
Mayer et al. Journal of Software Engineering Research and
Development (2017) 5:1
DOI 10.1186/s40411-017-0035-z

RESEARCH Open Access

Onmulti-language software
development, cross-language links and
accompanying tools: a survey of professional
software developers
Philip Mayer1* , Michael Kirsch1 and Minh Anh Le2

*Correspondence:
mayer@pst.ifi.lmu.de
1Programming & Software
Engineering Group,
Ludwig-Maximilians-Universität
München, München, Germany
Full list of author information is
available at the end of the article

Abstract

Context: Non-trivial software systems are written using multiple (programming)
languages, which are connected by cross-language links. The existence of such links
may lead to various problems during software development. There is little empirical
evidence on the incidence of these problems and the experiences of professional
developers in this field.

Aim: We want to provide empirical evidence on multi-language software
development, cross-language linking, and tool support in industry, including the views
of professional developers on benefits and problems in these areas.

Methods: We conducted a survey study to gather responses from 139 professional
software developers.

Results: Respondents reported an average of 7 languages and 3 linked language pairs
per project. Respondents saw benefits of multi-language development for the
motivation of developers and the translation of requirements, but problems in
understandability and changeability. Over 90% of respondents reported problems
related to cross-language linking. Developers universally agree on the usefulness of
tool support.

Conclusions: Multi-language programming and cross-language linking seem
common but lead to several problems. We suggest that future practical as well as
research efforts focus on these issues by creating appropriate tool support and by
developing better techniques for cross-language linking for improved changeability
and understandability.

Keywords: Multi-language software development, Cross-language links, Tool support,
Survey, Professional developers

1 Introduction
Non-trivial software systems are not written in just one programming language. Instead,
multiple languages are used; among these are the usual general-purpose programming
languages (GPLs) like Java, C#, or Ruby, but also domain-specific languages (DSLs)
such as SQL, HTML, or configurable languages such as XML. A recent survey of open
source projects has shown that the use of multiple languages is rather universal, with

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-017-0035-z&domain=pdf
http://orcid.org/0000-0003-4319-4135
mailto: mayer@pst.ifi.lmu.de
http://creativecommons.org/licenses/by/4.0/

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 2 of 33

a mean number of 5 languages used per project (Mayer and Bauer 2015). Thus, multi-
language software development (MLSD) seems to be common, at least in the open source
world.
When using multiple languages for the development of one project, these languages

usually encode different aspects of a system, that is, the individual code artifacts do not
stand alone but are in fact connected by some means. In many cases, common identifiers
(names) are used for creating links between the individual code artifacts and thus between
the languages used. An example of a typical link is shown in Fig. 1, where the identifier
textfield is shared between Java and HTML and used to retrieve a user input value in
a web application.
The use of such cross-language links (abbreviated here to XLL) — that is, points

in the system where code in two languages is connected — may be part of an
explicit interface specification such as when using JNI between Java and C. In many
cases, however, such links exist between GPLs and DSLs and, as in the example, are
more implicit, being spread through the code as required by a certain framework or
library.
Such links may present problems to developers. First, they are usually not part of any

of the languages themselves but rather stand outside, which means that they are not
checked at design time for correctness, but will fail at runtime if specified incorrectly
if not for additional tool support. Second, identifiers used for cross-language purposes
are not always dedicated only to this purpose, but fulfill other roles; for example, con-
sider a Java class name referenced from XML. Later changes to the system might include
renaming the class, which in turn would require changing links to this identifier as
well, which may or may not happen. Third, knowing that there may be links in the
system — but not exactly where — might even lead developers to refrain from chang-
ing identifiers for fear of breaking the system due to unknown side effects of changes.
This leads to a degradation of software quality and thus to maintenance problems
(technical debt).
Several researchers have shown cross-language links to be a factor in real-life software

applications; see for example (Mayer and Schroeder 2014; Pfeiffer R andWasowski 2012b;
Favre et al. 2012) with proposals for aiding developers when dealing with such links,
mostly by tool support, but also by pro-active modeling efforts.
Software development in general is supported by a myriad of tools, ranging from

command-line compilers to fully integrated development environments. Tools exist
that specifically support different functions for dealing with cross-language links,

Fig. 1 Cross-Language Linking (XLL) example

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 3 of 33

such as highlighting, error marking, or even automated rename refactoring. Dedi-
cated tools for cross-language linking become important since the usual infrastructure
of compilers and editors is mostly focused on supporting individual languages.
Often, there is support for using multiple languages within a development envi-
ronment — for example through plugins — but support for interaction points
(cross-language links) between the languages is another issue. Existing work on the
existence and usefulness of cross-language tool support to developers is available (e.g.
Pfeiffer and Wasowski (2015); Pfeiffer and Wasowski (2012a)).
In this study, we will be concerned with all of the three topics introduced above

— multi-language software development in general, cross-language linking, and tool
support. While there is existing work in each of the three areas, there are — to
the best of our knowledge — no survey studies on these topics (industrial or other-
wise) with one exception (a survey of language developers which touches the topic
of XLL Pfeiffer and Wasowski (2015)). It is our aim to remedy this situation and
to provide an industrial perspective based on the experience of professional software
developers.
We believe that this perspective provides important insights which can serve as

enabling data for both practical development and future research of methods, tech-
niques, and tools for software development with multiple languages and cross-language
links. In particular, besides numerical data such as how many and which languages
were used, how many and which languages were linked, and which tool support
functionality was available, we also ask developers about their views on benefits
and problems: Do they feel multi-language software development in general is ben-
eficial or detrimental to their work? Did problems occur in cross-language link-
ing and if so, which, when, and how frequent? What was done about them? Do
they feel tool support is beneficial for their work, and if so, which functions are
most needed?
We gather data for this study by means of a survey; more precisely, an (online) question-

naire. As a guide for the design of the questionnaire itself and for the evaluation, we have
posed six research questions in three categories which mirror the three areas discussed
above. Within each category, the first question is about “hard” data such as numbers and
names of languages, links and tools, while the second is about developer opinions.

Onmulti-language programming

• RQ1: How prevalent is multi-language programming and which languages are used?
How many languages did developers work with?

• RQ2: What are the benefits and problems developers encountered in the use of
multiple languages? Do developers feel that multi-language programming has/will
increase or decrease over time?

On cross-language linking

• RQ3: In how many and which combinations of languages did developers encounter
cross-language links?

• RQ4: Did problems with cross-language linking occur? If so, which, when, how
frequent, and what was done to alleviate these problems?

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 4 of 33

On tool support

• RQ5: Was tool support available for dealing with cross-language identifiers? If so,
which functions were available?

• RQ6: Is tool support considered important, and if so, which functions for handling
cross-language identifiers are most important?

The result and discussion sections of this paper will be structured along the lines of
these three categories and research questions. Additionally, we investigated the metadata,
that is, attributes such as experience of the respondents of the survey, including project
data (such as team size and duration). This data is cross-cutting across all of the research
questions above and serves to illuminate our sample.
We outline the methods used in this study — namely, questionnaire design, participant

selection, and themethods used for evaluating the results— in the next section. Sections 3
and 4 contain the results from our analysis and a discussion of the implications and con-
jectures we can draw from the data, respectively. Related work is discussed in Section 5,
and we conclude in Section 6.

2 Methods
This study uses the survey research method. A survey may serve different goals and is
usually categorized as descriptive, explanatory, or explorative (Wohlin et al. 2012). This
survey is mostly descriptive and in some parts explorative — that is, we do not try to
verify previous hypotheses but attempt to describe the situation as it presents itself to
our respondents. Some parts can be seen as explorative since little empirical research has
been done on this topic before and there are indeed several areas where we did not know
what to expect, with the results thus forming a baseline for future research. As themethod
for data collection, we use an online questionnaire. We describe this questionnaire in
Section 2.1.
The questionnaire was sent out to participants from industry which had to be selected

beforehand and invited via e-mail along with a reminder and a follow-up on participation.
We describe this process in Section 2.2.
The answers collected from the participants include quantitative and qualitative results.

The former were analyzed using (descriptive) statistical methods; the latter by interpreta-
tion, which we discuss in Section 2.3.

2.1 Questionnaire design

The structure of the research questions shown in the previous section is reflected in the
questionnaire which contains the same three sections. An additional section was used to
gather metadata. We followed the guidelines from (Kitchenham and Pfleeger 2002b) in
the design of the questionnaire.
When looking at the research questions it is clear that many questions can only be

answered sensibly with regard to a concrete software system or project, while others
are more general and the developers should be allowed to draw on their entire profes-
sional experience. For example, the languages or cross-language links used should be
answered for a concrete project, while the opinions on the general benefits or prob-
lems of multi-language software development should be independent from a concrete
project. Developers were asked to think of their last completed project in the beginning

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 5 of 33

of the questionnaire, and answer all project-related questions with regard to this
particular project.
The answering scales for each question were designed in accordance to best prac-

tices from the social sciences Franzen (2014). We used odd counts of answers for
scales and between 3 and 9 options. All answering options carried explicit names,
and were designed to be disjunct and complete. In most questions we added a text
field to allow participants to add their own free text instead of selecting an existing
option.
The questions asked are provided, in an abbreviated form1, in Section 2.1.1 (Table 1).

This table is split into four sections. The first three correspond to the three categories of
our research questions; the fourth contains questions about demography and attributes
of the last completed project. In the online questionnaire, each section is prefixed with
an explanatory text which clarifies what the section is about, explains the terms used, and
gives examples.

2.1.1 Section 1: multi-language software development

In the first section, we asked questions on the general topic of multi-language software
development. An introductory text was shown to participants in the beginning which
defines the terms “general-purpose” and “domain-specific”, including examples. All but
the last two questions are directly related to the last finished project of participants.
As can be seen from the table, the first two questions relate to which general-purpose
languages were used and which DSL types were present. These questions serve, in a
double function, as a “gentle introduction” into the topic by providing multiple-choice
answers with explanations of the terms GPL, DSL, and DSL type in the context of
this study.
Question 1 asks about GPLs. These languages are typically well known at least by name,

and their number is rather small; we suggested 11 languages which are the most-used
languages from (Mayer and Bauer 2015).
For DSLs, the situation is different, as there are a multitude of options to be considered.

In order not to overwhelm participants, we thus opted to ask for the use of any language
of a DSL type in question 2. We suggested seven types which were identified in (Mayer
and Bauer 2015) – namely UI, Shell, Build, Configuration, Querying, Rule Specification,
and Parsing/Lexing.
The third question (3) asks whether a custom language was created specifically for the

project, and if so, what its purpose was (as free text).
Question 4 is the last related to concrete languages. Here, we asked how many of the

project’s languages were used (as in changing code) by individual developers. Respondents
were asked to move a slider in 9 steps. On the left side, the selection was “one language”;
on the right side, it was “all languages”. The middle corresponded to “about half of the
languages”.
The last two questions do not relate to the respondents’ last projects but to their

general opinion on multi-language software development. Question 5 very generi-
cally asks whether respondents feel that the use of multiple languages in a software
project is beneficial or detrimental to various tasks, such as translating requirements to
code, system understandability, or developer motivation. Respondents could select five
options for each aspect, which were “very beneficial”, “rather beneficial”, “neutral”, “rather

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 6 of 33

Ta
b
le

1
A
bb

re
vi
at
ed

su
rv
ey

qu
es
tio

ns
an
d
po

ss
ib
le
an
sw

er
s

N
o.

Q
ue

st
io
n

A
ns
w
er
fo
rm

at
O
pt
io
ns
/s
ug

ge
st
io
ns

Se
ct
io
n
1:
M
ul
ti-
La
ng

ua
ge

So
ft
w
ar
e
D
ev
el
op

m
en

t(
M
LS
D
)

1
W
hi
ch

G
PL
s
w
er
e
us
ed

in
yo
ur

la
st
pr
oj
ec
t?

M
ul
tip

le
ch
oi
ce

C
;C
+
+
;C
#;
Ja
va
;.
..;
ot
he

r(
fre

e
te
xt
)

2
W
hi
ch

D
SL

ty
pe

s
w
er
e
us
ed

in
yo
ur

la
st
pr
oj
ec
t?

M
ul
tip

le
ch
oi
ce

U
Il
an
gu

ag
es
,s
he

ll
la
ng

ua
ge

s;
bu

ild
la
ng

ua
ge

s,
...,
ot
he

r(
fre

e
te
xt
)

3
W
as

a
cu
st
om

la
ng

ua
ge

us
ed

?
Ye
s+
fre

e
te
xt
/
no

4
H
ow

m
an
y
of

th
e
pr
oj
ec
t’s

la
ng

ua
ge

s
di
d
de

ve
lo
pe

rs
w
rit
e
co
de

in
?

Sc
al
e
1-
9

Sl
id
er
w
ith

9
op

tio
ns

fro
m

“o
ne

la
ng

ua
ge

”t
o
“a
ll
la
ng

ua
ge

s”

5
Is
M
LS
D
be

ne
fic
ia
lo
rd

et
rim

en
ta
lf
or

th
es
e
as
pe

ct
s

Sc
al
e
1-
5

Re
qu

ire
m
en

tt
ra
ns
la
tio

n,
ar
ch
ite

ct
ur
al
de

si
gn

,f
irs
ti
m
pl
em

en
ta
tio

n,

of
so
ft
w
ar
e
de

ve
lo
pm

en
t?

ch
an
ge

ab
ili
ty
,u
nd

er
st
an
da
bi
lit
y,
bu

ild
m
an
ag
em

en
t,
C
PU

pe
rfo

rm
an
ce
,

m
em

or
y
re
qu

ire
m
en

ts
,d
ev
el
op

er
ef
fo
rt
,d
ev
el
op

er
m
ot
iv
at
io
n
(S
ca
le
:

5
op

tio
ns

ea
ch

fro
m

“v
er
y
de

tr
im

en
ta
l”
to

“v
er
y
be

ne
fic
ia
l”)

6
W
er
e
th
er
e/
w
ill
th
er
e
be

m
or
e/
le
ss
la
ng

ua
ge

s
in
th
e
pa

st
/f
ut
ur
e?

Sc
al
e
1-
3

Pa
st
/
fu
tu
re
w
ith

th
re
e
op

tio
ns

ea
ch
:f
ew

er
,s
am

e,
or

m
or
e
la
ng

ua
ge

s

Se
ct
io
n
2:
C
ro
ss
-L
an
gu

ag
e
Li
nk
s
(X
LL
)

7
W
hi
ch

lin
ks

be
tw

ee
n
G
PL
s
an
d
D
SL
s
w
er
e
us
ed

in
yo
ur

pr
oj
ec
t?

Ye
s+
fre

e
te
xt
/
no

Fr
ee

te
xt

8
W
hi
ch

lin
ks

be
tw

ee
n
G
PL
s
an
d
G
PL
s
w
er
e
us
ed

in
yo
ur

pr
oj
ec
t?

Ye
s+
fre

e
te
xt
/
no

Fr
ee

te
xt

9
W
hi
ch

lin
ks

be
tw

ee
n
D
SL
s
an
d
D
SL
s
w
er
e
us
ed

in
yo
ur

pr
oj
ec
t?

Ye
s+
fre

e
te
xt
/
no

Fr
ee

te
xt

10
W
hi
ch

pr
ob

le
m
s
w
ith

cr
os
s-
la
ng

ua
ge

lin
ks

w
er
e
en

co
un

te
re
d?

M
ul
tip

le
ch
oi
ce

Bu
gs

du
e
to

ch
an
ge

s;
co
nf
ig
ur
at
io
n
is
su
es
;c
ha
ng

e
av
oi
da
nc
e;
bu

ild

co
m
pl
ex
ity
;u
nd

er
st
an
da
bi
lit
y/
co
m
m
un

ic
at
io
n
is
su
es
;h
ar
de

rt
o
w
rit
e

un
it
te
st
s;
ot
he

r(
fre

e
te
xt
)

11
W
he
n
di
d
pr
ob

le
m
s
oc
cu
r,
an
d
ho

w
fre

qu
en

tly
?

Sc
al
e
1-
5

Fi
rs
ti
m
pl
em

en
ta
tio

n;
ch
an
ge

s
du

e
to

ne
w
re
qu

ire
m
en

ts
;c
ha
ng

es
du

e

to
re
fa
ct
or
in
gs
;u
ni
tt
es
tin

g;
te
st
ph

as
es

(b
y
de

di
ca
te
d
pe

rs
on

ne
l);

us
er
te
st
in
g;
af
te
rr
el
ea
se

(S
ca
le
:5

op
tio

ns
ea
ch

fro
m

“d
id
no

to
cc
ur
”

vi
a
“fr
om

tim
e
to

tim
e”
to

“a
ll
th
e
tim

e”
)

12
W
hi
ch

m
ea
su
re
s
w
er
e
ta
ke
n
to

pr
ev
en

tc
ro
ss
-la
ng

ua
ge

lin
ki
ng

pr
ob

le
m
s?

M
ul
tip

le
ch
oi
ce

A
vo
id
ed

M
LS
D
;a
vo
id
ed

XL
L;
av
oi
de

d
ch
an
ge

s
in
XL
L;
sp
ec
ia
lc
ar
e

w
he

n
ch
an
gi
ng

XL
L;
de

di
ca
te
d
to
ol
s,
de

di
ca
te
d
te
st
s;
ot
he

r(
fre

e
te
xt
)

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 7 of 33

Ta
b
le

1
A
bb

re
vi
at
ed

su
rv
ey

qu
es
tio

ns
an
d
po

ss
ib
le
an
sw

er
s
(C
on

tin
ue
d)

Se
ct
io
n
3:
To
ol
Su
pp

or
t

13
W
hi
ch

cr
os
s-
la
ng

ua
ge

to
ol
fu
nc
tio

ns
w
er
e
av
ai
la
bl
e?

M
ul
tip

le
ch
oi
ce

H
ig
hl
ig
ht
in
g;
er
ro
rm

ar
ki
ng

;n
av
ig
at
io
n;
re
fa
ct
or
in
g;
ot
he

r(
fre

e
te
xt
)

14
H
ow

im
po

rt
an
ta
re
th
es
e
to
ol
su
pp

or
tf
un

ct
io
ns
?

Sc
al
e
1-
5

H
ig
hl
ig
ht
in
g;
er
ro
rm

ar
ki
ng

;n
av
ig
at
io
n;
re
fa
ct
or
in
g;
ot
he

r(
fre

e
te
xt
)

(S
ca
le
:5

op
tio

ns
fro

m
“v
er
y
un

im
po

rt
an
t”
to

“v
er
y
im

po
rt
an
t”
)

Se
ct
io
n
4:
M
et
ad
at
a
an
d
D
em

og
ra
ph

ic
Q
ue

st
io
ns

15
H
ow

m
an
y
ye
ar
s
ha
ve

yo
u
w
or
ke
d
in
pr
of
es
si
on

al
so
ft
w
ar
e
de

ve
lo
pm

en
t?

Fr
ee

te
xt

16
W
hi
ch

re
sp
on

si
bi
lit
ie
s
di
d
yo
u
ha
ve

in
yo
ur

la
st
pr
oj
ec
t?

Si
ng

le
ch
oi
ce

D
ev
el
op

er
,t
es
te
r,
op

er
at
io
ns
,.
..,
ot
he

r(
fre

e
te
xt
)

17
H
ow

m
an
y
so
ft
w
ar
e
de

ve
lo
pe

rs
w
or
ke
d
in
yo
ur

la
st
pr
oj
ec
t?

Fr
ee

te
xt

18
H
ow

lo
ng

w
as

th
e
de

ve
lo
pm

en
tp

ha
se

of
yo
ur

la
st
pr
oj
ec
t?
(in

m
on

th
s)

Fr
ee

te
xt

19
W
hi
ch

so
ft
w
ar
e
ca
te
go

ry
do

es
yo
ur

la
st
pr
oj
ec
tf
it?

M
ul
tip

le
ch
oi
ce

C
lie
nt
/S
er
ve
r,
w
eb

ap
pl
ic
at
io
ns
,s
er
ve
ro

nl
y,
...,
ot
he

r(
fre

e
te
xt
)

20
D
o
yo
u
ha
ve

an
y
ad
di
tio

na
lc
om

m
en

ts
?

Fr
ee

te
xt

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 8 of 33

detrimental”, and “very detrimental”. It was also possible to add free text, although without
the option to vote.
Question 6 asks for a subjective assessment of whether there were more or less lan-

guages per project in the past, and whether participants think that there will be less or
more in the future. Possible answers for each were “fewer”, “same”, and “more”.

2.1.2 Section 2: cross-language links

Section two is the most complex section of the questionnaire. At its start, an explanation
of cross-language links was shown to participants (including Fig. 1 as an example of a
GPL/DSL link). We also gave examples for GPL/GPL links (the Java JNI functionality) and
DSL/DSL links (the very common use of CSS class names in HTML). This introduction
served to prepare respondents for the following questions.
The first three questions (7, 8 and 9) then ask whether there were links between lan-

guages in the participant’s last project— individually for GPL/DSL-links, GPL/GPL-links,
and DSL/DSL-links. For each, participants were asked to provide their language pairs as
free text. While this type of answer is more laborious for participants, it offers the ability
to participants to easily add additional languages or types. The free text answers provided
here had to be manually coded during data analysis.
The last three questions of section two ask about problems that occurred when using

cross-language links, again in the last project. These questions were only asked if partic-
ipants indicated that they in fact used cross-language links, i.e. they answered yes in one
of the first three questions. Otherwise, the questionnaire directly proceeded to the third
section.
Question 10 is about the types of problems that occurred when using cross-language

links; examples are problems with framework configurations, build errors, problems cre-
ating tests, or errors when renaming identifiers. Question 11 asks when these problems
occurred (for example, during first implementation, during refactoring, during testing).
Respondents were asked to select the frequency of occurrence on a scale between “never”
and “all the time” for each of the options.
The last question (12) was about possible measures that were taken to prevent prob-

lems with cross-language links, such as using dedicated tools or specialized tests, or even
attempting not to use multiple languages or cross-language links in general.

2.1.3 Section 3: tool support

The third section is about tool support for cross-language linking. Again, respondents
were shown an introductory text which explains tool support for cross-language linking
including the four functions we used as suggestions in the answers below.
There are just two questions in this section. The first (13) is, as usual, related to the

last project and asks whether the tools used by participants offered one of the four typical
functions (highlighting, error marking, navigation, and refactoring) that are commonly
mentioned in the literature; additionally, a free text field was provided. Respondents were
instructed to select a function even if it was only present for some of the languages used.
It was also possible to state that no functions were available at all.
The last question (14) is again independent from the last project. In this question,

we asked whether tool support in general and for each of the four functions men-
tioned above individually is seen as beneficial or detrimental. In each case, respondents

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 9 of 33

were asked to select on a scale from “very unimportant” via “neutral” to “very
important”.

2.1.4 Section 4: demographic and other questions

In the final section of the questionnaire we gathered some general information about
the participant and his/her last project to be able to paint a picture of the sample of
participants we have taken.
The first question (15) is about the years of professional experience of the participant.

The next questions are all related to the last project of the participant. We asked about
the responsibilities of participants (question 16), about the team size and the duration
in months of the last project (questions 17 and 18), and finally about the type of the
system developed (19). Here, we provided six suggestions with the usual classification
(Web, Client/Server, Server Only, Client Only, Mobile, and Embedded).
The final question 20 allowed respondents to add their own free comments to the

overall topics in the questionnaire.

2.1.5 Summary

In order to keep the dropout rate low, the questionnaire was designed to be answerable in
15 mins. In total, there was a maximum of 20 questions; as indicated above, some might
be skipped due to the participant’s answers, shortening the time to completion.
Since most of our participants (see next section) are native German speakers, the ques-

tionnaire was created in German and later translated to English. Every participant could
freely choose to complete the questionnaire in either language.

2.2 Participant selection and study execution

A central goal of this study was to survey professional developers, that is, people
who earn their living in industry developing software for clients or their own com-
pany. Unfortunately, compared to students or even open source developers, this created
the problem of acquiring participants in the first place, let alone creating a random
selection of a well-defined population. It was also unclear whether sending e-mails to
non-consenting recipients would be acceptable under German privacy and unsolicited
e-mail laws.
Due to these issues, we used an opt-in approach to study participation, that is, partici-

pants were asked beforehand by personal contact whether they would like to participate in
the study. Besides the prevention of legal issues, this also ensured that all participants were
indeed industrial developers. Thus, participants were basically recruited by the study
authors and colleagues: A total of 12 people including the first two authors managed to
invite 194 developers who explicitly agreed to taking part, all of which were actively work-
ing in the software engineering field in industry at the time. Nearly all work in Germany,
and most work in theMunich area. There were only a few exceptions, who took part from
Sweden and the United States.
As will be seen in the next section, the 139 participants who eventually responded work

in over 20 companies, have between 1 and 36 years of experience, and reported project
sizes from between 1 to 170 participants and 1 to 60 months duration. We thus believe
the results from this study to be fairly meaningful. Nevertheless, the selection process
as outlined above is a form of snowballing (Kitchenham and Pfleeger 2002a). We thus

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 10 of 33

refrain from using inferential statistics and restrict ourselves to describing the sample we
have taken.
The study was executed by using the web application SoSciSurvey2 which is dedicated

to the execution of such questionnaires (originally for the social sciences). SoSciSurvey
allows study execution in a fully anonymous fashion while still being able to track par-
ticipants by generating tokens for each participant and automatically sending these out
by e-mail. The mapping from e-mail address to token is handled internally and never
exposed to the conducting researcher.
Using tokens ensured that no participant took part twice and prevented answers by

non-qualified participants (i.e., non-developers) while keeping anonymity. It also allows
us to identify who had responded to the survey (without seeing their answers), which has
the benefit of being able to send reminder emails and report, in a limited fashion based
on e-mail domains, which companies took part in the survey.
A time frame of two weeks in July 2015 was set for participants to answer the survey.

Two emails were sent to participants: One in the beginning, and one after one week to
those who had not yet answered the questionnaire. Recipients had the option to provide
their e-mail address at the end of the questionnaire for receiving the study results. The
e-mail address was stored separately from the answers.
After the end of the survey period, the complete data was downloaded from

SoSciSurvey and analyzed offline.

2.3 Coding and statistical methods

Where the questions in the questionnaire do not have a free text answer, we use
either metric scales (such as for the years of experience), ordinal scales (such as a
value between “very detrimental” and “very beneficial”), nominal scales (such as types
of systems) or binary scales (yes and no). For answering our research questions, we
can use the standard methods of descriptive statistics, that is median, the quan-
tiles, and the accompanying visualization methods, in particular (stacked) barplots.
This allows us to summarize the data from our sample to better understand it.
All analyses have been performed using R (Core Team 2015). The code is available
online3.
Questions seven to nine required answers as free text, which had to manually coded (i.e.

converted into appropriate language pairs) before they could be analyzed quantitatively.
Participants provided answers such as “HTML to CSS” or “Java+JS”, which we manually
transformed into a consistent, countable format (“HTML←→CSS”, “Java←→JavaScript”,
etc). These pairs were then counted automatically using a simple Java program (which is
available on our web page as well).
In several other questions we allowed free text answers in addition to suggested mul-

tiple choice answers. These were not formally encoded; instead, where appropriate, we
have included these results qualitatively in Section 3 when discussing the quantitative
results of the corresponding questions. The comments in question 20 were added to the
questions they referred to in this fashion as well.

3 Results
This section presents the results from our survey. Section 3.1 lists the results from the
participant selection process and the answers to the questionnaire section four (metadata

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 11 of 33

and demography). We then discuss the three main sections of the questionnaire in turn
in Sections 3.2, 3.3 and 3.4.

3.1 Profile of the participants

As indicated in the previous section, we had a total of 194 people who explicitly opted in
to take part in the study. All of these received an e-mail with a link to the questionnaire. In
total, 159 participants opened up the survey web site; 150 answered at least one question,
and 139 participants completed the survey (i.e. answered all questions); thus, the return
rate is 72%.
When looking at the e-mail address domains of respondents, we find that 88 respon-

dents came from 23 identifiable companies. The remaining 51 respondents had e-
mail adresses with private domains or were using e-mail service providers (such as
gmail.com).
We now turn to the actual answers respondents have given in section four of the ques-

tionnaire. We begin with the industrial experience of respondents. Figure 2 shows the
distribution of the years of experience of developers.
The median number of years is 8, with 50% of respondents having between 5 and 15

years of experience. One person had less than six months, one person 36 years of expe-
rience (note that we asked for the year in which participants started working; combined
with the survey being performed in July, 0 years thus actually means up to 6 months; 1
year means from 6 months to 18 months, and so on).
The other questions in this section relate to the last finished project of a participant.

The first relates to the responsibilities the respondent performed as part of his or her job
on the project. Figure 3 shows the result, in which respondents were allowed to select
all responsibilities that applied. 88% of respondents directly worked as programmers on
the code, with about 75% being involved in design and 54% in testing. About 6% filled in
their own responsibilities, which were related to requirements (6 responses) and product
management (2 responses).
In the next two questions we investigated the size of the project by asking for the

number of team members involved in development and the number of months of the
development phase.

0−
3

4−
6

7−
9

10
−

12

13
−

15

16
−

18

19
−

21

22
+

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 2 Professional experience of the respondents in years (0: up to 6 months) (categorized)

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 12 of 33

O
th

er
s

O
ps

M
an

ag
em

en
t

D
es

ig
n

B
ui

ld

Te
st

D
ev

D
es

ig
n

P
ro

gr
am

m
in

g

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 3 Job responsibilities of participants (multiple choice)

The team size of projects ranged from 1 to 170; however, the median is 7 and 50%
of projects had between 4 and 18.5 developers. If we take the inner 80% (10 and 90%
quantiles) we get a range of 3 to 60 developers.
The number of months ranged from 1 to 120, with a median of 12 and 50% between 6.5

and 24 months, that is half a year to two years with a median of one year. If we take the
inner 80% we get a range of 3 to 40 months.
The final question in section four is about the type of software system that was devel-

oped. This was a single-choice answer. As shown in Fig. 4, about 36% of respondents
indicated a web application, with client/server following close behind (30%). These sys-
tems thus make up 66% of responses. Server only follows behind with 16%. The other four
categories were selected by less than 10% of respondents each.

3.2 Section 1: multi-language software development

In this section, the first three questions relate to the languages used in the last fin-
ished project of respondents. Based on the answers, we can both identify the individual
languages (or language types) used as well as the number of languages selected.

O
th

er

E
m

be
dd

ed O
S

D
es

kt
op

S
er

ve
r

O
nl

y

C
lie

nt
/S

er
ve

r

W
eb

re
la

tiv
e

fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

0.4

Fig. 4 System type of the last project (single choice)

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 13 of 33

The first question is about the general-purpose languages used. In addition to our
suggestions, respondents could add their own by using a free text field. Three addi-
tional languages were mentioned three or more times each (VisualBasic, TypeScript, and
Groovy) and thus were coded as variables as well.
The results are shown in Fig. 5. Only 5 languages were selected by more than 10% of

respondents. Java is the dominant language in the sample with 76%, followed by JavaScript
with 56%. The three others are Python (17%), C# (12%), and Ruby (10%). The full data set
is available on our web site4.
The median of GPLs used is 2, with 50% of projects using between 2 and 3 GPLs. Most

projects (inner 80%) use between 1 and 4 languages.
The second question asks for the use of languages from a set of DSL types. The answers

to this question (Fig. 6) show a major difference between the last five choices and the first
three. Each of the last five was selected by over 75% of respondents; thus, most projects
used at least one language from each of these areas. By comparison, the other three (rule
languages, parsing/lexing, and others) were selected by under 10% of recipients. Besides
the seven suggestions, recipients could also add their own type; among those mentioned
were code generation languages (like Velocity) and transformation languages (like XSLT).
Thirdly, we asked whether a custom language was developed in the project as well. A

total of 12 respondents (9%) reported such a custom language. The categories of custom
languages were very diverse; we see mentionings of languages for the user interface, state
management, configuration, querying, and code generation.
We have now seen three questions on the use of programming languages. In order to

understand howmany languages were used in a project, we can add these language counts
together. However, as we asked for DSL types instead of DSLs themselves, this will be a
lower bound on the number of languages used. The result shows a median of 7 languages
per project, with 50% of projects having between 6 and 8 languages each. Most projects
(inner 80%) have between 4 and 9 languages.
The last question relating to language use was about the number of languages an indi-

vidual developer was working on in the project. The result (Fig. 7) shows that there is no
clear answer to this; in fact all possible options (from “one language” to “all languages”)
were chosen by between 6% and 15% of respondents.

O
th

er
s

O
bj

ec
tiv

e−
C

P
er

l

P
H

P

R
ub

y

C
#

P
yt

ho
n

Ja
va

S
cr

ip
t

Ja
va

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 5 General-Purpose Languages (GPLs) used in the projects of the respondents

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 14 of 33

O
th

er

P
ar

se
/L

ex

R
ul

es U
I

S
he

ll

B
ui

ld

Q
ue

ry

C
on

fig

re
la

tiv
e

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6 Domain-Specific Language (DSL) types used in the projects of respondents

Questions five and six of section one are not related to a respondent’s last project, but
to their general experience and view on the use of multiple programming languages. In
question five, we asked whether developers view the use of multiple languages in general
as beneficial or detrimental for 10 suggested aspects of software development (plus free
text). The results are shown in Fig. 8. The figure shows 10 different aspects on the y axis.
The x axis contains the relative frequency; from black on the left (“very detrimental”) to
white on the right (“very beneficial”), with gray for “neutral” in the middle.
We can group this graph into three sections. Firstly, there are those aspects which

mostly attracted negative answers, that is, MLSD is felt to be problematic for these
aspects. This includes the lower four. 63% of respondents felt that the understandability
of a system suffers when using multiple languages, and 53% see problems when changing
code later on. About 50% of respondents see problems related to build management and
developer effort.
Second, there are aspects where there is no clear trend towards benefits or problems.

This includes the middle four aspects, which also have a high amount of votes for neutral.
Thus, respondents do not agree on the effect on the initial implementation of the system,

O
ne

H
al

f

A
ll

0.00

0.05

0.10

0.15

0.20

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 7 Ratio of developers to languages: How many languages of the project did one developer work with?

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 15 of 33

Understandability

Changeability

Build Management

Developer Effort

Initial implementation

Architectural Design

Memory

CPU Perf.

Developer Motivation

Req. Translation

0.0 0.2 0.4 0.6 0.8 1.0
relative frequency

Fig. 8 Benefits and problems of multi-language software development. The bars are coded as follows (from
left to right): black= very detrimental; dark gray= rather detrimental; gray= neutral; light gray= rather
beneficial; white= very beneficial

the design of the architecture, as well as the technical factors of memory consumption
and CPU performance.
Finally, the top two aspects show a clear trend towards a beneficial outcome. 57% of

respondents feel that using multiple languages has a motivational effect on developers;
55% see a positive effect on the translation of requirements to code.
A rather high number of 29 of the 139 respondents added their own comments to this

question. An interesting trend amongst these comments was the question of how many
people in the team are able to speak the required languages, which is related to though not
directly the same as the language use ratio we asked about in the previous question. One
developer wrote that collective code-ownership and reviews becomemore difficult if only
a part of the team is able to understand the code. Another pointed out that parallelizing
tasks and thus utilizing all developers is not possible if only parts of the team speaks
a certain language. Also, transferring knowledge in the team, and having surrogates for
developers, was pointed out to become more difficult, as well as finding personnel with
the required qualifications.
Several people also pointed out that the question of understandability depends on

developer training. Several commented that the use of MLSD requires initial training
for developers which takes time, but leads to later benefits due to the ability to use and
understand additional languages. However, some cautioned that the problem of missing
qualifications might crop up again when people leave the project or company, and might
also be a problem in maintenance and support if different personnel is employed.
The last question in section one was about the trend towards or away from the use of

multiple languages. Here, there is a clear trend, as shown in Table 2: 92% of respondents

Table 2 Past and future of multi-language software development: count of respondents and
percentages are per question (row)

Less Same More

Past 88 (63%) 40 (29%) 11 (8%)

Future 8 (6%) 61 (44%) 70 (50%)

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 16 of 33

feel that there were less (63%) or the same (29%) amount of languages in the past, whereas
94% feel that there will be the same (44%) amount or more (40%) in the future. Thus, there
is the feeling that there is a trend towards more languages.

3.3 Section 2: cross-language linking

The second section of this questionnaire is about cross-language links, that is, connec-
tions between the code of artifacts written in different languages. The first three questions
in this section are about the links themselves; respondents were asked to identify the
language pairs in their last project which were connected by cross-language links.We sep-
arated these questions between GPL/DSL links (which we assumed to be most common)
as well as GPL/GPL and DSL/DSL links.
A total of 130 respondents answered ‘yes’ to one of these three questions; that is, 9 out

of 139 did not encounter any cross-language links in their last completed project.
The first question in this section is about links between general-purpose languages and

domain-specific languages. Five language pairings occurred more than 30 times (20% of
responses); these are shown in Table 3 (first section). All other pairs occurred only in a
maximum of 5 responses each.
The second and third question were about GPL/GPL and DSL/DSL links. Here, only

the respective first pairs (Java/JavaScript with 27 projects, HTML/CSS with 39 projects)
occurred in any sizeable amount.
In total across these three questions, respondents reported a median number of 3 link

pairs per project, with 50% of values between 2 and 5, and most (inner 80%) between 1
and 7. A total of 152 distinct link pairs were mentioned: 94 distinct pairs of GPL/DSL
combinations, 32 of GPL/GPL combinations, and 26 DSL/DSL combinations.
The last three questions in this section are about possible problems occurring with

cross-language links. All three questions were only asked if respondents answered yes
to one of the three previous questions; that is, if cross-language links existed in their
projects.
Question 10 asked respondents if they encountered any problems with cross-language

links, and if so, of which type. Of the 130 participants answering this question, a total of
10 respondents (8%) reported no problems. The other 92% reported at least one problem.
Figure 9 shows the distribution of problems (note that the selection was multiple choice).
The problems which occurredmost with 80 respondents (62%) are bugs or issues result-

ing from changing cross-language identifiers. 60 respondents (46%) admitted to refraining

Table 3 Top linked language combinations

GPL/DSL

Java/XML Java/SQL JS/HTML Java/HTML Java/.prop

44 38 33 32 31

GPL/GPL

Java/JS Java/Scala Java/Groovy Java/C Java/Py

27 5 4 3 3

DSL/DSL

HTML/CSS XML/.prop HTML/.prop. HTML/XML XML/SQL

39 9 5 5 5

JS = JavaScript; .prop = .properties; Py = Python

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 17 of 33

N
on

e

O
th

er

Li
br

ar
y

C
on

fig
ur

at
io

n

Te
st

 W
rit

in
g

B
ui

ld
 M

an
ag

em
en

t

P
ro

gr
am

 U
nd

er
st

an
di

ng

R
ef

ra
in

in
g

fr
om

 C
ha

ng
es

P
er

fo
rm

in
g

C
ha

ng
es

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 9 Which problems did occur? (multiple choice)

from changing cross-language identifiers at all for fear of breaking the system. On third
place, 58 participants (45%) found that program understandability suffered due to the
existence of cross-language links.
The other three possible problems provided were issues in managing the build due

to cross-language links, problems when writing test cases, or difficulties in configur-
ing libraries; these problems were seen by 43, 34, and 32 respondents (33, 26 and 25%),
respectively.
In the “other” category, additional problems where mentioned, namely an increased

effort in debugging, difficulties in ensuring backwards compatibility in DSL code, the
problem of using obsolete options ormissing new ones in configuration files or translation
files, and the increased effort for communicating such changes to colleagues. It was also
pointed out that good tool support can solve (some of) these problems.
Question 11 asked again about problems with cross-language identifiers; however, this

time we were interested in the frequency of occurrences in each software engineering
activity. This question was only asked if respondents indicated in question 10 that prob-
lems did occur, which was the case for 120 of our participants. The results are shown
in Fig. 10.
The figure shows the seven suggested activities on the y axis; the answers of respondents

are shown as bars on the x axis. For each activity, respondents could select (from left to
right) “never” (black), “rarely” (dark gray), “from time to time” (gray), “frequently”, (light
gray), and “all the time” (white). The figure shows the activities roughly ordered from
project start (bottom) to project end (top).
In the first programming activity — initial implementation of the system — about 40%

of respondents saw problems more than rarely. The bulk of issues was seen in the next
two activities, which are about changes to the system: changing the code to implement
new requirements, and refactoring. In the first, 78% of respondents saw problems more

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 18 of 33

Initial Development

Impl. of new requirements

Refactoring

Unit Testing

(Dedicated) Test Phase

User Testing

After Release

0.0 0.2 0.4 0.6 0.8 1.0
relative frequency

Fig. 10 When did problems occur, and how often? The bars are coded as follows (from left to right): black=
did not occur; dark gray= occurred rarely; gray= from time to time; light gray= frequently; white= all the time

than rarely, in the second, 71%. Problems were still encountered, as they should, in unit
testing by developers, where 49% of respondents saw problems more than rarely.
There is a drop in problem occurrence in the last three activities. In the first — ded-

icated testing phases performed by testing personnel — about 26% saw problems more
than rarely, a figure which drops to 17% for user testing and 14% for issues that occurred
after the release of the software.
The last question in this section was about measures taken to prevent or at least quickly

find problems with cross-language links. This question was only asked to respondents
who reported cross-language links in their project, that is, 130 of them. The results are
shown in Fig. 11. Multiple answers could be selected.
A total of 12 respondents (9%) reported that no particular measures were taken. A

sizeable number of respondents reported avoidance of the use of multiple programming

N
on

e

O
th

er
s

A
vo

id
 M

LS
A

D
ed

ic
at

ed
 T

oo
ls

A
vo

id
 X

LL

D
ed

ic
at

ed
 T

es
ts

N
o

C
ha

ng
es

S
pe

ci
al

 C
ar

e

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 11 Which measures were taken to address problems in cross-language linking? (multiple choice)

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 19 of 33

languages (16, 12%), avoidance of cross-language links (28, 22%) or avoidance of chang-
ing identifiers once they are in place (49, 38%). 89 respondents (68%) reported that special
care was taken when changing cross-language identifiers.
Dedicated tools for handling cross-language identifiers were used by 27 respondents

(21%), and specialized test cases for detecting cross-language issues were used by 39
respondents (30%).
In the "other" category, four people reported using code generation to prevent prob-

lems, that is, automatically generating at least parts of the cross-language links to ensure
consistency. Two other measures mentioned were a) using clear coding conventions for
cross-language identifiers, and b) the use of a central database for cross-linking identifiers
which all languages had to refer to. Two respondents advocated the use of proper tool
support to solve most of the issues.

3.4 Section 3: tool support

The final section of the questionnaire (as regards to content) is about tool support for
cross-language linking. Question 13 asks which of four suggested functions for supporting
cross-language links were present in the tools used in the respondent’s last project. The
result is shown in Fig. 12.
A total of 55 respondents (nearly 40%) reported that the tools they used had no cross-

language specific functions whatsoever, which leaves about 60% of the respondents in
which one or the other function was available. The most available function reported
was highlighting of identifiers in the code (57 respondents, 41%), followed by rename
functionality (45 respondents, 32%), navigation (i.e. “jumping” between occurrences) (38
respondents, 27%) and the marking of errors in cross-language links with the lowest
number of respondents (35, 25%).
Nine respondents (6%) mentioned other tool support; three of these were again code

generation as above; two mentioned custom implementations for checking code.
The last question (14) is again related to the overall experience of developers. We asked

about the importance of tools for cross-language linking in general as well as individual
tool functions. The result is shown in Fig. 13.

N
on

e

O
th

er
s

E
rr

or
 m

ar
ki

ng
s

N
av

ig
at

io
n

R
en

am
in

g

H
ig

hl
ig

ht
in

g

0.0

0.1

0.2

0.3

0.4

0.5

re
la

tiv
e

fr
eq

ue
nc

y

Fig. 12 Which tool functions were available in the tools used? (multiple choice)

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 20 of 33

Highlighting

Navigation

Renaming

In General

Error Marking

0.0 0.2 0.4 0.6 0.8 1.0

relative frequency

Fig. 13 Is tool support considered useful? The bars are coded as follows (from left to right): black= very
detrimental; dark gray: rather detrimental; gray= neutral; light gray= rather beneficial; white= very beneficial

For each function and the general view, respondents could vote for (from left to right)
"(very unimportant" (black), "rather unimportant" (dark gray), "neutral" (gray), "rather
important" (light gray), and "very important" (white). For each function, over 70% of
respondents reported tool support as important; in the general case, 82% of respon-
dents found tool support to be of importance. The order of importance in functionality
shows only slight deviations; highlighting is considered least important; renaming most
important.

4 Discussion
We now discuss the study results shown in the previous section with regard to our
research questions, thus explaining where and how this study has improved our knowl-
edge of multi-language software development, cross-language linking, and accompanying
tool support. We also indicate points where we feel practical efforts or future research
would be beneficial.
Before we begin with the actual results, we discuss the metadata, or results from par-

ticipant selection and demographic parts of the survey. As stated in the methods section,
our selection was based on a form of snowballing and we thus refrain from generaliza-
tions. Based on the data we have gathered, however, it seems that the sample did include
both a) knowledgeable respondents and b) a quite diverse set of participants.
First, with an average of 8 years of experience and 88% of participants indicating that

they their responsibilities includes programming, we believe that the recipients indeed
had knowledge about the questions posed in this questionnaire and the results are thus to
be considered meaningful.
Second, the results show that many different levels of experience, team sizes, and

project lengths are found in the sample. The years of experience range between from
below 1 to 36 with 50% lying in between 5 and 15 years (median 8); the team size ranges
between 1 and 170 with 50% between 4 and 18.5 developers (median 7), and the length of
the projects range from 1 month to 5 years with 50% between 6.5 and 24 months (median
12). Furthermore, recipients worked in at least 23 different companies. This indicates
that we achieved a good spread of people and projects which makes this sample worth
investigating.
When we look at the types of software developed, we see a more uniform picture.

66% of the reported projects were either web applications or client/server applications.
Server-only applications followed behind with 16% of responses, with all others below 9%.

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 21 of 33

Thus, the results of this survey should be interpreted with web, client/server, and server
applications in mind — not, in particular, with desktop or mobile applications nor with
embedded or operating systems.
The following three subsections discuss the answers to each of the three areas listed

in the introduction, with two research questions each. We discuss threats to validity in
Section 4.4.

4.1 Onmulti-language software development

In the following, we discuss the answers to research questions RQ1 and RQ2.

4.1.1 RQ1

Our first research question wasHow prevalent is multi-language programming and which
languages are used? How many languages did developers work with?
Firstly, projects were reported to have an average of 7 languages (lower bound, since

we counted DSL types instead of DSLs) with 50% of projects having between 6 and 8
languages. So, we conclude that multi-language programming is indeed prevalent.
We can also compare this figure with the number of languages in open source projects

from a previous study (Mayer and Bauer 2015). Here, languages were automatically
retrieved from source files with a median of 4 and 50% of projects having between 2 and
7 languages. It is thus interesting to see that more languages were reported in the current
study, even if this count is a lower bound due to our asking for DSL types. This which may
be due to various factors.
First, the current data is from thememory of participants, whereas the other is extracted

from code; however, we would have expected a result in the other direction here (i.e. less
reported languages from memory). The more likely explanation is that the data set in the
previous study did include both a) unfinished projects and b) several smaller "toy" projects
which reduced the number of languages. It would be interesting to compare the current
results with a survey of open-source personnel.
The languages usedmostly in our sample set were Java and JavaScript by a widemargin.

This means in turn that the results of this study should be mostly interpreted with regard
to projects with these languages, since we do not know the effect of the use of different
general purpose languages on the questions asked.
With regard to DSLs, we only asked for types. Here, it has become abundantly clear

that nearly all projects used the top five categories of DSLs, namely languages for the
user interface, (shell) scripting, building, querying, and configuring. It will be interesting
in the future to look into these categories in more detail and separate out the individual
languages in use.
Only 12 respondents reported having created their own languages. Thus, although cre-

ating custom DSLs has been an active research topic for some time now (Fowler 2011),
this was not a common phenomenon in our sample of industrial respondents.
It is important to note here that about 66% of respondents indicated that their last

project was either a web application (36%) or a client/server application (30%). This might
also indicate why the number of languages was higher than in our previous study, as the
use of DSLs in those types of systems is very common.
Finally, there is no clear answer with regard to the question of the use of a project’s

languages by developers. Figure 7 has shown that basically all possible options from "just

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 22 of 33

one language" to "all of the languages" were selected. In general, there seem to be differ-
ent philosophies at work regarding the allocation of work to developers or, more general,
developer training. As we have seen in the comments to the question on benefits and
problems, several recipients indicated problems precisely when not all team members
were able to understand all languages, which is related to but not exactly the same ques-
tion we asked here (which was about writing code in these languages). This seems like a
natural step to follow up in future research.
To summarize our answer to RQ1: Multi-language programming is indeed commonwith

an average of seven languages. Our sample set included mostly Java/JavaScript projects.
Most projects used DSLs from the UI, configuration, shell scripting, querying, and build-
ing domains. Only 9% of respondents used custom languages. The developer-to-language
ratio ranged freely from one language per developer to developers writing code in all
present languages.

4.1.2 RQ2

Our second research question was What are the benefits and problems developers
encountered in the use of multiple languages? Do developers feel that multi-language
programming has/will increase or decrease over time?
Looking at the results from question five, respondents saw a benefit of the use of multi-

language development in two areas. The first is a technical one, namely the translation of
requirements into code. Thus, developers agree that certain languages are better suited to
encode specific requirements than others. The second is related to a human issue, namely
developermotivation, where a high number of respondents saw a benefit of usingmultiple
languages.
On the other hand, a rather high number of respondents saw problems for the under-

standability of the system due to the use of multiple languages. This seems to conflict
with the requirement translation answer above: Why do developers see multiple lan-
guages as beneficial for encoding requirements, but problematic for code understanding?
We believe that the question of requirement translation was mostly interpreted regarding
single languages, not the combination of languages. A single language can indeed be bet-
ter suited to encode a problem; however, problems with understandability crop up when
code is subsequently combined with others. This is an interesting discrepancy and should
be followed up with further research.
The second area marked out to be problematic is the changeability of the system, that

is, performing later changes in the presence of the use of multiple languages— developers
in our sample mostly agree that multi-language software development leads to challenges
when changing code later on.
Two additional areas are seen as problematic, which are the management of the build

(which must take into account more languages and their respective tools) as well as the
required effort for developers.
Finally, there is no clear trend to be seen with regard to the architectural design and the

initial (first) implementation of the system, nor with regard to the two technical issues of
memory consumption and CPU performance. We assume that these questions could not
be answered on this level of abstraction, which would also explain the large set of neutral
responses. Thus, we should follow up here with splitting these questions up with regard
to individual languages or language types.

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 23 of 33

To summarize, the top two areas seen as problematic are related to understandability
and changeability of the system. Both are important areas for system maintenance. Here,
it seems prudent to follow up either with practical support in the form of tools, or with
further research on techniques to improve these two areas by design.
The second part of RQ2 is about trends in multi-language programming. Here, respon-

dents mostly agree that there were less languages in the past, and there will be more
languages in the future, which is probably as expected and shows the need for further
addressing multi-language software development.
To summarize our answer to RQ2: MLSD is seen as beneficial for developer moti-

vation and for translating requirements to code, and seen as problematic for program
understanding, changes to the system, buildmanagement, and developer effort. For archi-
tectural design, initial implementation, memory consumption, and CPU performance
there is no clear trend. Developers agree that less languages were used in the past and
more will be used in the future.

4.2 On cross-language linking

In the following, we discuss the answers to research questions RQ3 and RQ4.

4.2.1 RQ3

Our third research question was In how many and which combinations of languages did
developers encounter cross-language links?. This question is interesting since answers to
this question are difficult to extract in a generic fashion from source code (compared
to, for example, the language counts of RQ1), since the language pairs and the linking
mechanisms must be known before a link detection mechanism can be written, and there
is a large number of possible link pairs and frameworks.
The results show that most links, as expected, occur between general-purpose lan-

guages and domain-specific languages. Since we already saw that Java and JavaScript are
the top languages used in this sample, it is unsurprising to see them employed here as well,
with languages from three of the five main DSL types as link targets (XML and .proper-
ties for configuration, HTML for UI, and SQL for querying) as shown in Table 3. As the
table only shows the top 5, it is again unsurprising to see the "usual suspects" in GPL/GPL
and DSL/DSL linking as well.
As we havementioned above, the three questions on linking used free text only andwere

thus very tiresome to answer. We thus expect that many respondents only entered what
immediately came to mind, and therefore the total numbers (3 link pairs per respondent)
are probably below the actually occurring link pairs. 9 out of 139 respondents indicated
that there were no cross-language links which seems surprising and might also be due to
this issue.We took the reported language pairs at face value and did not take discrepancies
with questions 1 and 2 into account.
Another issue we found here is that several respondents wrongly attributed languages

to either general-purpose or domain-specific although these terms were explained in the
survey. While this was easily corrected afterwards, it suggests that this distinction is not
as well-known or clear-cut as we expected.
It is worth noting at this point that the questionnaire did not ask participants to separate

between generated and non-generated code. Some code which includes cross-language
links might in fact be generated (either in a GPL or in a DSL). This usually means that

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 24 of 33

the code is only read, but not (manually) changed. Still, developers need to be able to
understand it.
With the answers to these questions we have gained information on link pairs which, as

mentioned above, is hard to extract automatically. The full list of 152 distinct link pairs
is available on our web site. We thus have a starting point for further research including
writing tool support. For future surveys, we recommend using this information to create
multiple-choice answers for these questions as well.
To summarize our answer to RQ3: Developers encountered cross-language links in a

total of 152 distinct language pairs with an average of 3 link pairs per project. The most
common combinations were GPL/DSL links between Java and XML, SQL, HTML, and
.properties, as well as JavaScript and HTML.

4.2.2 RQ4

Our fourth research question was Did problems with cross-language linking occur? If so,
which, when, how frequent, and what was done to alleviate these problems?. This question
is at the heart of this study.
The first subquestion here is about whether problems with cross-language links

occurred at all. Only about 8% of respondents reported no issues, so we can clearly state
here that the overwhelming majority of respondents did encounter at least some issues
with cross-language links.
Of the suggested issues with cross-language links, the most-selected one were prob-

lems as a result of changing cross-language identifiers (with 61% of respondents having
had this problem in the last project). Another 46% stated that developers refrained from
changing cross-language links for fear of breaking code. We added this answer based on
previous experiences with industrial development without expecting that many devel-
opers would admit to having this issue. That they indeed did so is evidence, in our
opinion, that cross-language links as they are now are indeed seen as being hard to keep
track of.
While not changing identifiers prevents problems in the short run, it will lead to

problems with understandability later on since necessary changes — such as renaming
identifiers whose function has changed— are not carried out any longer. Indeed, the issue
selected third most often (by 44%) is problems with understanding or explaining how the
system worked due to cross-language links.
We conclude that cross-language links are seen as hard to keep track of and thus

difficult to understand and communicate.
The other three suggestions of problems — increased difficulties in build management,

test writing, and configuration of required libraries or frameworks — were selected by 30
to 40 percent of recipients. They are thus of concern as well, but less so than the problems
discussed above.
In question 11, we asked respondents when and how frequently problems with cross-

language links occurred during the development of their systems. The two activities
most affected were those in which the system was changed, either to implement new
functionality or when refactoring. A smaller additional amount of problems were detected
(as should be) during unit testing.
Part of the aim of this question was to test which activities would likely profit from

(tool) support and whether cross-language linking problems occur late in development,

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 25 of 33

making them harder to fix. Thus, the result is encouraging: Few respondents indicated
that problems with cross-language links made it to user testing or were still present
after release; instead, problems mostly occurred during programming when changing
code. We conclude that future efforts to aid developers should be focused on these
activities.
The last question here is about measures taken to alleviate problems with cross-

language linking. It is interesting to see that despite 92% of recipients reporting problems
with such links, only 20% used dedicated support tools and only 30% used dedicated tests
to find such errors. About 9% reported that no measures were taken at all. It is unclear
whether this is due to the fact that such tools simply do not exist for the relevant cross-
language links, or whether they were not used for other reasons. This should be followed
up in the future.
We also provided suggestions for “soft measures” as part of this question: 68% of respon-

dents indicated that they took “special care” when changing cross-language identifiers.
12% reported avoidance of the use of multiple programming languages, and 21% reported
avoidance of cross-language identifiers in general. 37% indicated that identifiers were not
changed to avoid issues.
This again indicates that it seems difficult to feel comfortable with the presence of cross-

language links and they are thus avoided when possible; if present, they are handled with
the utmost care. This situation clearly needs additional attention both in practical efforts
and in research.
To summarize our answer to RQ4: Problems with cross-language linking were reported

by 92% of respondents. Most problems were related to changing cross-language identi-
fiers and to program understanding, which suggests that cross-language links are seen as
fragile and difficult to understand and communicate. These issues occurredmostly during
activities in which code was changed by developers. Only about 20-30% of respondents
used concrete measures against cross-language linking problems in the form of tools
or test cases; many respondents indicated that they tried to avoid multiple languages,
cross-language linking, or changing identifiers as far as possible.

4.3 On tool support

In the following, we discuss the answers to research questions RQ5 and RQ6.

4.3.1 RQ5

Our fifth research question wasWas tool support available for dealing with cross-language
identifiers? If so, which functions were available?.
55 (nearly 40%) of participants indicated that no tool support at all was used in their last

completed project. Thus, tool support was in fact in use, but less so than we expected.
In particular, the error marking functionality, which is the one directly relevant to
problems — was selected by the lowest amount of recipients (35 recipients, 25%), which
mirrors the result in question 12 (where 27 respondents (20%) reported using dedicated
tools for error detection).
It is important to note here that we simply asked whether the functionality was available

in the project. Whether this means that tools do not exist at all or were simply not used is
unclear. This should be investigated in the future; we suggest asking about concrete tools
in combination with cross-linked language pairs.

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 26 of 33

To summarize our answer to RQ5: Tool support was available to about 60% of respon-
dents. The functionality most available was highlighting (41%), followed by renaming,
navigation, and finally error marking (25%).

4.3.2 RQ6

Our sixth and final research question was Is tool support considered important, and if so,
which functions for handling cross-language identifiers are most important?.
In this final question, recipients agreed that having more tool support would be benefi-

cial. A total of 82% of recipients indicated that they see tool support in general as "very" or
"rather" important. Thus, it seems clear that there is a need for further support. There is
little difference between the individual functions in rating. The most important function-
ality to recipients is, as expected, support for error marking (87%). The least important
was support for highlighting (67%), although it should be noted here that highlighting was
the functionality most available to developers and thus may have received less votes.
To summarize our answer to RQ6: Respondents universally agree on the benefits of

tool support for cross-language linking. The most benefits (87%) are expected from
functionality to mark errors in cross-language links.

4.3.3 Closing remarks

In the previous subsections we have answered our research questions in great detail. We
have found that MLSD and the use of cross-language linking are indeed prevalent, as
are related problems. We see three areas in which we might improve the state of the art:
Better tool support, easier cross-language linking by design, and more focus on the ability
of developer teams to speak all languages in use in a system.
We attribute problems with understandability and changeability to the fragile and

implicit nature of cross-language links as they exist today — it seems hard to keep track
of such links. Two remedies suggest themselves for this issue. The first is tool support,
which has already been suggested as part of this survey and has been met with universal
agreement by developers: Better tool support for tracking and changing cross-language
linksmay indeed alleviatemany problems associated with these links, including the fear of
developers to change code due to unknown cross-language effects and thus reestablishing
trust in the code base.
However, better tool support can also be seen as only handling the symptoms of the

problem: If cross-language linking mechanisms were more robust in the first place,
we would not have as great a need of tool support as we do now. Thus, secondly,
we should investigate creating maintainable and understandable cross-language links
by design. How specific cross-language linking mechanisms could be improved is a
matter of future research. In the comments, several respondents mentioned the use
of code generation tools with the benefit of cross-language linking information being
stored in only one place. One respondent explicitly mentioned using a central database
for this information which is a form of explicit interface specification. A first step
forward might thus be made by drawing on the experience with interface specifica-
tions in general, that is, using more explicit and accountable links which are stored in
well-known places.
Third, the qualitative data from the comments of developers on various questions show

one potentially underinvestigated area, which is the knowledge of team members about

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 27 of 33

the languages used in the project. This problem is related to but not the same as our
question on the developer/language ratio, which was more about changing, not only
understanding code. Several respondents have commented that various problems occur if
not all team members speak all languages, not only for the code quality, but also for orga-
nizational issues such as finding replacements during a vacation or when developers leave
a company. We suggest that this angle of the problem be followed up in the future as well.

4.4 Threats to validity

As with any empirical study, there may be threats to the validity and trustworthiness of
our work (Kitchenham and Pfleeger 2002b). Since this is the first survey in this area we
cannot compare to existing results or instruments. We thus discuss content validity as
perceived by the authors, pre-testers, and the survey respondents (in the form of free text
comments).
A general issue with questionnaires is the risk of participants not understanding the

questions or (pre-made) answers. We have taken care to adapt the terms to the intended
target audience, i.e. professional developers, not researchers. We have refrained from
using too technical terms by replacing them with simpler ones; where this was not possi-
ble we have explained the terms (such as "cross-language link") within the questionnaire:
each section of the questionnaire was prefixed with a page of explanations. We have also
provided examples where appropriate, for example, for the distinction between GPL and
DSL. Furthermore, the questionnaire was run through a pre-test with five participants.
We thus believe it unlikely that there were serious misunderstanding of the questions.
The question on benefits and problems ofMLSD in this questionnaire was kept generic,

i.e. participants were asked to answer this question regardless of concrete languages or
language types. This was done on purpose as it was our aim to find out if there are trends
in opinion when considering the MLSD phenomenon as a whole; however, we might have
attractedmore insights had we asked this questionmultiple times for individual languages
or types. A "neutral" option was provided to enable participants to refrain from having
to choose, an option which was made use of in several instances as reported. While we
believe that the results to this question are a meaningful first step, we recommend that
future studies split this question to individual languages and types.
Most questions in this questionnaire includedmultiple-choice answers, i.e. we provided

prefixed answers instead of open ones. Themain benefits of this approach are a) it is easier
for respondents to answer, and b) the results are easier to analyze. However, this may lead
to a bias since participants were able to select pre-fabricated opinions instead of having to
provide their own ones. All options provided in the questionnaire were discussed among
the authors and, where possible, with other developers, and thus stem from the experi-
ence of the authors and other software developers in the development of multi-language
software.
It is worth noting at this point that open questions are problematic as well since hav-

ing to provide free text increases the likelihood of participant dropouts. Furthermore,
analysis of such data would again require categorization which is then performed by the
researcher, not the respondent. To address this issue, we provided both suggestions and
an additional free text field in all of these questions such that developers could add their
own opinions. We investigated these qualitative answers manually, but mostly did not
find a clustering of non-listed issues except in two cases: Several respondents mentioned

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 28 of 33

additional problems if not all teammembers are able to understand all languages; and sev-
eral respondents indicated the use of code generation, that is, using a single specification
for cross-language links and using this specification to prevent problems. In a follow-up
study, these two topics should thus be investigated further.
We finally come to the question of the ability to generalize. The selection of partici-

pants for this study was done in a snowball fashion, the reasons for which have to do with
our inability to randomly select participants due to the inaccessibility of the population
and questions regarding unsolicited e-mail. We have thus, in this report, refrained from
using inferential statistics and have only reported our results on this sample. As we have
indicated in the results section, we feel that the sample has a good diversity nevertheless
and as such we feel that the results offer interesting insights into industrial development.
Also, parts of this study are of an explorative nature, and we feel that our results directly
suggest further research as indicated in the discussion section.
Even when reporting on the sample only, there is one possible bias which comes from

the threat that multiple respondents in our surveymay have reported on the same project.
However, most companies in our sample offer customized development to clients and
thus have many individual projects running at the same time. This problem also only
affects the questions on the last completed project, not the questions on developers opin-
ions. The free text answers did not show any patterns to confirm this concern, and we
assume that the overall diversity was high enough to counter this issue.

5 Related work
To our knowledge, this is the first survey on either of the topics of multi-language software
development, cross-language linking and accompanying tool support on actual devel-
opers (industrial or otherwise), with one exception (Pfeiffer and Wasowski (2015), see
below). However, there is existing non-survey work in all three areas related to this study
which we discuss in the following.

5.1 Multi-language software development

To our mind, research on Multi-Language Software Development (MLSD) deals specifi-
cally with the combined occurrence and use of programming languages; not with individ-
ual programming languages themselves, but neither with cross-language links specifically.
We can find references to this practice (sometimes also called mixed-language program-
ming or polyglot programming) as far back as 1984 (Einarsson and Gentleman 1984);
however, most work is more recent.
Directly relevant to this study are three recent data mining studies on open source soft-

ware (Mayer and Bauer 2015; Tomassetti and Torchiano 2014; Delorey et al. 2007). These
studies focus on co-occurence of languages. In all of these studies, open source projects
have been analyzed programmatically. In the first two studies, GitHub was used as the
provider; in the third, SourceForge. These first two studies found a median of 4 resp. 5
languages per project, which is lower than the one reported here (which is 7), despite the
fact that the number we reported here is a lower bound since we did not ask for DSLs but
for DSL types.
The number of languages in use in industry thus seems to be higher. We believe that

this is due to the fact that many projects on GitHub are a) not production-ready and b)
are smaller, personal projects.

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 29 of 33

The SourceForge study Delorey et al. (2007) does not explicitly list a median number of
all languages, but mentions the use of two to three GPLs per project, which is similar to
what we see here.
Another interesting aspect of MLSD is the evolution of projects over time; this topic

has been investigated by Arbuckle (2011). In this case study of git, it was found that code
in scripting languages was not, as expected, replaced by general-purpose language code
over time, but that instead the development of all languages proceeded in sync.
There is no related work which address our research question two, i.e. whether MLSD

is perceived as beneficial or problematic by developers.

5.2 Cross-language linking

The area of cross-language linking is about the actual interaction points between lan-
guages, that is explicit or implicit interfaces which often use named identifiers for
establishing links. There is no empirical evidence on the incidence of such links in soft-
ware projects, which is mostly due to the fact that such links cannot be detected in
general: one has to implement specific support for the links between each language
pair and usually for the concrete linking mechanism (often a framework or library)
as well.
Thus, our answer to research question three on cross-language link occurrence is, in its

generality, new data on this subject.
The fact that cross-language links may be problematic has been taken for granted in

much of the literature on cross-language links and tool support (see below), and several
suggestions have been made to improve the situation.
Favre et al. (2012) and Lämmel and Varanovich (2014) have investigated the ques-

tion of the linguistic architecture of projects with a specific focus on modeling,
that is, design-time support. Such support may help alleviate the reported prob-
lems of understandability in such systems as we have seen in research question
four.
There are also efforts regarding to researching cross-language links. Caracciolo et al.

(2014) have created a workbench for running analyses on multi-language software sys-
tems; Sobernig and Zdun (2010) have addressed the topic of how to evaluate execution
speed of cross-language method invocations in Java. Both are thus enablers for future
efforts which may go into the directions of tool support or better linking mechanisms we
have indicated.
We do not know of related work for our research question four, that is generic data on

problems and measures taken with regard to cross-language links.

5.3 Tool support for cross-language links

Most research on cross-language linking is tightly coupled with the question of tool
support. The first such work is probably that of Linos et al. from 1995 on a tool for
re-engineering cross-language links Linos (1995). Since then, several publications have
addressed cross-language links and tool support for a variety of language combinations.
In our questions on tool support, we have asked for various functions which may

help in dealing with cross-language links. Such functionality has indeed been imple-
mented. For example, Mayer and Schroeder (2014) describe a tool for generic support of
cross-language linking in Eclipse which includes all of these functions. There are also

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 30 of 33

other tools which offer such functionality; examples are Pfeiffer R andWasowski (2012b),
Nguyen et al. (2012), and Tomassetti et al. (2014). Sakamoto et al. (2013) have created a
tool for test coverage measurement which spans languages.
There is also more general work on tool support for cross-language linking. In 2012,

Pfeiffer and Wasowski (2012a) performed an experiment to assess the usefulness of tool
support for cross-language linking; their result that such support aids software devel-
opment matches our result in research question six where developers offered much the
same opinion.
The overall design space of such tool support is discussed by Pfeiffer and Wasowski

(2015). This work also includes a survey of language designers in which designers were
asked questions on the new languages they designed. The results of this study are com-
plementary to our research question three in that developers indicated that their new
languages in most cases interacted with others (84%). It also touches our research ques-
tion five: designers indicated that they provided tools for checking these interactions
(68%), but that their tools were not generic (8%); i.e., they were focused on the concrete
languages. The survey also includes a question on how many languages were present in
respondents’ projects, which yielded a number of between 3 and 8.5 (compared to our
median of 7 in RQ1).
There is no direct related work which addresses our research question five, that is

whether such tool functionality is available and used in industry in general.

6 Conclusions and outlook
In this study we surveyed 139 industrial software engineers for their opinions on multi-
language software development, cross-language linking, and accompanying tool support.

6.1 Summary

The participants of this study were all software engineering professionals with an aver-
age of 8 years of experience; most were responsible for programming (88%). The software
development projects they reported on had an average of 7 team members and a dura-
tion of one year. The systems under development were mostly web and client/server
applications (66%) or server only (16%).
Regarding multi-language software development in general, our respondents reported

about 7 languages per project with Java and JavaScript as the main languages, and
a ubiquitous use of DSLs from the UI, configuration, querying, shell scripting, and
build management domains. 9% used custom languages. The developer-to-language ratio
ranged freely between one language and all languages per developer. Multi-language soft-
ware development is seen by respondents as beneficial for developer motivation and
translation of requirements to code, but as problematic for understandability and change-
ability of the system. Participants agree that there will be more languages per project in
the future.
Regarding cross-language linking and identifiers, developers encountered cross-

language links in a total of 152 distinct language pairs with an average of 3 link pairs
per project. 92% of respondents reported having encountered problems with cross-
language links. Most problems were (again) related to changeability and understand-
ability, and occurred during the programming phase of the project. Only about 20–30%
of respondents reported actual measures against cross-language linking issues; many

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 31 of 33

indicated avoidance of multi-language development, cross-language linking, or changing
cross-language identifiers.
Tool support for cross-language linking was available to about 60% of our respondents,

with automated error detection available to only 25%. Respondents universally agree on
the benefits of tool support, especially for error marking.

6.2 Conclusions and outlook

This paper has reported the results of a descriptive study with explorative elements. We
believe that the results of this study can help us focus both practical efforts and further
research in three areas.
First, we have seen that most respondents indicated having problems with cross-

language links, mostly related to link changeability and understanding software during
the programming phase of a software project, and that tool support seems both in short
supply and perceived as beneficial. Thus, creating tool support in particular for error
marking in cross-language links might offer developers a better safety net than they cur-
rently have. For program understanding, accountability of cross-language links through
advanced queryingmechanisms or visualizationmight be beneficial to avoid the tendency
to not change code for fear of breaking the system.
Second, creating more tool support can also be seen as only addressing the symptoms of

badly designed cross-language linking mechanisms. In fact, less fragile links (for example,
through more explicitly defined and maintained interfaces) might lead to better change-
ability and understandability by design. An interesting question is whether there are
already subgroups of link types which offer these attributes. If so, we can favor these types
of links in future implementations. A follow-up survey with language- or link-specific
questions might answer this question.
Last, several respondents remarked on various problems occurring if not all team

members are able to understand all languages. This, in particular, applied to organi-
zational issues such as replacing developers or parallelizing tasks. This suggests also
that some problems may need to be tackled with better training and not (only) better
technology.

Endnotes
1 The full questionnaire as presented to respondents can be found on http://xll.pst.ifi.

lmu.de/survey.html.
2 http://soscisurvey.de/
3 http://xll.pst.ifi.lmu.de/survey.html
4 http://xll.pst.ifi.lmu.de/survey.html

Acknowledgements
The authors would like to thank all participants in the survey for their time and their answers without which this study
would not have been possible. Furthermore, we would like to thank our colleagues for their efforts in recruiting
participants for this study. Thanks also go out to SoSciSurvey for providing access to their excellent online survey tool, to
Sonja Pointner from the Social Science department of LMU for answering our questions on questionnaire design, and to
André Klima from the Statistical Consulting Unit StaBLab of LMU for his support regarding the statistical analysis.

Funding
The first author has been supported by the DFG project MA 794/9-1.

Availability of data andmaterials
The raw data accompanying this work is available on http://xllsrc.net/survey.

http://xll.pst.ifi.lmu.de/survey.html
http://xll.pst.ifi.lmu.de/survey.html
http://soscisurvey.de/
http://xll.pst.ifi.lmu.de/survey.html
http://xll.pst.ifi.lmu.de/survey.html
http://xllsrc.net/survey

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 32 of 33

Authors’ contributions
The first author (PM) is responsible for the overall idea behind this work as well as the main execution of the survey, data
analysis, and dissemination effort. The second author (MK) has provided support in the creation of the survey questions
as well as the online survey on the SoSciSurvey platform. The third author (MAL) has provided support with regard to the
statistical analysis in this work. All authors read and approved the final manuscript.

Competing interests
There are no competing interests for any of the authors.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Programming & Software Engineering Group, Ludwig-Maximilians-Universität München, München, Germany.
2Statistical Consulting Unit StaBLab, Ludwig-Maximilians-Universität München, München, Germany.

Received: 12 July 2016 Accepted: 9 March 2017

References
Arbuckle T (2011) Measuring multi-language software evolution: a case study. In: Cleve A, Robbes R (eds). Proceedings of

the 12th International Workshop on Principles of Software Evolution and the 7th annual ERCIMWorkshop on Software
Evolution, EVOL/IWPSE 2011, September 5-6. ACM, Szeged, Hungary. pp 91–95. doi:10.1145/2024445.2024461

Caracciolo A, Chis A, Spasojevic B, Lungu M (2014) Pangea: A workbench for statically analyzing multi-language software
corpora. In: 14th IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2014,
September 28-29, 2014. IEEE Computer Society, Victoria. pp 71–76. doi:10.1109/SCAM.2014.39. http://dx.doi.org/10.
1109/SCAM.2014.39

Delorey DP, Knutson CD, Giraud-Carrier C (2007) 2nd International Workshop on Public Data about Software
DevelopmentWoPDaSD ’07, Springer, Heidelberg, Limerick

Einarsson B, Gentleman WM (1984) Mixed language programming. Softw Pract Exper 14(4):383–392.
doi:10.1002/spe.4380140410. http://dx.doi.org/10.1002/spe.4380140410

Favre J, Lämmel R, Varanovich A (2012) Modeling the linguistic architecture of software products. In: France RB, Kazmeier
J, Breu R, Atkinson C (eds). Model driven engineering languages and systems. MODELS 2012. pp 151–167.
doi:10.1007/978-3-642-33666-9_11. http://dx.doi.org/10.1007/978-3-642-33666-9_11

Fowler M (2011) Domain-Specific Languages. The Addison-Wesley signature series. Addison-Wesley Professional,
Indianapolis. http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html

Franzen A (2014) Antwortskalen in standardisierten befragungen. In: Baur N, Blasius J (eds). Handbuch Methoden der
empirischen Sozialforschung. Springer Fachmedien, Wiesbaden. pp 701–711. doi:10.1007/978-3-531-18939-0_51.
http://dx.doi.org/10.1007/978-3-531-18939-0_51

Kitchenham B, Pfleeger SL (2002a) Principles of survey research: part 5: populations and samples. ACM SIGSOFT Softw
Eng Notes 27(5):17–20. doi:10.1145/571681.571686. http://doi.acm.org/10.1145/571681.571686

Kitchenham BA, Pfleeger SL (2002b) Principles of survey research: part 3 constructing a survey instrument. ACM SIGSOFT
Softw Eng Notes 27(2):20–24. doi:10.1145/511152.511155. . http://doi.acm.org/10.1145/511152.511155

Lämmel R, Varanovich A (2014) Interpretation of linguistic architecture. In: Cabot J, Rubin J (eds). Modelling Foundations
and Applications - 10th European Conference, ECMFA 2014, Held as Part of STAF 2014, York, UK, July 21-25 2014 vol
8569. Springer, Heidelberg. pp 67–82. doi:10.1007/978-3-319-09195-2_5. http://dx.doi.org/10.1007/978-3-319-
09195-2_5

Linos PK (1995) Polycare: a tool for re-engineering multi-language program integrations. In: 1st IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS ’95), November 6-10, 1995. Fort Lauderdale. IEEE
Computer Society. p 338. doi: 10.1109/ICECCS.1995.479355. http://dx.doi.org/10.1109/ICECCS.1995.479355

Mayer P, Bauer A (2015) An empirical analysis of the utilization of multiple programming languages in open source
projects. In: Lv J, Zhang HJ, Babar MA (eds). Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, EASE 2015, April 27-29. ACM, Nanjing. pp 4:1–4:10. doi:10.1145/27458022745805.
http://doi.acm.org/10.1145/2745802.2745805

Mayer P, Schroeder A (2014) Automated multi-language artifact binding and rename refactoring between java and dsls
used by java frameworks. In: Jones R (ed). ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, Springer, Lecture Notes in Computer Science Vol. 8586.
pp 437–462. doi:10.1007/978-3-662-44202-9_18. http://dx.doi.org/10.1007/978-3-662-44202-9_18

Nguyen HV, Nguyen HA, Nguyen TT, Nguyen TN (2012) Babelref: Detection and renaming tool for cross-language
program entities in dynamic web applications. In: Glinz M, Murphy GC, Pezzè M (eds). 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012. IEEE, Zurich. pp 1391–1394. doi: 10.1109/ICSE.2012.6227240.
http://dx.doi.org/10.1109/ICSE.2012.6227240

Pfeiffer R, Wasowski A (2012a) Cross-language support mechanisms significantly aid software development. In: France RB,
Kazmeier J, Breu R, Atkinson C (eds). Model driven engineering languages and systems. MODELS 2012. pp 168–184.
doi: 10.1007/978-3-642-33666-9_12. http://dx.doi.org/10.1007/978-3-642-33666-9_12

Pfeiffer R, Wasowski A (2012b) Texmo: A multi-language development environment. In: Vallecillo A, Tolvanen J, Kindler E,
Störrle H, Kolovos DS (eds). Modelling Foundations and Applications - 8th European Conference, ECMFA 2012, Kgs.
July 2-5, 2012. vol 7349. Proceedings, Lyngby, Springer, Lecture Notes in Computer Science. pp 178–193.
doi:10.1007/978-3-642-31491-9_15. http://dx.doi.org/10.1007/978-3-642-31491-9_15

Pfeiffer, R, Wasowski A (2015) The design space of multi-language development environments. Softwa Syst Model
14(1):383–411. doi:10.1007/s10270-013-0376-y. http://dx.doi.org/10.1007/s10270-013-0376-y

http://dx.doi.org/10.1145/2024445.2024461
http://dx.doi.org/10.1109/SCAM.2014.39
http://dx.doi.org/10.1002/spe.4380140410
http://dx.doi.org/10.1002/spe.4380140410
http://dx.doi.org/10.1007/978-3-642-33666-9_11
http://dx.doi.org/10.1007/978-3-642-33666-9_11
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
http://dx.doi.org/10.1007/978-3-531-18939-0_51
http://dx.doi.org/10.1007/978-3-531-18939-0_51
http://dx.doi.org/10.1145/571681.571686
http://doi.acm.org/10.1145/571681.571686
http://dx.doi.org/10.1145/511152.511155
http://doi.acm.org/10.1145/511152.511155
http://dx.doi.org/10.1007/978-3-319-09195-2_5
http://dx.doi.org/10.1007/978-3-319-09195-2_5
http://dx.doi.org/10.1007/978-3-319-09195-2_5
http://dx.doi.org/10.1109/ICECCS.1995.479355
http://dx.doi.org/10.1109/ICECCS.1995.479355
http://dx.doi.org/10.1145/27458022745805
http://doi.acm.org/10.1145/2745802.2745805
http://dx.doi.org/10.1007/978-3-662-44202-9_18
http://dx.doi.org/10.1007/978-3-662-44202-9_18
http://dx.doi.org/10.1109/ICSE.2012.6227240
http://dx.doi.org/10.1109/ICSE.2012.6227240
http://dx.doi.org/10.1007/978-3-642-33666-9_12
http://dx.doi.org/10.1007/978-3-642-33666-9_12
http://dx.doi.org/10.1007/978-3-642-31491-9_15
http://dx.doi.org/10.1007/978-3-642-31491-9_15
http://dx.doi.org/10.1007/s10270-013-0376-y
http://dx.doi.org/10.1007/s10270-013-0376-y

Mayer et al. Journal of Software Engineering Research and Development (2017) 5:1 Page 33 of 33

Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Vienna, Austria, http://www.R-project.org/

Sakamoto K, Shimojo K, Takasawa R, Washizaki H, Fukazawa Y (2013) OCCF: A framework for developing test coverage
measurement tools supporting multiple programming languages. In: Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013 March 18-22. Luxembourg. IEEE Computer Society,
Luxembourg. pp 422–430. doi:10.1109/ICST.2013.59. http://dx.doi.org/10.1109/ICST.2013.59

Sobernig S, Zdun U (2010) Evaluating java runtime reflection for implementing cross-language method invocations. In:
Krall A, Mössenböck H (eds). Proceedings of the 8th International Conference on Principles and Practice of
Programming in Java, PPPJ 2010 September 15-17. ACM, Vienna. pp 139–147. doi: 10.1145/18527611852781. http://
dx.doi.org/10.1145/18527611852781

Tomassetti F, Torchiano M (2014) An empirical assessment of polyglot-ism in github. In: Shepperd MJ, Hall T, Myrtveit I
(eds). 18th International Conference on Evaluation and Assessment in Software Engineering, EASE ’14, May 13-14,
2014. ACM, London. pp 17:1–17:4. doi:10.1145/26012482601269. http://doi.acm.org/10.1145/2601248.2601269

Tomassetti F, Rizzo G, Troncy R (2014) Crosslanguagespotter: a library for detecting relations in polyglot frameworks. In:
Chung C, Broder AZ, Shim K, Suel T (eds). 23rd International World Wide Web Conference, WWW ’14, April 7-11, 2014.
Companion Volume. ACM, Seoul. pp 583–586. doi:10.1145/2567948.2578036. http://doi.acm.org/10.1145/2567948.
2578036

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B (2012) Experimentation in Software Engineering. Springer,
Heidelberg. doi:10.1007/978-3-642-29044-2. http://dx.doi.org/10.1007/978-3-642-29044-2

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.R-project.org/
http://dx.doi.org/10.1109/ICST.2013.59
http://dx.doi.org/10.1109/ICST.2013.59
http://dx.doi.org/10.1145/18527611852781
http://dx.doi.org/10.1145/18527611852781
http://dx.doi.org/10.1145/18527611852781
http://dx.doi.org/10.1145/26012482601269
http://doi.acm.org/10.1145/2601248.2601269
http://dx.doi.org/10.1145/2567948.2578036
http://doi.acm.org/10.1145/2567948.2578036
http://doi.acm.org/10.1145/2567948.2578036
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

	Abstract
	Context
	Aim
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	On multi-language programming
	On cross-language linking
	On tool support

	Methods
	Questionnaire design
	Section 1: multi-language software development
	Section 2: cross-language links
	Section 3: tool support
	Section 4: demographic and other questions
	Summary

	Participant selection and study execution
	Coding and statistical methods

	Results
	Profile of the participants
	Section 1: multi-language software development
	Section 2: cross-language linking
	Section 3: tool support

	Discussion
	On multi-language software development
	RQ1
	RQ2

	On cross-language linking
	RQ3
	RQ4

	On tool support
	RQ5
	RQ6
	Closing remarks

	Threats to validity

	Related work
	Multi-language software development
	Cross-language linking
	Tool support for cross-language links

	Conclusions and outlook
	Summary
	Conclusions and outlook

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

