the most selected learning algorithms were GP, SMO and M5R with 19% each
and LR with 14%. Otherwise, for the group 202 (DS=5-8), the main data preprocessors
were BC(L = 0.5) with 47%, None with 25% and Log with 17%. The main attribute selec-
tors were FS with 28%, BE with 22% and BF with 20%. Finally, the most selected learning
algorithms were GP with 42%, LR with 25% and SMO with 19%.

Our results confirm previous results stated in (Dejaeger et al. 2012), the use of Logarith-
mic and Cox-Box transformations could increase the performance of the effort prediction
models. Another factor impacting the performance of software effort prediction models is
input selection, for example, Backward Forward. Further, (MacDonell and Shepperd 2003;
Minku and Yao 2013) stablish that ensembles of learning machines techniques optimize
effort predictions in software project estimation. Examples of this kind of techniques are
the SMO, M5P and M5R.
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Fig. 3 Learning Schemes Frequency: This figure represents the frequency of the best learning schemes,
according to their performance. The results were computed considering the complete set of genetic
configurations

5.4 RQ4.Which learning schemes did report the best performance according evaluation
criteria metrics?

5.4.1 Learning schemes with the best performance

Tables 15 and 16 in Appendix D present a summary of the best performance of the genetic

framework ordered by each dataset (DS), genetic configuration (C), and leaning scheme

(LS) that includes the data preprocessing, attribute selector, and learning algorithm (DPx-

ASxLA). We present the results for all evaluation metrics detailed in Section 4.4 and the

models were ranked according to their performance on each accuracy metric.

In this validation, we investigated if all of the considered learning schemes are more
accurate than random guessing. The analysis of the standardized accuracy (SA) mea-
sure reveals that all best learning schemes selected by the genetic framework outperform
the baseline random guessing (models outperformed random guessing by 32-60% for
MSA and 45-80% for MdSA of all evaluations). In our study for the group 72 (DS=1-4)

Table 12 Best learning schemes selected
LS(DS=1) F % LS(DS=2) F % LS(DS=3) F % LS(DS=4) F %

7X5X6 203 33% 6X2X14 188 30% 2X5X1 322 50% 7X1X6 207 32%
1X1X11 154 25% 7X3X14 158 25% 2X5X6 69 11% 6X5X3 114 18%
6X2X4 115 19% 7X1X14 118 19% 2X4X1 61 9% 6X1X3 113 18%
1X5X11 46 8% 1X5X14 66 1% 7X4X6 59 9% 7X5X6 76 12%
1X1X2 44 7% 7X3X11 62 10% 1X4X6 57 9% 5X2X1 61 10%
6X3X8 11 2% 6X4X14 16 3% 2X5X2 51 8% 2X2X1 59 9%
Other 39 6% Other 17 3% Other 25 4% Other 9 1%
LS(DS=5) F % LS(DS=6) F % LS(DS=7) F % LS(DS=8) F %
7X1X3 213 33% 6X1X1 205 32% 6X2X6 203 30% 2X5X1 278  44%
6X5X1 153 24% 6X4X1 154 24% 6X4X6 156 23% 1X5X3 156 25%
1X1X6 78 12% 1X2X6 73 11% 1X3X14 148 22% 2X4X1 71 11%
1X1X3 68 11%  6X5X1 69 11%  6X2X3 138 21%  2X2X6 59 9%
7X2X3 55 9% 6X2X1 60 9% 7X5X14 12 2% 2X1X1 56 9%
1X1X4 37 6% 6X4X3 58 9% 6X3X3 4 1% 2X3X1 16 3%
Other 32 5% Other 20 3% Other 8 1% Other 0 0%
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MARp, = 6406.28, and for the group 202 (DS=5-8) MARp, = 5284.91. With the analy-
sis of SA we can conclude that the estimations obtained with the genetic framework are
better than those achieved by using random estimates.

Our study compares all performance metrics results across the same empirical setup,
data preprocessing and attribute selectors. Our results confirm previous results in liter-
ature such as (Dejaeger et al. 2012; Murillo-Morera et al. 2016a; Quesada-Lopez et al.
2016; Dolado et al. 2016; Quesada-Lépez and Jenkins 2016; Lavazza et al. 2013; Minku
and Yao 2013). In regards to the prediction accuracy, our approach allows to compare
results across different models applying the same empirical setup and data preprocessing.
In our study, the models are short of the typical industry target, but similar to reported in
previous studies.

5.4.2 Attributes selected by the best learning schemes

In our framework, a set of variables were selected by the attribute selector
(AS) component in each model generated by the genetic approach. The frequen-
cies were calculated as the average of the N — PASS for each learning scheme
evaluated.

From an effort prediction perspective, the selection of attributes is one of the most
important aspect for constructing the model. Therefore, we analyzed the final attribute
selection in the construction of the best models. Then, we selected the variables and
their frequencies for the best learning scheme per dataset. Finally, we selected the top ten
variables.

Datasets DS=1: [72-UFP] and DS=5: [202-UFP] selected functional size with a fre-
quency=100% (only one predictor). For dataset DS=2: [72-BFC] and DS=6: [202-BFC], the
variables more selected were all basic functional components (BFC): EI, EO, EQ, EIF, ILF
with a frequency=100%. A model based on BFC without context variables is constructed
based on all functional components.

For dataset DS=3: [72-UFP-CTX], the variables more selected were: Max Team with a
frequency of 75%, functional size with a frequency of 74%, CMMI Level and ISO with a
frequency of 45%, Architecture with a frequency of 43%, Client Server with a frequency
of 41% and Web Develop with a frequency of 40%.

For dataset DS=4: [72-BFC-CTX], the variables more selected were: Relative Band Size
with a frequency of 87%, Develop Type with a frequency of 79%, Language Type with a
frequency of 78%. For dataset DS=7: [202-UFP-CTX], the variables more selected were:
Develop Type with a frequency of 99% and Language Type with a frequency of 98%.
Finally, for dataset DS=8: [202-BFC-CTX], the variables more selected were: EI, EO,
EQ, ILF, EIF, and Relative Band Size with a frequency of 100%. Our results confirmed
the influence of attributes related with functional size and the context of the develop-
ment. Further analysis should be conducted on the selection of attributes by the AS

component.

6 Conclusions

In this paper, a genetic framework was used to select the best learning scheme for
effort prediction per dataset using the elitism technique. The performance of the learn-
ing schemes was measured according to recommended metrics in previous studies:

Spearman’s rank correlation, mean of the magnitude of relative error, (MMRE), median
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of the magnitude of relative error (MdMRE), mean of the absolute residuals (MMAR),
standardized accuracy (SA), and number of predictions within % of the actual ones
(Pred25). The models were ranked according to their performance on each accuracy
metric.

The final performance per dataset was determined by context configuration (random
selection, missing values, imbalance dataset, outliers, and other machine learning strate-
gies). Each dataset had a different context configuration and hence a different learning
scheme. Our framework selected data preprocessing, attribute selection technique, and
learning algorithms automatically according to characteristics of the specific data set. The
main goal was to increase prediction performance optimizing processing time.

We investigated the results of the best learning schemes performance, compared our
genetic framework results with an exhaustive framework (baseline), and conducted a
sensitivity analysis with the objective to find which genetic configurations reported best
performance.

The results of this study confirm the reported results of previous studies in the field.
Simple, understandable regression techniques with log transformation of attributes per-
form as well as nonlinear techniques. Moreover, the SMOreg (a support vector machine
for regression) and the M5P or M5R (a reconstruction of Quinlan’s M5 algorithm for
inducing trees of regression models that combines a conventional decision tree with the
possibility of linear regression functions at the nodes) present an opportunity to improve
some prediction models.

We agree with (Dejaeger et al. 2012) on the fact that although data mining and artificial
intelligence techniques can make a contribution to the set of software effort estimation
models, these still could not replace expert judgment. Both approaches should be seen
as complementary to each other. Prediction models can be adopted to check expert esti-
mations. The selection of a proper estimation technique can have a significant impact
on performance, and it should be selected according the specific set of data used for
prediction.

In the validation, we investigated if all the selected learning schemes are more accurate
than random guessing. The analysis of the standardized accuracy (SA) measure revealed
that all best learning schemes selected by the genetic framework outperform the base-
line random guessing (models outperformed random guessing by 32-60% for MSA and
45-80% for MdSA of all evaluations). With the analysis of SA we can conclude that the
estimations obtained with the genetic framework are better than those achieved by using
random estimates.

Furthermore, we concluded that the exhaustive and the genetic framework (20x20
and 40x40) ranks were not statistically significant different. The genetic framework per-
forms as good as an exhaustive framework. However, we did find a statistically significant
difference between the exhaustive framework analyzed and the configuration (10x10).

Further, we did not find a statistically significant difference between the evaluation
and prediction phases for both groups of datasets (72 and 202). This means that the
results reported by the genetic framework were very similar and reliable. We did not
find a statistically significant difference between the exhaustive framework analyzed and
the mutations (0.01, 0.033 and 0.1). The mutation with the best performance was 0.033.
We did not find a statistically significant difference between the exhaustive framework
analyzed and the crossovers (0.6 and 0.7) except (0.9). The crossovers with the best
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performance were 0.6 and 0.7. This mean that our genetic approach is stable between
different configurations and we can make the model’s predictions use less computational
resources.

Our results showed that the best models depend on the data set being analyzed. Our
approach automated this selection based on the specific data set. From a practical point
of view, an approach that generates specific models according to changing data of projects
is an advantage. In that sense, our framework is adaptive to the specific data with which
the model is built. The main advantage of our genetic framework is to obtain learning
schemes with performance as good as those that could be obtained with a comprehensive
framework; but with a shorter processing time. Contrary to an exhaustive approach, our
genetic approach is heuristic and only runs a subset of the entire search space. Finally, this
tool could collaborate in predicting the effort in software projects saving time and costs
in future developments.

For future work, additional learning machine algorithms and data sets should be inves-
tigated. First, we would like to integrate new recommended techniques to the framework.
After that, parameter tuning should be implemented automatically in the framework for
each learning algorithm in order to improve the performance. The framework could also
be enhanced by automating additional statistical analysis as a part of the evaluation pro-
cess. Finally, novel unbiased error metric, such as standardized accuracy (SA), should be

used for comparison of models.

Appendix A: dataset variables
The variables selected in this study are reported in Table 13.

Table 13 Dataset variables

Variable Type Description

Unadjusted Function Points Numeric The unadjusted function point count (before any adjustment).
Input count Numeric FPA External Input.

Output count Numeric FPA External Output.

Enquiry count Numeric FPA External Enquiry.

File count Numeric FPA Internal Logical Files.

Interface count Numeric FPA External Interface.

Relative Size Nominal XXS, XS, S, M1, M2, L, XL, XXL, XXXL.

Year Nominal Year of Project, derived from implementation date.
Development Type Nominal New development, enhancement or redevelopment.
Language Type Nominal 3GL, 4GL, Application Generator, etc.

Program Language Nominal Primary technology programming language used.
Development Platform Nominal PC, Mid Range, Main Frame or Multi platform.
Architecture Nominal Stand alone, Multi-tier, Client server, or Multi-tier.
Client Server? Nominal Yes, No or Don't Know.

Web Development Nominal Yes, No or Don't Know.

Development method Nominal Development method.

Manual Count Nominal Yes, No.

FP Standard Nominal Function Size Metric Used.

Team Size Group Numeric Development Team size.

Max Team Size Nominal The maximum number of people that worked.
Average Team Size Nominal The average number of people that worked on the project.

Work Effort in man-hours Numeric The development team full life-cycle work effort in hours.
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Table 15 Best learning schemes models performance

DS C IS S MMRE ~ MdMRE ~ MMAR  MdMAR  MSA  MdSA  Pred2s
1 1 2X3X8 070 111 0.89 3379 1,665 4726 5970 028
1 1 6X3X8 071 109 0.86 3348 1628 4773 6024 028
1 2 IXIX11 075 055 063 2,809 1,063 5615 6783 032
1 2 IX4X11 074 055 063 2,835 1072 5574 6721 032
1 3 IX5X6 074 057 058 2,810 1027 5613 6947 038
1 3 6X1X3 074 165 124 4217 2325 3417 4510 017
1 3 6XIX6 073 066 0.59 2,946 1079 5401 6870 039
1 3 7X4X6 073 057 058 2,807 1,036 5618 6999 038
1 3 7X5X6 074 057 0.57 2,797 994 5634 7044 038
1 4 XIX11 075 055 063 2,809 1,063 5615 6783 032
1 4 1X4X11 074 055 063 2835 1072 5574 6721 032
1 5 IXIX11 073 057 0.64 2,880 1,078 5505 6668 031
1 5 1X4X11 074 056 063 2,845 1,088 5559 6711 031
1 5 1X4x3 074 107 1.02 3,735 1,860 4169 5387 019
1 5 IX5X11 075 055 063 2,810 1,056 5614 6792 032
1 5 7X4X3 074 108 1.02 3,747 1,863 4151 5354 0.19
1 5 7X5X11 074 055 063 2,842 1073 5564 6750 031
1 6 6X2X4 074 113 1.03 3,899 1,889 3914 5394 026
1 6 6X3X4 072 123 113 4,010 2,036 3741 5115 025
1 6  7X5X11 073 061 0.65 2017 1,166 5446 6577 031
1 7 IXIX1T 075 055 063 2,809 1,063 5615 6783 032
1 7 1X4x11 074 055 063 2,835 1,072 5574 6721 032
1 8 6X2X4 074 113 1.03 3,899 1,889 3914 5394 026
1 8 6X3X4 072 123 113 4,010 2,036 3741 5115 025
1 8  7Xs5X11 073 061 065 2917 1,166 5446 6577 031
1 9 IXIX2 074 056 0.59 2,856 1,029 5542 6980 034
1 9 1X2X2 074 056 059 2,866 1,051 5526 6864 033
1 9 1X2X6 074 055 058 2,711 1018 5768 6966 038
1 9 1X4X2 074 057 0.59 2,876 1,050 5510 6869 033
1 9 6X2X6 074 064 060 2872 1,113 5516 6869 038
1 9 7X4X2 073 056 0.60 2,877 1,055 5510 6896 033
2 1 1X2x8 069 128 093 3,648 1781 4305 5692 027
2 2 7X3X14 072 070 063 3,270 1,113 4896 6397 035
2 3 6XaX14 072 079 072 3439 1340 4631 5828 030
2 3 6X3X14 069 081 074 3,511 1401 4519 5685 029
2 3 6X4X14 071 081 0.74 3477 1377 4573 5800 030
2 4 7X3X14 072 070 063 3,270 1,113 4896 6397 035
2 5 7XIX14 072 070 063 3,257 1,104 4916 6375 034
2 5 7X3X14 070 071 0.64 3,289 1,152 4865 6304 034
2 6  7XIX14 072 070 063 3,257 1,104 4916 6375 034
2 6  7X3X14 070 071 0.64 3,289 1,152 4865 6304 034
2 7 7X3X14 072 070 063 3,270 1,113 4896 6397 035
2 8  7X3X11 068 070 063 3313 1,126 4828 6421 035
2 9  IX2X14 069 073 065 3,247 1,158 4932 6316 034
2 9  1X3X14 070 073 0.65 3232 1,132 4955 6383 034
2 9 1X4X14 069 074 066 3253 1,133 4923 6301 034
2 9  IX5X14 070 071 063 3192 1,082 5017 6463 035
3 1 2X4x6 081 093 0.54 2,839 1,004 5560 7083 039
3 2 2XIXI 078 066 0.50 2,716 921 5760 7227 042
3 2 2X5X2 080 066 048 2,680 876 5816 7281 043
3 3 2X5X1 080 066 048 2,674 885 5826 7345 043
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Table 15 Best learning schemes models performance (Continued)

DS @ LS S MMRE MdMRE MMAR MdMAR MSA MdSA Pred25
3 4 2X5X1 0.80 0.66 048 2,680 876 58.16 72.81 043
3 5 7X4X6 0.79 0.55 0.55 2,536 1,021 60.42 72.88 0.39
3 5 7X5X6 0.78 0.56 0.56 2,559 1,027 60.06 7274 0.38
3 6 2X1X6 0.80 0.94 0.55 2,872 1,017 55.17 70.14 0.38
3 6 2X4X6 0.81 0.94 0.55 2,862 1,040 5533 70.22 0.38
3 6 2X5X6 0.81 093 0.54 2,845 990 5560 70.88 0.39
3 6 7X2X6 0.78 0.57 0.57 2,586 1,040 59.64 7203 0.37
3 7 2X1X1 0.78 0.66 0.50 2,716 921 5760 7227 042
3 7 2X5X1 0.80 0.66 048 2,680 876 58.16 72.81 043
3 8 1X4X6 0.79 0.55 0.55 2,547 1,023 60.25 72.77 0.39
3 8 1X5X6 0.78 0.57 0.56 2,571 1,050 59.86 7238 0.38
3 8 2X4X6 0.81 0.94 0.55 2,864 1,029 55.29 70.57 0.39
3 9 2X4X1 0.80 0.66 048 2,686 879 58.07 72.75 043
3 9 2X5X1 0.79 0.66 049 2,691 897 58.00 72.58 043
4 1 6X5X3 0.74 0.80 0.65 2,815 1,236 56.06 65.63 0.34
4 2 6X5X3 0.74 0.79 0.68 2,801 1,251 56.28 66.05 0.34
4 2 6X1X3 0.74 0.80 0.65 2,799 1,234 56.32 66.04 035
4 3 7X1X6 0.77 0.60 0.56 2,596 988 5947 71.15 0.39
4 3 7X5X6 0.76 0.60 0.58 2,624 1,026 59.04 70.50 0.38
4 4 6X1X3 0.74 0.79 0.68 2,801 1,251 56.28 66.05 034
4 4 6X5X3 0.74 0.80 0.65 2,799 1,234 56.32 66.04 0.35
4 5 2X2X1 0.76 0.56 0.54 2,768 984 56.79 69.85 041
4 6 5X2X1 0.71 0.68 0.72 3,143 1,304 50.94 62.65 0.31
3 4 2X1X1 0.78 0.66 0.50 2,716 921 57.60 72.27 042

Appendix B: datasets descriptive statistics
Descriptive statistics for used datasets are presented in Table 14.

Appendix C: evaluation criteria and equations
The prediction accuracy of the models was tested following the criteria defined in the
following equations:

N PR— A‘
MMRE; = "2 3 Jei — &) - él (1)
i=1 i

N . '
Pred(n) = 1% " 1 if MRE; < n/100 )

i—1 | O otherwise

—
1=)
S

6> N d?

SC.=1— #’ 3
where d; represents the difference between the ordinal ranks assigned to each of the
observations.

N
MAR:NZ’ei_éi‘ (4)
i=1
ARp,
SAp, =1 P 4100 (5)

~ MARp,
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Table 16 Best learning schemes models performance

DS C LS S MMRE ~ MAMRE ~ MMAR  MdMAR  MSA  MdSA  Pred2s
4 6 5X3XI 070 069 073 3,163 1337 5062 6196 030
4 6 5X4X1 070 069 0.72 3,164 1333 5061 6262 030
4 6 5X5X1 070 069 0.74 3182 1344 5032 6189 030
4 7 6XIX3 074 079 068 2,801 1251 5628 6605 034
4 7 6X5X3 074 080 065 2,799 1234 5632 6604 035
4 8 2X5X2 074 065 0.77 3,532 1324 4486 6085 023
4 8 6X1X3 074 080 065 2,807 1216 5618 6604 035
4 9 7X5%6 076 059 057 2,608 1018 5929 7095 038
5 1 7XIX3 072 095 113 3,083 1,400 4167 6885 023
5 2 6X5X1 072 081 091 2,859 1210 4590 7233 026
5 3 7XIX2 072 064 082 2,660 944 4966 7867 029
5 3 7XIX3 072 09 114 3,119 1438 4098 6813 022
5 3 7X2x3 072 09 115 3,142 1,442 4054 6772 022
5 4 BX5X1 072 081 091 2,859 1210 4590 7233 026
5 5 IXIX4 072 143 164 3,606 2,134 3177 5483 019
5 5 IXIX6 072 063 081 2,466 969 5334 7796 030
5 5 1X2X2 072 063 0.82 2,509 925 5252 7904 029
5 5 IX3X2 072 064 082 2,510 924 5251 7910 029
5 5 1X3X4 072 145 163 3,587 2136 3213 549 019
5 6 IXIX2 072 064 081 2,559 945 5158 7876 029
5 6 1XIX3 072 091 107 2,950 1356 4417 6956 023
5 6 1X5X3 072 091 1.08 2,965 1374 4389 6911 022
5 7 6X5X] 072 081 091 2,859 1210 4590 7233 026
5 8 7X2X2 072 063 081 2,520 923 5231 7911 030
5 8 7X2X3 072 093 1.09 2,026 1356 4464 6976 024
5 8 7X3X2 072 063 0.80 2,520 926 5233 7919 030
5 8 7X3X3 072 093 1.10 2,934 1367 4448 6948 024
5 9 IXIX6 073 063 0.79 2,517 948 5238 7829 03]
5 9 IX3X%6 072 064 0.80 2,520 959 5232 7783 031
6 1 6X3X1 070 080 090 2677 1,105 4936 7496 027
6 2 6Xaxi 071 080 0.89 2,688 1,108 4914 7484 027
6 3 6XIXI 071 080 0.89 2,684 1,109 4921 7496 028
6 3 6X2XI 070 080 0.90 2,696 1,138 4899 7437 027
6 4 6X4x1 071 080 0.89 2,688 1,108 4914 7484 027
6 5 6X2X1 071 080 0.90 2,736 1,124 4824 7465 027
6 6 6X3XI 070 080 091 2,733 1,130 4828 7449 027
6 6 6X4X1 070 080 091 2,734 1,129 4827 7454 027
6 6 6X5X1 071 080 090 2,718 1,115 4857 7475 028
6 7 6X4X] 071 080 0.89 2,688 1,108 4914 7484 027
6 8 6X4X2 070 063 083 2,748 964 4800 7853 029
6 8 6X4X3 071 134 148 3,555 2,097 3274 5328 0.9
6 9 IXIX6 071 067 0.79 2613 973 5055 7741 031
6 9 IX2X2 068 067 083 2,635 963 5014 7800 028
6 9 1X2X6 071 067 0.78 2,605 953 5072 7782 031
6 9 IX3X%6 070 067 0.79 2,620 970 5042 7753 030
7 1 7X3X14 075 072 0.84 2611 1,028 5059 7667 030
7 1 7X5X14 076 071 0.83 2615 1018 5051 7684 030
7 2 6X4%6 079 061 0.72 2,360 894 5534 8020 035
7 3 exax2 079 055 073 2,295 870 5658 8048 032
7 3 6X2X6 080 060 0.70 2,174 881 5886 8041 035
7 3 6X3%6 079 061 0.72 2214 904 5811 8003 035
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Table 16 Best learning schemes models performance (Continued)

DS C IS S MMRE ~ MdMRE ~ MMAR  MdMAR  MSA  MdSA  Pred2s
7 3 6X5X6 079 061 072 2,206 902 5825 8014 035
7 4 6X4X6 079 061 072 2,360 894 5534 8020 035
7 5 6X2X3 077 084 092 2612 1,238 5058 7258 028
7 5 6X3X3 077 086 094 2625 1,259 5033 7215 027
7 6 6X2X3 077 084 092 2612 1,238 5058 7258 028
7 6 6X3X3 077 086 094 2,625 1,259 5033 7215 027
7 7 6X4X6 079 061 072 2,360 894 5534 8020 035
7 8  1X3X14 077 071 084 2,655 1,047 4976 7619 031
7 8  6X2X14 078 073 0.87 2674 1,110 4940 7531 0.29
7 9 1X3X14 077 071 084 2,655 1,047 4976 7619 031
7 9  6X2X14 078 073 0.87 2674 1,110 4940 7531 0.29
8 T 2X3X1 073 076 0.87 2,691 1117 4008 7422 028
8 2 1IX5X3 069 094 101 2,941 1,406 4434 6905 025
8 3 2X4X] 073 074 0.85 2,563 1,084 5150 7500 029
8 3 2X5X] 073 073 085 2,549 1,075 5176 7535 029
8 4 1X5X3 069 094 101 2,941 1,406 4434 6905 025
8 5 2XIX] 074 073 085 2,558 1,084 5160 7520 029
8 5 2X5X] 073 074 0.87 2,570 1112 5137 7466 029
8 6 2X4X] 073 073 085 2,577 1,100 5123 7476 029
8 6 2X5X] 073 073 0.86 2,591 1115 5098 7441 0.29
8 7 1X5X3 069 094 101 2,941 1,406 4434 6905 025
8 8 2X2X6 075 081 0.89 2,547 1,144 5180 7477 030
8 9 2X3XI 073 074 0.87 2,643 1,091 5000 7458 028
8 9 2X5X] 074 074 0.86 2,631 1,085 5021 7491 0.29

where MARp, is the unbiased exact version of MARp, recommended for small datasets.

n j<i

2
MARp, = anZZiei—eA (6)

i=1 j=1

Appendix D: best learning schemes models performance
Best Learning Schemes Models Performance are presented in Tables 15 and 16.
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