
Santos et al. Journal of Software Engineering Research
and Development (2015) 3:5
DOI 10.1186/s40411-015-0020-3

REVIEW Open Access

Templates for textual use cases of software
product lines: results from a systematic
mapping study and a controlled experiment
Ismayle S Santos1*, Rossana MC Andrade1 and Pedro A Santos Neto2

*Correspondence:
ismaylesantos@great.ufc.br
1Federal University of Ceara,
Department of Computer Science,
Fortaleza-CE, Brazil
Full list of author information is
available at the end of the article

Abstract

Use case templates can be used to describe functional requirements of a Software
Product Line. However, to the best of our knowledge, no efforts have been made to
collect and summarize these existing templates and no empirical evaluation of the use
cases’ comprehensibility provided by these templates has been addressed yet. The
contributions of this paper are twofold. First, we present a systematic mapping study
about the SPL variability description using textual use cases. From this mapping, we
found twelve SPL use case templates and observed the need not only for the
application of these templates in real SPL but also for supporting tools. Secondly, this
work presents an evaluation of the comprehensibility of SPL use cases specified in
these templates through a controlled experiment with 48 volunteers. The results of this
experiment show that the specification of variabilities in the steps’ numeric identifiers of
the textual use cases is better to the use case understanding than the other approaches
identified. We also found evidence that the specification of variabilities at the end of
the use cases favors the comprehension of them and the use of questions associated
to the variation points in the use cases improves the understanding of use cases. We
conclude that each characteristic of the existing templates has an impact on the SPL
use case understanding and this should be taken into account when choosing one.

Keywords: Use case; Systematic mapping study; Software product line; Controlled
experiment

1 Introduction
The paradigm of Software Product Line (SPL) has emerged together with large-scale
systematic reuse. According to Northrop (2002), an SPL is “a set of software-intensive sys-
tems that shares a common managed feature set, satisfying a particular market segment‘s
specific needs or mission and that is developed from a common set of core assets in a
prescribed way”.
Because the products of an SPL reuse common artifacts among themselves, the SPL

approach maximizes the benefits of systematic and planned reuse. Some benefits of using
SPL are (Gallina and Guelfi 2007; Northrop and Clements 2007; Urli et al. 2014): i)
improved productivity; ii) better time to market; and iii) higher product quality.
In the SPL paradigm, the requirements engineering activity needs to cope with

common and variable requirements for the whole set of products in the family

© 2015 Santos et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

mailto: ismaylesantos@great.ufc.br
http://creativecommons.org/licenses/by/4.0

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 2 of 29

(Oliveira et al. 2013). The SPL requirements should then be modeled from the reuse
perspective by explicitly representing the commonality and variability information
(Alves et al. 2010).
In this scenario, one of the requirements artifacts most used in SPL development are use

cases (Alves et al. 2010). In the SPL paradigm is important to note that the use casesmodel
needs to be adapted to incorporate the mechanisms of variability (Oliveira et al. 2013).
Thus, there are proposals for the description of SPL variability in the use cases model with
‘include’ and ‘extend’ relationships (Azevedo et al. 2012; Bragança and Machado 2006;
Gomaa 2004).
However, it is not enough to only manage variability among whole use cases; it must

also be possible to specify variant behavior within use case descriptions (Erikssona
et al. 2004). This variability can be specified through variation points, and optional and
alternative use cases (Fant et al. 2013). Therefore, the template used for textual use
cases in the SPL paradigm should allow the specification of “small variations” (Gomaa
2004) (fine-grained variation), which can affect just one or two lines in the use case
description.
In the literature, there have been different proposals for templates for textual use case

descriptions of Software Product Lines, such as (Gallina and Guelfi 2007; Gomaa 2004;
Oliveira et al. 2013). Other studies have compared some of these templates (Bonifácio
and Borba 2009; Santos et al. 2013). However, to the best of our knowledge, there has not
been a systematic effort to collect and summarize the existing templates for textual use
case descriptions in the SPL paradigm and there is no empirical assessment of the SPL
use cases’ comprehensibility provided by these use case templates.
In a previous work (Santos et al. 2014), we identified and classified nine templates for

textual use case descriptions of Software Product Lines through a Systematic Mapping
(SM) (Kitchenham and Charters 2007). This new paper extends on that work by:

• Updating the systematic mapping in order to consider papers published in 2014;
• Including papers with an aspect-oriented approach for SPL use cases modelling;
• Presenting a controlled experiment, following the guide of Wohlin et al. (2000),

conducted to evaluate what kind of template better favors the comprehension of SPL
variabilities specified in textual use case descriptions.

By conducting an SM that involves a controlled and formal literature search, we believe
that the results of this paper will benefit researchers and practitioners. Researchers will
benefit because the SM results indicate existing research gaps that need further investiga-
tion. Practitioners will benefit because the results can be used as a reference for choosing
an existing template, or in proposing a new use case template for Software Product
Lines. The results of the controlled experiment provide an empirical knowledge about
the template structures identified, and this knowledge can help in the choice of a use case
template for practical use, as well as in the execution of other controlled experiments with
use cases.
This paper is divided into six sections. In Section 2, we introduce the background. In

Section 3, we discuss the related work. The methodology adopted to conduct the sys-
tematic mapping and results are presented in Section 4. In Section 5, we describe the
controlled experiment conducted with the SPL use case templates. Finally, in Section 6,
we provide conclusions from this work.

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 3 of 29

2 Background
In the SPL paradigm the concepts of feature and feature model are essential. A fea-
ture is an attribute, quality or aspect visible to the user (Kang et al. 1990). According
to the approach of Kang et al. (1990), the features can be “mandatory”, “optional” or
“alternative”. Mandatory features are those available on all systems built within the family.
Optional features are those features that may or may not be included in the prod-
ucts. Alternative features represent a selection “exactly-one-of-many” made from a set of
features.
A feature model represents the information of all possible products of an SPL in terms

of features and the relationships among them (Benavides et al. 2010). Several feature
model languages have been proposed since the introduction of Feature-Oriented Domain
Analysis (FODA) by Kang et al. (1990). According to Benavides et al. (2010) the feature
models can be grouped into three categories: (i) Basic feature models, offering manda-
tory, optional, alternative and ‘or’ features, as well as constraints between features like
‘requires’ and ‘excludes’; (ii) Cardinality-based feature models, offering, in addition, UML-
likemultiplicities for feature selection; and (iii) Extended featuremodels, where additional
information is included in terms of feature attributes.
Thus, in an SPL, the requirements define applications and their features. The require-

ments engineering process of an SPL should include strategic and effective techniques for
analyzing domains, finding similarities and variabilities, and dealing with a community of
stakeholders probably larger than those for single-system requirements elicitation (Cheng
and Atlee 2007; Northrop and Clements 2007).
The process of SPL development also influences the engineering requirements. In

this process, unlike the development process of traditional applications, there are three
essential activities (Northrop and Clements 2007): core assets development, product
development, and management. Core assets development, also known as Domain Engi-
neering, aims to define commonalities and variability and to develop the artifacts for
reuse. Product development, also known as Application Engineering, includes the devel-
opment of final products with reuse. Finally, management is related directly to the control
of the processes and activities, in order to allow the previous two activities to work
together.
Requirements engineering plays a key role in both domain engineering and application

engineering. In domain engineering, the requirements of the domain must be defined
as common and variable requirements. In application engineering, the requirements for
individual products of the SPL are defined by reusing the domain requirements.
In this scenario, textual requirements and use cases are often used for describing SPL

functional requirements (Alves et al. 2010). For this, works in literature (e.g. (Niu and
Easterbrook 2008; Oliveira et al. 2014)) adapted these artifacts in order to incorporate the
SPL variability. Finally, with regards to the textual description of use cases, the use case
template from Cockburn (2000) has inspired the creation of SPL use case templates (e.g.
the templates of Bertolino et al. (2003) and Gallina et al. (2007)), with specific elements to
deal with the variabilities and commonalities of an SPL.

3 Related work
In a search for secondary studies on variability modelling and requirements engineer-
ing, we found two Systematic Literature Reviews (SLR) (Kitchenham and Charters 2007)

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 4 of 29

on Variability (Chen et al. 2009; Galster et al. 2014) and two SLRs on requirements
engineering within SPL Engineering (Alves et al. 2010; Neiva 2009).
The SLR of Galster et al. (2014) summarized existing research related to variability

handling in software systems and proposed the classification for variability in different
dimensions. Chen et al. (2009) identified approaches for the Variability Management
in SPL and classified them with respect to historical background, the issues that moti-
vated their creation, variability models used, and their support for the different SPL
phases. Our Systematic Mapping also addresses the variability modelling, but with focus
on the specification of the variability in the user’s perspective through the textual use
cases.
Neiva (2009) and Alves et al. (2010) presented a Systematic Review of Requirements

Engineering (RE) within Software Product Line Engineering (SPLE). Neiva (2009) inves-
tigated which RE activities are adopted, which models and techniques are used, and how
the approaches for RE in SPL deal with variability. In the same scenario, Alves et al. (2010)
classified different SPL requirements engineering approaches in terms of tool support,
RE activities, and adoption strategies. The results of both these SLRs show that use cases
is one of the most used artifacts for describing SPL functional requirements, but they do
not explore the variability description in such artifacts. On the contrary, this systematic
mapping focuses on the variability description within textual use cases, highlighting the
differences among the existing SPL use case templates.
We also looked for work that compares requirements engineering approaches for SPL,

and, addressing this issue, we found four studies (Alferez et al. 2014; Asadi et al. 2012;
Blanes and Insfrãn 2012; Kuloor and Eberlein 2002). The difference among these studies
is in the applied evaluation criteria and in the type of approach selected.
Blanes and Insfran (2012) analyzed requirement engineering approaches that use

Model-Driven Development (MDD) techniques for SPL development. For this compari-
son, they used five criteria: SPL activity support, RE covered tasks,MDD strategy support,
the degree of automatic support with a given tool, and the type of validation of the pro-
posals. Asadi et al. (2012) presented feature-oriented requirements engineering methods
for an SPL and assessed them based on an evaluation framework with evaluation criteria
related to requirements engineering principles and processes, variability and common-
ality analysis, and tooling support. Kuloor and Eberlein (2002) described and compared
requirements engineering techniques used in existing SPL practices. This comparison
was made based on the SPL requirements modeling, specification, verification and man-
agement. Alferez et al. (2014) presented a metric-based comparative study of existing
scenario-based SPL requirements approaches in order to understand how they address
modularity, stability and expressiveness. The main contribution of our work, compared
to the previous four studies, is in the assessment of the comprehensibility issues provided
by the use case templates and the focus on an artifact (textual use cases) instead of the
requirements engineering approach.
We also identified some studies addressing the assessment of the understanding of the

requirements provided by the use cases in software development (Dahan et al. 2014;
Hadar et al. 2010; Jeyaraj and Sauter 2007; Mustafa 2010; Reinhartz-Berger and Sturm
2014). All of them assess the comprehensibility provided by a use cases model.
Hadar et al. (2010) presented an empirical study that compares the understanding of

the requirements model expressed in two requirements modeling methods (Use Cases

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 5 of 29

and Tropos). The goal of this study was also to estimate the time required to perform
simple analysis tasks using both methods. Dahan et al. (2014) conducted a controlled
experiment that compared the comprehension of two models of a system and the qual-
ity of models created for a certain system with both OO-DFD and the Use Case. Jeyayaj
and Sauter (2007) also compared these two modeling methods, but only from the point
of view of comprehension of diagrams. Mustafa 2010 presented an experiment that has
evaluated the impact of the use cases format on the understanding of the requirements.
This work has used subjects with different knowledge in use cases technique in order to
investigate whether subjects’ experiences play any role in the comprehension of use cases
models. Tiwari and Gupta (2013) conducted a controlled experiment to assess the useful-
ness of eight use case templates against a set of five judging criteria, namely completeness,
consistency, understandability, redundancy, and fault proneness. In spite of being inter-
esting empirical studies, none of them dealt with the SPL paradigm, addressed by the
experiment described in this paper.
Finally, Reinhartz-Berger and Sturm (2014) presented a controlled experiment where

they examined the comprehensibility of domain models specified in a UML-based SPL
Engineering method. In this experiment the volunteers were required to answer compre-
hension questions regarding a domain model specified in use cases, class, and sequence
diagrams. This is the only work found that, like the experiment described in this paper,
dealt with the comprehensibility of a use cases model in the SPL paradigm. However, in
contrast to their work, we do not focus on use cases diagrams. This work focuses on the
assessment of different textual use case templates and their impact on the comprehension
of the SPL use cases.

4 Review
We report the systematic mapping study in this section. First, we describe the method-
ology adopted, presenting the details of each phase. Then, we present the results and
discussion.

4.1 Methodology

The Systematic Mapping study is a type of secondary study that can complement
Systematic Literature Reviews. While a Systematic Review (SR) is a means of identify-
ing, evaluating and interpreting all available research relevant to a particular question
(Kitchenham and Charters 2007), a Systematic Mapping intends to provide an overview
of a research area (Petersen et al. 2008).
Other differences between the SR and the SM are (Kitchenham and Charters 2007;

Neto et al. 2011; Petersen et al. 2008): i) Mapping studies generally have broader research
questions driving them and often ask multiple research questions; ii) The search terms
for mapping studies will be less highly focused than for systematic reviews and are likely
to return a very large number of studies; and iii) SR aims at establishing the state of evi-
dence while the main focus of an SM is on classification and identification of publication
fora. Then, in spite of the fact that this study has a specific focus (textual use case tem-
plates) we chose the Systematic Mapping approach because the main goal of this study is
to identify and classify the different SPL use case templates.
We used the process defined by Neto et al. (2011), which is divided into three main

phases: Research Directives, Data Collection, and Results. In the first phase, Research

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 6 of 29

Directives, the protocol and the research questions are established. The protocol is a plan
that describes the conduct of a proposed SM study (Kitchenham and Charters 2007).
The second phase, Data Collection, comprises the execution of the Systematic Mapping,
during which the search for the primary studies is performed and the inclusion/exclusion
criteria are used in order to select relevant studies according to the research questions.
Finally, the third phase, Results, is responsible for reporting the study outcomes based on
a classification scheme. The final outcome of this process is a systematic map.

4.2 Research directives

In this section we present the mapping protocol. For additional details please refer to our
previous work (Santos et al. 2014).

4.2.1 Research questions and search string

The main purpose of this study is to map out existing templates for SPL use cases in the
textual description form. Then, the research questions used were:

• RQ1: Which are the templates for the textual use cases of an SPL?
• RQ2: How could SPL variability be modeled in textual use cases?
• RQ3: Which variability types can be modeled in textual use cases of an SPL?

In order to answer these research questions, we defined the following search string:
(“use case” or “use cases”) and (“product line” or “product lines” or “product family” or
“product families” or SPL). We highlight that we removed the keywords “software”, “tex-
tual” and “template” from the search string because in preliminary searches with these
keywords in the search string we lost important papers for our research goal.

4.2.2 Inclusion and exclusion criteria

For this mapping study, we defined just one inclusion criterion:

• (IC1) the study presents a template for textual use cases description of an SPL.

On the other hand, we defined four exclusion criteria:

• (EC1) the study is not written in English;
• (EC2) the study is just published as an abstract;
• (EC3) the study does not contain a template for textual use cases description with

focus on an SPL; and
• (EC4) Duplicate use case template. When the same template is presented in different

papers, only the paper that proposed the template was included. If this paper was not
found, we included the newest paper.

4.2.3 Sources

The search was applied to seven databases. These databases are listed in Table 1 and were
selected because we agree with (Morelli and Nakagawa 2011; Souza et al. 2013) that they
index the most important publications in Software Engineering.

4.3 Data collection

This mapping study aims to identify studies describing textual use case templates for Soft-
ware Product Lines. It was firstly conducted between January and March 2014 (Santos
et al. 2014 and then updated on February 2015 in order to include papers published in 2014.

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 7 of 29

Table 1 Electronic databases used in this SM study

Database URL Address

ACM Digital Library http://dl.acm.org,

Compendex http://www.engineeringvillage2.org

IEEExplorer http://ieeexplore.ieee.org

ISI Web of Knowledge http://www.isiknowledge.com

Science Direct http://www.sciencedirect.com

Scopus http://www.scopus.com

SpringerLink http://springerlink.com

In the search process, we considered the studies published until December 2014. Table 2
shows the number of papers, after performing each step of the study selection pro-
cess. This mapping study started with 2394 primary studies returned from the following
databases: ACM DL (711), IEEE Xplorer (31), ISI of Knowledge (51), Compendex (112),
Science Direct (491), Scopus (128) and SpringerLink (870).
From Step 1 we found a large number by our search criteria. We believe that this can

be attributed to the fact that we have used broad search terms. Furthermore, we do not
excluded duplicate papers in this step.
After removing duplicate studies, and reading title and abstract of all the 2394 papers

according to Step 2, the result was a set of 101 potentially relevant studies. In the third
step, we read the full paper and selected those which have a textual use case template for
an SPL with a focus on describing SPL variabilities within the use cases description. The
result was a set of 23 papers.
Finally, in the fourth step we removed the duplicate templates. Thus, from the four steps

of the study selection process, 12 studies were considered relevant and thus make up the
final set of included papers.

4.4 Results

In this section we describe the results of the systematic mapping study.

4.4.1 Classification scheme

In order to classify the included papers, two categories were defined according to the
research questions and the keywords identified in the papers:

Category 1: variability description This category shows how the use case template
describes the SPL variabilities. The keywords in this category are:

• Tags: The use case template uses tags (e.g. [Vo], [ALT]) to indicate the variation
points within the use cases. With the tags, use cases can also have a section where the
variations are defined;

Table 2 Study selection process

Step Action Papers

1 Search in the databases with the search string 2394

2 Reading title and abstract, removing of duplicate studies obtained by different databases
and applying the inclusion and exclusion criteria (EC1, EC3)

101

3 Reading full paper and applying the inclusion and exclusion criteria (EC1, EC2, EC3) 23

4 Removing duplicate templates based on the EC4 12

http://dl.acm.org
http://www.engineeringvillage2.org
http://ieeexplore.ieee.org
http://www.isiknowledge.com
http://www.sciencedirect.com
http://www.scopus.com
http://springerlink.com

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 8 of 29

• Alternative scenarios: The use case template describes the variations through
alternative scenarios within the use cases description;

• Specific section: The use case template describes all information about the variation
points in a specific section. In this section, the variation type, a brief description and
the use case steps that are affected by the variation are specified;

• Step identifier: The use case template uses the step identifier of the use case to
describe variants in use case scenarios;

• Advice use case: The use case template describes the variabilities as advice use cases.
The advice use cases capture crosscutting requirements and are defined in the same
form as normal use cases, but they may only have some of the use case sections. The
linking of advice use cases with affected base use cases is based on syntactical
matching of joinpoints and pointcut expressions.

Category 2: variability type supported With this category we wanted to know which
variability types the use case template is able to describe. The keywords in this category
are:

• Optional: The use case template supports the specification of optional steps;
• Mandatory alternative exactly 1: The use case template supports the specification

of mutually exclusive alternatives for one mandatory step;
• Mandatory alternative at least 1: The use case template supports the specification

of alternatives for one mandatory step out of which at least one must be selected;
• Optional alternative exactly 1: The use case template supports the specification of

mutually exclusive alternatives for one optional step;
• Optional alternative at least 1: The use case template supports the specification of

alternatives for one optional step out of which at least one must be selected.

Besides the two defined categories, we decided to use the category for classification of
research defined by Wieringa et al. (2006), named Research Type. This category reflects
the research approach used in the papers and is independent of a specific topic (Petersen
et al. 2008).

4.4.2 Outcomes

In this section we present the analysis and synthesis of the primary studies in considera-
tion of each research question.

Results related to RQ1 Table 3 presents the papers found at Step 03 and the included
papers based on the EC4.
With this mapping study, we found twelve use case templates for an SPL. As shown in

Table 4, the oldest template found by the mapping is dated 2003 and the newest template
is dated 2013. Thus, observing that we have found templates that are recent, the specifica-
tion of variability in textual use cases is still an interesting research topic. Moreover, most
of the templates were published in international conferences and one of the templates was
found in a book.
Bertolino and Gnesi (2003) propose a template called PLUC (Product Line Use Cases)

that allow variations to be described, by explicitly enclosing within the sections of the use
cases some tags that indicate the variable parts. In this template, there are three types of

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 9 of 29

Table 3 Papers from Step 03 and final included papers based on the EC4

Id Papers with the same UC template Included paper

1

Bertolino and Gnesi (2003)

Bertolino and Gnesi (2003)

Colanzi et al. (2013)

Assuncao et al. (2011)

Bertolino and Gnesi (2004)

Bertolino et al. (2006)

Fantechi et al. (2004)

Bonifacio et al. (2008)

Fantechi et al. (2004)

2 Kamsties et al. (2003) Kamsties et al. (2003)

3
Gomaa (2004)

Gomaa (2004)
Nakanishi et al. (2007)

4 Bragança and Machado (2005) Bragança and Machado (2005)

5

Eriksson et al. (2005)

Eriksson et al. (2005)
Eriksson et al. (2005)

Alferez et al. (2014)

Bonifacio et al. (2008)

6 Gallina and Guelfi (2007) Gallina and Guelfi (2007)

7 Choi et al. (2008) Choi et al. (2008)

8 Anthonysamy and Some (2008) Anthonysamy and Some (2008)

9 Nguyen (2009) Nguyen (2009)

10 Jirapanthong (2009) Jirapanthong (2009)

11
Bonifacio and Borba (2009)

Bonifacio and Borba (2009)
Alferez et al. (2014)

12
Oliveira et al. (2013)

Oliveira et al. (2013)
Oliveira et al. (2014)

Table 4 Included papers

Reference Publication Fora Year

Bertolino and Gnesi (2003) European Software Engineering Conference 2003

Kamsties et al. (2003) International Workshop on Software Product-Family
Engineering

2003

Gomaa (2004) Book 2004

Bragança and Machado (2005) International Workshop on Model-BAsed Methodologies
for PErvasive and Embedded Software

2005

Eriksson et al. (2005) International Conference on Software Product Lines 2005

Gallina and Guelfi (2007) International Working Conference on Requirements
Engineering: Foundation for Software Quality

2007

Choi et al. (2008) International Conference on Computer and Information
Technology

2008

Anthonysamy and Somé (2008) AOSD Workshop on Early Aspects 2008

Nguyen (2009) International Workshop on Modeling in
Software Engineering

2009

Jirapanthong (2009) International Conference on Advances in Information
Technology

2009

Bonifacio and Borba (2009) International Conference on Aspect-oriented Software
Development

2009

Oliveira et al. (2013) Brazilian Symposium on Software Components,
Architectures and Reuse

2013

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 10 of 29

tags: alternative, parametric, and optional. Furthermore, the final product is also iden-
tified within the use cases. This template was found in 8 papers from the Step 03 (see
Table 3). From these, the newest papers are focused on evaluating strategies for testing
software product lines (Colanzi et al. 2013) and on the test reuse of an SPL (Assuncao
et al. 2011). Both present a use case example with the template proposed by Bertolino and
Gnesi (2003).
Similar to the template of Bertolino and Gnesi (2003), Kamsties et al. (2003) present an

SPL use case template that uses tags to indicate a place in the use case where the variation
occurs. However, they do not describe in the textual description the kind of variation
(optional or alternative).
According to Gomaa (2004), fine-grained variation could be specified in the SPL use

cases with the following elements: name, type, line of the use case (the target of the vari-
ation), and description. Then, Gomaa (2004) proposed that these variations should be
described at the end of the SPL use cases. We also found this template in the work of
Nakanishi et al. (2007), which reports an experimental case study constructing an SPL
with the PLUS method (Gomaa 2004).
The use case template identified in the Bragança and Machado‘s paper (Bragança and

Machado 2005) specifies the variation points through OPT and ALT tags. Using these
tags, any text fragment of the textual use case descriptionmay be variant and this is explic-
itly marked by pairs of the XML-like tags <variant> and </variant>. An interesting feature
of this template is the presence of questions related to the variation points that are used
to guide the instantiation of the product use cases.
Eriksson et al. (2005) propose that use case scenarios of an SPL can be described

using an extended version of the tabular RUP SE Black Box flow of events notation
(IBM 2002). In this extended one, the step identifier of the flow is used to specify
variant behavior. Another distinguishing feature of this template is the use of local
(with $) and global (with @) variables. This template was found in 4 papers from the
Step 03 (see Table 3). From these, the newest paper (Alferez et al. (2014)) presents a
metric-based evaluation aimed at assessing quality attributes such as modularity, sta-
bility and expressiveness of SPL requirements approaches like the PLUSS (Eriksson
et al. 2005).
Gallina and Guelfi (2007) propose a Use Case Elicitation Template (UCET) that pro-

vides special fields to collect information concerning variabilities: a) selection category,
which specifies whether the use case is mandatory, optional or alternative; b) a description
of variation points, and c) fault variation description, used to describe the faults strongly
related to the variation points. This template was inspired from templates of Bertolino
and Gnesi (2003), Cockburn (2000) and Gomaa (2004).
Choi et al. (2008) propose a simpler tag notation than Bertolino and Gnesi (2003). In

the template of Choi et al., the tags are used only for marking variation points in use case
scenarios of SPL. Each tag is expanded in a section called “Variations” and is mapped to
the Orthogonal Variability Model (OVM).
Anthonysamy and Somé (2008) propose an aspect-oriented use cases modelling

approach to model product line systems that is supported by a tool called Use Case Editor
(UCEd). In this approach, the variabilities can be modeled by advice use cases that extend
the behavior of base use cases. These advice use cases are defined in the same way as
normal use cases, but they may only have some of the use case sections.

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 11 of 29

Nguyen (2009) extends Gomaa‘s template (Gomaa 2004) to specify non-functional
requirements. In this template, additional sections are used to specify performance,
usability, and security requirements. Each of them can have variation points just like other
functional steps of the use cases.
The template proposed by Jirapanthong (2009) describes the variations with tags. Fur-

thermore, in this template there is an attribute for specifying which domain of the product
line it is and another one that designates which product member the use case is specified
for.
Bonifacio and Borba (2009) propose an approach, Modelling Scenario Variability as

Crosscutting Mechanisms (MSVCM), to deal with the variability of scenarios as a com-
position of different artifacts: use cases model, feature model, product configuration, and
configuration knowledge. In this approach, the use cases model is composed of use cases
and aspectual use cases. An aspectual use case has a name and a list of advices that can
extend the behavior of existing scenarios. We also found this template in the work of
Alferez et al. (2014) which presents an assessment of the MSVCM approach in regards to
modularity, stability, and expressiveness.
Finally, the template presented by Oliveira et al. (2013) is an adaptation of Eriksson

et al.‘s template (Eriksson et al. 2005). However, unlike Eriksson et al.‘s template, Oliveira
et al. suggest that the features names should be clearly specified in the use case through
the element named “Associated feature” and that the variations can be related to alterna-
tive scenarios within the use case. In a recent paper, Oliveira et al. (2014) present a case
study with their approach.

Results related to RQ2 Table 5 presents the results for the category Variability Descrip-
tion, which is related to how the SPL variabilities could be modeled in textual use cases.
As described in Section 4.4.1, we identified five different template structures for SPL use
cases: Tags, Specific Section, Alternative Scenarios, Step Identifier and Advice use case.
In the following paragraphs we describe these structures and show examples of them in
the specification of the use case “Withdraw Money” (Erikssona et al. 2004). This use case
is composed by one optional variant, related to the use of the PIN for the user’s identifica-
tion, and two optional alternative variants, related with other two types of identification
(through fingerprint or voice sample).
We can see in Table 5 that theTags structure has the largest number of templates.When

tags (e.g. V1) are used, often in the template there is a section where the SPL variability
is described, as in the papers (Bertolino and Gnesi 2003; Kamsties et al. 2003; Gallina
and Guelfi 2007; Choi et al. 2008; Jirapanthong 2009). However, in the template found
in (Bragança and Machado 2005), the variability indicated by the tags is described in the
main scenario.

Table 5 Templates per variability description

Variability description Papers

Step Identifier (Eriksson et al. 2005)

Specific Section (Gomaa 2004; Nguyen 2009),

Alternative Scenarios (Oliveira et al. 2013)

Advice Use Case (Anthonysamy and Somé 2008; Bonifácio and Borba 2009),

Tags (Bertolino and Gnesi 2003; Bragança and Machado 2005; Choi et al. 2008;
Gallina and Guelfi 2007; Jirapanthong 2009; Kamsties et al. 2003)

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 12 of 29

Figure 1 presents the use case “WithdrawMoney” in the template found in the Bragança
and Machado work (Bragança and Machado 2005). The interesting about this template is
the use of questions (e.g. Is the identification done through the PIN? and Is there another
identification type?) related with the variabilities aiming to guide the instantiation of
the product use cases. In this example, the optional variant is described between the
tags <variant OPT> and </variant>. On the other hand, the alternative variants are
described through the tags <variant ALT> and </variant>.
The Specific Section is present in two templates (Gomaa 2004; Nguyen 2009) while the

Alternative Scenarios is used in one template (Oliveira et al. 2013). Both these template
structures describe the SPL variability in a use case without affecting the description of
the main use case scenario.
Figure 2 presents the use case “Withdraw Money” specified in the template proposed

by Gomaa (2004). In this template, we can observe the description of the variabilities
at the end of the use case. We highlight that Nguyen‘s template (Nguyen 2009) extends
Gomaa‘s template (Gomaa 2004) to specify non-functional requirements. Then, in both
templates the specification of the variabilities is made with the name of the variability,
type of requirement (optional or alternative), line number of the use case affected by the
variability, and the variability description.

Fig. 1 Example of use case with tags

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 13 of 29

Fig. 2 Example of use case with Specific Section

The template of Oliveira et al. (2013) describes the variabilities as alternative scenarios.
Figure 3 shows the use case “Withdraw Money” described in this template, where the
variabilities were specified with the following associated features: “PIN”, “Fingerprint”
and “Voice”.
The Step Identifier structure used by Eriksson et al. (2005) is interesting because it uses

the step identifier to specify the alternative and optional steps. In this template, for exam-
ple, several steps identified with the same number identify a number of alternatives for
one mandatory step (see step 3 in Fig. 4) while a number step identifier within parenthesis
identifies an optional step in the scenario (see steps 2 and 3 in Fig. 4).
Finally, the Advice Use Case structure is present in two templates (Anthonysamy and

Somé 2008; Bonifácio and Borba 2009). Figure 5 shows the “Withdraw Money” specified
in this template. In this case, we have one base use case named “Withdraw Money from
the ATM” specifying the common behavior and three advice use cases that extends the
behavior of the base use case: “Use PIN for user identification” that introduces an optional
behavior before the step P2 ; “Use fingerprint for user identification” and “Use voice sample
for user identification” that introduce an optional alternative behavior also before the step
P2.

Results related to RQ3 Table 6 presents the results for the category Variability Type
Supported, regarding which variability types can be modeled in textual use cases of an
SPL.
Five of the templates were not classified in this category because they do not specify

explicitly the type of variability in the use cases description. They are: i) Kamties et al.‘s

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 14 of 29

Fig. 3 Example of use case with Alternative Scenarios

template (Kamsties et al. 2003), which does not explicitly specify the type of variability;
ii) Choi et al.‘s template (Choi et al. 2008), which describes the variability type with the
Orthogonal VariabilityModel; and iii) the templates of Oliveira et al. (2013), Bonifacio and
Borba (2009), and Anthonysamy and Somé (2008), where the variability type is specified
by the feature model.

Fig. 4 Example of use case with Step Identifier (Adapted from (Erikssona et al. 2004))

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 15 of 29

Fig. 5 Example of use case with Advice Use Case

Regarding the seven other templates, the specification of Optional and Mandatory
Alternative Exactly 1 is taken into account in all of them. The templates of Gomaa (2004)
and Nyugun (2009) also support the specification of Optional Alternative Exactly 1, but
only the template of Eriksson et al. (2005) supports all of the five variability types.

4.4.3 Systematic map

We merged the categories Research Type and Variability Description in a systematic map
(Fig. 6) aiming to generate a quick overview of the evidence gathered from this SM. The
category Research Type was proposed by Wieringa et al. and has six keywords (Wieringa
et al. 2006): Validation Research, Evaluation Research, Solution Proposal, Opinion Paper,
Experience Paper and Philosophical Paper.

Table 6 Templates per variability type supported

Variability type Papers

Optional (Bertolino and Gnesi 2003; Bragança and Machado 2005;
Eriksson et al. 2005; Gallina and Guelfi 2007; Gomaa 2004;
Jirapanthong 2009; Nguyen 2009)

Optional alternative at least 1 (Eriksson et al. 2005)

Optional alternative exactly 1 (Eriksson et al. 2005; Gomaa 2004; Nguyen 2009)

Mandatory alternative at least 1 (Eriksson et al. 2005)

Mandatory alternative exactly 1 (Bertolino and Gnesi 2003; Bragança and Machado 2005;
Eriksson et al. 2005; Gallina and Guelfi 2007; Gomaa 2004;
Jirapanthong 2009; Nguyen 2009)

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 16 of 29

Fig. 6 The systematic map in the form of a bubble plot

In regards to the twelve included papers, we realized that Validation and Evaluation
Research are weakly addressed, because we found only one paper (9%) in the Evalua-
tion Research category and two papers (18%) in the Validation Research category. The
paper of Eriksson et al. (2005) was classified as Evaluation Research, because it presents
an industrial case study. The paper of Oliveira et al. (2013) was classified as Validation
Research, because it presents hypotheses and statistical tests. The work of Bonifacio and
Borba (2009) was also classified as Validation Research, because they present four case
studies comparing their proposal with the PLUS approach (Eriksson et al. 2005).
On the other hand, the Solution Proposal, which is a non-empirical research category,

is the topic with more entries (9 papers - 73%). Within this category, six studies (Bertolino
and Gnesi 2003; Bragança and Machado 2005; Choi et al. 2008; Gallina and Guelfi 2007;
Jirapanthong 2009; Kamsties et al. 2003) present the Tags structure to deal with the SPL
variabilities, while only two papers (Nguyen 2009; Gomaa 2004) have used the Specific
Section structure and one (Anthonysamy and Somé 2008) has used Advice Use Case.
No papers were classified as Opinion Paper, Experience Paper or Philosophical Paper.

However, this was expected since we were looking for works with a concrete specification
artifact.
Through this analysis we note that regarding the proposal of a use case template, most

of the papers found propose a use case template only with examples from an academic or
fictitious SPL. In the meantime, it is possible to find empirical work with the templates
identified in this SM, such as the ones from Alferez et al. (2014), Nakanishi et al. (2007)
and Oliveira et al. (2014).

4.5 Discussion

At first, it is important to highlight that this mapping study focused on how to describe
SPL variability within the use case description. Therefore, approaches to describe variabil-
ity based on include/extend relationships (e.g. Bragança and Machado (2006)) or activity
diagrams (e.g. Yu et al. (2014)), for example, were not taken into account in this study.
Moreover, works not using the use cases for the capture of SPL variabilities were not
considered (e.g. Zhou et al. (2014)).

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 17 of 29

We also highlight that, in an SM, the articles are not evaluated regarding their quality,
as the main goal is not to establish the state of evidence (Petersen et al. 2008). Therefore,
no quality criteria were defined for this mapping study.
Regarding the mapping results, six studies (Bertolino and Gnesi 2003; Bragança and

Machado 2005; Choi et al. 2008; Gallina and Guelfi 2007; Jirapanthong 2009; Kamsties
et al. 2003) report a template that uses Tags to specify variability in the textual use case.
However, when we compared with the first tag-based template (Bertolino and Gnesi
2003), the newest proposals (Choi et al. 2008; Jirapanthong 2009) have a simpler tag sys-
tem. In the Choi et al. template (Choi et al. 2008), for example, the tagged use case scenario
is mapped to the OVM and so, the tag does not have to specify the variability type. In this
scenario, Bonifacio and Borba (2008) show that the use of the PLUC (Bertolino and Gnesi
2003) could result in maintainability issues because introducing a new product variant
might require changes in several artifacts. Then, the maintainability could be a problem
with the use of tags for specifying variabilities within the use cases descriptions.
Oliveira et al. (2013) use the Alternative Scenarios structure in the use case template to

describe the variabilities. In a recent work, Oliveira et al. (2014) evaluated their require-
ments engineering approach, the Feature-Driven Requirements Engineering approach
(FeDRE), through a case study for developing an SPL of mobile applications for emer-
gency notifications. The results showed that the approach is easy to use and useful for
specifying the functional requirements in this particular SPL.
The use of the Specific Section structure to deal with the variabilities is useful for

describing variabilities on functional requirements, like in the template of Gomma (2004),
and non-functional requirements, as used in the template of Nguyen (2009). However, the
maintainability problems could be present in these templates because, in the variability
description, there is the identification of the line number of the main scenario (the target
of the variation). In that way, even a small change in the common use case scenario (e.g. a
new mandatory step) could result in changes in the variability description.
In the template of Eriksson et al. (2005), the Step Identifier structure is used to describe

the variabilities. This template seems to allow the quick identification of the variabilities
while reading the use case scenarios, but no evidence related to this was found in the SM.
Bonifacio and Borba (2009) and Anthonysamy and Somé (2008) present the use of the

Advice Use Cases structure for the separation between variability management and use
case specifications. Furthermore, Bonifacio and Borba (2009) applied their approach in
different case studies where they achieved a better feature modularity and scenario cohe-
sion. Then, the use of aspect-oriented use cases modelling has good benefits when we
have homogeneous crosscutting features and several variants for a scenario (Bonifácio
and Borba 2009; Bonifácio et al. 2008).
Although some templates (Choi et al. 2008; Gallina and Guelfi 2007; Nguyen 2009;

Oliveira et al. 2013) have been proposed based on previous ones, these studies do not
empirically compare their proposed templates with previously defined ones. An excep-
tion is the template of Bonifacio and Borba. These authors first report the benefits of the
separation of concerns by comparing their approach with other techniques for handling
scenario variability management (Bonifácio et al. 2008), and after that, they describe an
approach for use case scenario variability management (Bonifácio and Borba 2009).
On the other hand, there is some empirical work with the templates identified in this

SM (Alferez et al. 2014; Nakanishi et al. 2007; Oliveira et al. 2014). The work of Alferez

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 18 of 29

et al. (2014), for example, evaluated the support of MSVCM (Bonifácio and Borba 2009),
PLUSS (Eriksson et al. 2005) and two other approaches to modularity, expressiveness,
and stability through the specification and evolution of a car crash crisis management
system SPL. However, considering the included studies, we did not find any controlled
experiment comparing the use case template structures in terms of perceived ease of use
or comprehensibility.
Therefore, based on the mapping study results, we identify the following directions for

future research: (i) Controlled experiments to compare the SPL use case templates; (ii)
Application of the templates with real SPL, since most of the papers found propose a use
case template only with examples from an academic or fictitious SPL; (iii) Development
of other support tools, because just a few of the found works present a support tool; and
(iv) Proposal of an SPL use case template to support different variability types and even
more complex variations (e.g. alternative steps with cardinality).
Finally, two main threats to the validity of this study are: i) potential bias in the papers’

selection, as this was performed by one reviewer, who is the primary author; and ii) some
relevant use case templates may not be included.
In order to mitigate the first threat, the other two authors carefully reviewed the pro-

tocol and monitored the SM process and the analysis of the results. Furthermore, these
authors performed data extraction on a sample of the primary studies and their results
were cross-checked with those of the first author. Thus, we believe that the SM process
was rigorously followed and that the results obtained are valid.
The main reasons for a study which contains a use case template for SPL has not been

selected are: i) the publisher sources of the study are not indexed by the databases used in
this mapping; ii) the study was not hit by the search string; and iii) the study was written
up in a language other than English.
In order to mitigate the second threat, we used seven important electronic databases in

Software Engineering according to (Morelli and Nakagawa 2011; Souza et al. 2013), which
are frequently used in many systematic reviews, and the search string considered syn-
onyms and acronyms. Regarding the study language, the choice of the English language is
justified to make this mapping study replicable and feasible.

5 Comparison of the SPL use case template structures
In this section we present the controlled experiment conducted with the template struc-
tures found in the literature for textual specification of SPL use cases. The goal of this
experimental study was to evaluate the effect of the template structure on the compre-
hensibility of SPL use cases. This evaluation was made with respect to the effort from the
researcher’s viewpoint.

5.1 Selected templates for the experiment

The execution of an experimental study with all twelve templates found would be costly,
since the use of each template requires a lot of training and is time consuming. Thus, we
first pick one template per each keyword of the Variability Description category.
With the Tags structure, we have found six templates (Bertolino and Gnesi 2003;

Bragança and Machado 2005; Choi et al. 2008; Gallina and Guelfi 2007; Jirapanthong
2009; Kamsties et al. 2003) described in Section 4.4.2. Then, two selection criteria were
established to define which template would be used in the experiment: a) the template

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 19 of 29

should not model the final product in the specification, since this reduces the maintain-
ability; and b) the template should describe explicitly the variability type, because this
allows the understanding of the use case without other models. As a result, the templates
of Bertolino et al. (2003) and Jirapanthong (2009) were excluded due to the first criterion;
and the templates proposed by Kamsties et al. (2003) and Choi et al. (2008) were excluded
due to the second criterion. Then, from the templates of Gallina and Guelfi (2007), and
Bragança and Machado (2005) we chose the last one, because it has questions associated
with the variations points and we wanted to verify their impact on the SPL use cases’
compressibility.
Using the Specific Section structure, we have found only two templates (Gomaa 2004;

Nguyen 2009). As Nguyen‘s template (Nguyen 2009) is based on Gomaa‘s template
(Gomaa 2004), we chose the template from Gomaa. Furthermore, the templates from
Oliveira et al. (2013) and Eriksson et al. (2005) were selected to the experiment because
they are unique with their structures (Alternative Scenario and Step Identifer).
From the templates with the Advice Use Case structure, we selected the template from

Bonifacio and Borba (2009), because this is the newest with this kind of structure.
Finally, we decided to exclude the template of Oliveira et al. (2013) from this con-

trolled experiment, because the use of the Alternative Scenarios structure is similar to
common use case structures, since the variations are described just like alternative sce-
narios. Therefore, the controlled experiment was conducted with four use case templates
representing four different structures to describe SPL variabilities in a use case.

5.1.1 Hypotheses, variables, andmetrics

The overall goal of this investigation was to evaluate, with respect to effort, from the point
of view of the researcher, in the context of Computer Science students and developers, the
effect of the use case templates structures on the SPL use cases’ comprehensibility. The
SPL use cases’ comprehensibility wasmeasured based on the subjects’ efficiency in under-
standing the SPL use cases used and performing the comprehension tasks. Therefore,
aiming to achieve the goal, the experimental study was designed to answer the following
research questions:

• ERQ1: Which of the evaluated template structures favors the SPL use cases’
comprehensibility?

• ERQ2: Which of the evaluated template structures requires less time to understand a
use case?

These research questions were then translated into the following hypotheses:

• H0 accuracy: there is no statistically significant difference in the SPL use cases’
comprehensibility using the evaluated template structures. H1 accuracy: there is a
statistically significant difference in the SPL use cases’ comprehensibility using the
evaluated template structures;

• H0 time: there is no statistically significant difference in terms of time required to
understand the use cases’ behavior using the evaluated template structures. H1 time:
there is a statistically significant difference in terms of time required to understand
the use cases’ behavior using the evaluated template structures;

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 20 of 29

The independent variables (representing the inputs or causes) of the experimental study
were the template of textual use case description, the use cases’ examples, and the ques-
tionnaires. The use case templates used in this experiment were: i) Bragança andMachado
(Tags structure), ii) Eriksson et al. (Step Identifier structure), iii) Gomaa (Specific Section
structure), and iv) Bonifácio and Borba (Advice Use Case structure).
The dependent variables (representing the output or effect) were the accuracy and time

spent with respect to comprehension tests used to measure the comprehensibility pro-
vided by the use case template structures. The accuracy was chosen as the measure of
comprehension because we believe that the volunteers could only answer the questions
of the comprehension test correctly if they understand the SPL use cases being evaluated.
On the other hand, the time taken was collected in order to assess the effort related to the
use cases’ understanding.
The comprehension tests were made in order to evaluate the comprehension related to

each use case considered in the experimental study (in the same way as was done in
(Mustafa 2010)). Thus, for each use case of the experimental study, there was a
comprehension test that consisted of two questions about the variations and one
question related to the use case behavior. The goal of this last question (the final
question) was to check if the participant had understood the use case. An example of this
question is below:

“Before selecting the amount of money, the user must:
a) at least enter the PIN
b) at least insert the chip card in the ATM
c) at least enter the fingerprint OR a sample voice
d) at least enter the PIN, and fingerprint or a voice sample
e) all of the above are incorrect”

This question presented above is related to the use case “Withdraw Money” shown in
Fig. 4. As we can see in this figure, steps 2 and 3 are optional ones. In this way, these
steps can be executed or not. As a result, the correct answer to the question is the letter
b, which refers to a step mandatory of the use case (see step 1 in the Fig. 4).
The final question of the comprehension test was used to validate the subject’s task.

Then, in order to evaluate the accuracy, we analyzed the participants’ answers for the
two first questions of the comprehension test, which asks the volunteer to describe the
alternative and optional steps of the task use case.
The variable time spent was measured by collecting the time spent in minutes to answer

the comprehension test in each task. For this, the participants registered the initial and
final time for each comprehension task.

5.2 Experimental study design and subjects

Forty eight (48) volunteers participated in the study. Twenty one were undergraduate
Computer Science students, 20 were graduate students (16 MSc and 4 PhD) in Computer
Science, and seven were developers working at GREat - Group of Networking, Software
and Systems Engineering (GREat 2015). The students were associated to four universities
in Brazil.

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 21 of 29

Fig. 7 The experimental study activities

The experiment was conducted through of the following activities (see Fig. 7):

1. The first activity in the study was related to answering a pre-experiment
questionnaire. This questionnaire was applied to characterize all the participants as
to their previous knowledge in the treatments of the study. Only three of the 20
undergraduate students had never studied textual use cases descriptions. Nine
undergraduate students had never studied SPL. Only two graduate students had
never worked with textual use case descriptions while eight graduate students had
never studied SPL. All the developers had used textual use cases descriptions
professionally, but three of them had never studied SPL. Therefore, we did not find
a significant difference among levels of previous knowledge related to the
participants that justified a special grouping. However, we performed the analysis
of the collected data by splitting the groups according to their academic
background in order to discover additional behavior related to their experience in
software development.

2. In order to minimize the effects of the lack of knowledge on the experimental study
factors, a training session was conducted with all the participants about basic
concepts related to SPL and use cases, as well as about the use case template
structures used in the experiment. In this training session, we applied a task similar
to the comprehension tasks used in the experiment, but we did not assess their
results.

3. After the training, the subjects executed the comprehension tasks (Task 01, 02, 03
and 04). With regards to the use cases used in the experiment, we selected the
following: i) Keep Velocity (John and Muthig 2002); ii) Cook Food (Gomaa 2004);
iii) Withdraw Money (Erikssona et al. 2004); and iv) Proceed to purchase
(Bonifácio and Borba 2009)). The order of these use cases in the tasks was fixed, as
shown in Table 7. Furthermore, the choice of which structure each volunteer
would use in each task was made randomly. For this, the authors have described
the four use cases in each template selected for the experiment. During the
execution of each task, the subjects were asked to answer the comprehension test
about the use case of the task.

4. Finally, the subjects were asked to answer a post-experiment questionnaire,
containing, among other things, the most useful structure from their point of view.

Table 7 Use cases used in the experiment’s tasks

Task Name Source

Task 1 Cook Food (Gomaa 2004)

Task 2 Withdraw Money (Eriksson et al. 2005)

Task 3 Keep Velocity (John and Muthig 2002)

Task 4 Proceed to purchase (Bonifácio and Borba 2009)

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 22 of 29

All the experiment instruments (questionnaires, comprehension tests, and use cases)
are available at (Santos IS 2015).

5.3 Results and data analysis

Table 8 presents a summary of the collected data. The study started with 48 subjects;
however, some of the subjects’ tasks were not approved, since the final question of the
comprehension test was not answered correctly.
The final question was associated with an important question about the use case under-

standing. A wrong answer in this question signaled a serious error in the use of the
templates. Due to this fact, there are only 134 executions able to be evaluated, since 58
executions were not approved. The result analysis was then made from all cases with a
correct answer to the final question.
In order to analyze the results, we have applied several tests using the SPSS tool (IBM

2015).We applied the Kolmogorov-Smirnov test (Hollander andWolfe 1999;Wohlin et al.
2000) to assess if it is reasonable to assume that both data sets come from a normal pop-
ulation. We have split the data set into two groups, since there are several participants
who did not answer correctly the final question, avoiding the use of their data in these
analyses. The results for the time and accuracy variables are given in the Table 9 (for
the group with the final question correct). Note that the p-values for the Kolmogorov-
Smirnov tests are near 0.000 (in the row “Asymp. Sig.”). This implies that the data set
is not normal because the p-value was smaller than the significance level (alpha) 0.05.
Large significance values (>0.05) indicate that the observed distribution corresponds to
the theoretical distribution. In this case, the significance value for time and accuracy do
not exceed 0.05.

Table 8 Summary of the experimental study

Level Structure Samples (#) Avg Time (m) Accuracy (%)

Undergraduate student

Advice Use Case 10 8.20 50.00

Step Identifier 9 5.55 88.88

Specific Section 21 6.04 73.80

Tags 15 7.13 53.33

SubTotal 55 6.65 66.36

Graduate student

Advice Use Case 12 8.41 50.00

Step Identifier 22 4.50 95.45

Specific Section 15 5.40 96.67

Tags 7 7.71 85.71

SubTotal 56 5.98 84.82

Developers

Advice Use Case 1 6.00 50.00

Step Identifier 8 4.50 100.00

Specific Section 5 5.20 70.00

Tags 9 5.00 100.00

SubTotal 23 4.91 91.30

Total

Advice Use Case 23 8.21 50.00

Step Identifier 39 4.74 94.87

Specific Section 41 5.70 81.70

Tags 31 6.64 74.19

SubTotal 134 6.07 78.35

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 23 of 29

Table 9 Data set normality test

Description Time Accuracy

Kolmogorov-Smirnov Z 1.833 5.004

Asymp. Sig (2 tailed) 0.002 0.000

The test indicated that the data set did not follow a normal distribution, so, it was
necessary to use non-parametric tests for hypothesis testing. We have used the Kruskal
Wallis test (Hollander and Wolfe 1999; Wohlin et al. 2000), a non-parametric method,
for testing whether samples originate from the same distribution (an alternative for one-
way ANOVA). The test indicated that the time spent and the accuracy of the four groups
(related to the four templates) had statistically significant differences. Thus, with this
result the hypothesis H0 accuracy and H0 time can be rejected.
Once it was detected that there were differences in the time and accuracy associated

with the templates’ use, an analysis was made of the data crossing template by tem-
plate, trying to identify the differences. In this case, we have used the MannWhitney
test (Wohlin et al. 2000) for hypothesis testing. It is a non-parametric test of the null
hypothesis and has greater efficiency than the t-test on non-normal distributions.
Table 10 presents the results of the hypothesis testing performed in order to compare

the results related to time to complete the experiment tasks and the accuracy of the task
execution. The values present in this table are the asymptotical significance of the com-
parison between templates, using the Mann-Whitney test. Values below 0.05 indicate a
statistically significant difference between the results.
The results related to the use of the Advice Use Case structure have shown the worst

results for both accuracy and time to perform the tasks. The time spent using this struc-
ture is statistically higher than using other structures. The accuracy is statistically lower
than the accuracy related to the use of other structures (values smaller than 0.05 in
Table 10). Besides that, this structure was selected as preferred by only 3% of the vol-
unteers according to the post-experiment questionnaire (considering only the 134 valid
executions with the final question correct).
The use of both Specific Section and Tags structures have shown results statistically

equal to each other, both in time to perform tasks, and the accuracy of the result. The
accuracy from the use of these structures indicated a statistically significant difference
(better) when compared to the Advice Use Case structure. Considering only the valid
executions, the Specific Section structure had a preference of 29.1% of the experiment
volunteers and the Tags structure had a preference of 21.6%.
The use of the Step Identifier structure has shown to have the best results in the exper-

iment. The time to perform the tasks was lower and it was still possible to register a
statistically greater accuracy result than by using the other structures (values smaller than

Table 10 Comparison among the use case template structures

Template
Advice use case Step Identifier Specific section Tags

Time Accuracy Time Accuracy Time Accuracy Time Accuracy

Advice Use Case - - 0.000 0.000 0.001 0.001 0.046 0.015

Step Identifier 0.000 0.000 - - 0.019 0.012 0.024 0.008

Specific Section 0.001 0.001 0.019 0.012 - - 0.532 0.618

Tags 0.046 0.015 0.024 0.008 0.532 0.618 - -

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 24 of 29

0.05 in Table 10). In terms of participants’ preference, it was also the favorite, as indicated
by 46.3% of volunteers. Thus, the Step Identifier structure, besides being the one with the
best results in terms of time and accuracy, was also the favorite among the volunteers.

5.3.1 Answering the experiment research questions

After the study execution it was possible to answer the proposed experiment research
questions.

• ERQ1: Which of the evaluated template structures favors the SPL use cases’
comprehensibility? Answer: The Tags structure, represented by the template of
Eriksson et al., favors the understanding of the use cases. The subjects using this
template structure had better results in terms of accuracy;

• ERQ2: Which of the evaluated template structures requires less time to understand a
use case? Answer: The Tags structure, represented by the template of Eriksson et al.,
requires less time to understand a use case. The subjects using this template structure
had better results in terms of time spent.

5.4 Discussion

With the performed experiment we observed which characteristics of each use case tem-
plate structure impact on the SPL use cases’ comprehensibility. Subjects who selected the
Step Identifier structure as the best structure, for example, reported that it has a simple
description and an objective, clean, organized, and compact structure. These character-
istics make it easy and intuitive to identify whether the use case steps were mandatory,
optional, or alternative.
On the other hand, the disapproval related to the Advice Use Cases structure may be

justified due to the separation between the main flow and its variation without an explicit
definition of the variation type, making it difficult to understand if the variation is optional
or alternative. However, it is important to note that, for this experiment, we did not use
the feature model in the tasks. So, it is possible that, with the feature model, this structure
had better results, because the approach of Bonifacio and Borba (2009) is defined as a
composition of different artifacts: use cases model, feature model, product configuration,
and configuration knowledge. Furthermore, the examples used in the experiment have
a low level of crosscutting features and this may have affected the results related to this
structure, since the main advantage of this structure is in specifying crosscutting features.
With respect to the Specific Section structure, some volunteers said that this structure

eased the identification of alternative and optional features by presenting all the variations
described at the end of the use case.
Finally, concerning the Tags structure, some volunteers enjoyed its sequential struc-

ture placing the variations with tags within the main flow of the use case. In general, the
questions in the use cases associated to the variation points also improved the use cases’
understanding.
In regards to the validity of the results, we discuss in the next paragraphs the internal

and external validity.

Internal validity The experiment design was planned to minimize the effects of the
threats to internal validity. We planned to minimize the effect of instrumentation by per-
forming measures by a single person during the experiment. The variable time spent was

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 25 of 29

measured based on the initial and final time registered by the participants, which could
be a threat to the validity. However, we highlight that we monitored the volunteers dur-
ing all the experiment in order to guarantee the concreteness of the registered time. The
participants were also monitored through log-sheets of their daily performances and they
were allowed to use self-reporting. This gave us a chance to observe any effects due to
History and Maturation.
As mentioned before, we used questions to evaluate the correct understanding of the

use case. The final question was used to cut off the executions that had low quality. In
order to avoid threats related to the use of a single group, the four treatments (use case
template structures) were used for all the subjects. The order of template used was totally
random.We did this to avoid the compensatory equalization of treatments, compensatory
rivalry, and resentful demoralization (Wohlin et al. 2000).

External validity With respect to the external validity, the use of students as subjects is
a threat. The reason for using students in our study was the availability sampling tech-
nique. However, we agree with Ferrari et al. (2010) and Dahan et al. (2014) that the use of
students should not diminish the results of a controlled experiment, as important results
have been found in other Software Engineering studies when student-based studies have
been conducted. Furthermore, the study was executed with the presence of 41 students
(undergraduate and graduate) and 7 developers. Therefore, we believe that our sample
was representative.
The four use cases used in the study are similar in terms of complexity and size. All

the use cases are small, since a larger example would demand effort incompatible with
the time available for the study. Thus, the four use cases of this experiment may not be
representative in terms of size and complexity, but we agree with Dahan et al. (2014)
that this limitation is true for almost all controlled experiments conducted in the area of
software engineering. In addition, we expect the same results for bigger use cases. Maybe,
the difference among the two approaches that got statistically equals results could change,
showing that one approach is better than other in this context.

6 Conclusions
In Software Product Line development, the requirements engineering activity needs to
cope with common and variable requirements for the whole set of products in the fam-
ily. For this purpose, there are several use case templates available in the literature to
describe the functional requirements of an SPL. However, to the best of our knowledge,
no efforts have been made to collect and summarize these existing templates. Further-
more, the work proposing an SPL use case template often does not empirically compare
the proposed template with other templates.
In this scenario, the contributions of this paper are: i) offer a summary of existing use

case templates as a result of a systematic mapping study with a focus on how to describe
SPL variability in textual use cases; and ii) describe the results of a controlled experiment
with four SPL use case template structures.
By means of this mapping it was possible to identify twelve textual use case templates

that describe SPL variability and five different template structures for describing SPL
variability in textual use cases: i) using tags; ii) with the step identifier of the use cases;

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 26 of 29

iii) describing the variability in a specific section of the textual use case; iv) through
alternative scenarios; and v) with advice use cases.
We also identified with this SM, the following interesting directions for future research:

(i) controlled experiments to compare the SPL use case templates; (ii) application of the
templates with real SPLs; (iii) development of more support tools; and (iv) proposal of
SPL use case templates to support more complex variations (e.g. alternative steps with
cardinality).
The goal of the controlled experiment was to evaluate the SPL use cases’ comprehensi-

bility provided by the template structures. As a result, evidence collected shows that the
description of commonalities together with variabilities makes the understanding of use
cases more clear and the description of all variations at the end of the use case promotes
a quick identification of variations.
With regard to the template structures evaluated in this experiment, the Step Identifier

structure, where the variability is described in the step identifiers of the use case through
some conventions (e.g. two steps identified with the same number are alternative steps),
had the best results. With this structure the volunteers spent less time on the tasks and
achieved a greater accuracy than by using other structures. This was also the preferred
structure according to the results of the post-experiment questionnaire.
Moreover, the description of the variabilities at the end of the use case in the Spe-

cific Section structure and the use of questions in the structure presented by Bragança
and Machado (Tags structure) were also identified as important characteristics to the
understanding of the SPL use case.
Therefore, the results of the systematic mapping study could be interesting to

researchers and practitioners who would like to propose a new SPL use case template or
to investigate which template is better. On the other hand, the experiment results pre-
sented in this paper can provide a basis for other efforts to compare use case templates or
to propose new use case template structures based on a controlled experiment.
Since one limitation of the conducted controlled experiment was the size of the use

case descriptions, which has just two or three variations, we believe that an interest-
ing future work is the replication of this experiment with more complex use cases. Also,
it would be interesting to apply the other SPL use case templates and to use them in
theindustry.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ISS carried out the systematic mapping study, and identified the use case templates in the existing work. All authors
analyzed the results of the systematic mapping study. PASN and ISS defined the experiment design. ISS conducted the
experiment with the volunteers. PASN conducted the result analysis and the hypothesis testing of the experiment. All
authors read and approved the final manuscript.

Acknowledgements
This work is a partial result of the UbiStructure project supported by CNPq (MCT/CNPq 14/2011 - Universal) under grant
number 481417/2011-7 and the Maximum project supported by FUNCAP (FAPs/INRIA/INS2i-CNRS 11/2011).

Author details
1Federal University of Ceara, Department of Computer Science, Fortaleza-CE, Brazil. 2Federal University of Piaui,
Department of Computer Science, Teresina-PI, Brazil.

Received: 6 December 2014 Accepted: 11 May 2015

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 27 of 29

References
Alves V, Niu N, Alves C, Valença G (2010) Requirements engineering for software product lines: A systematic literature

review. Inf Softw Technol 52:806–820
Alferez M, Bonifãcio R, Teixeira L, Accioly P, Kulesza U, Moreira A, Araújo J, Borba P (2014) Evaluating scenario-based spl

requirements approaches: the case for modularity, stability and expressiveness. Requir Eng J 19:355–376
Anthonysamy P, Somé S (2008) Aspect-oriented use case modeling for software product lines. In: Proceedings of the

2008 AOSD Workshop on Early Aspects. ACM, New York, NY, USA. pp 5–158
Asadi M, Bagheri E, Mohabbati B, Gasevic D (2012) Requirements engineering in feature oriented software product lines:

an initial analytical study. In: Proceedings of the 16th International Software Product Line Conference. ACM, New
York, NY, USA. pp 36–44

Assuncao WKG, Trindade DFG, Colanzi TE, Vergilio SR (2011) Evaluating test reuse of a software product line oriented
strategy. In: Proceedings of the 12th Latin American Test Workshop (LATW). IEEE Computer Society, Washington, DC,
USA

Azevedo S, Machado RJ, Bragança A, Ribeiro H (2012) On the refinement of use case models with variability support.
Innov Syst Softw Eng 8:51–64

Bertolino A, Gnesi S (2003) Use case-based testing of product lines. In: Proceedings of the 9th European Software
Engineering Conference. ACM, New York, NY, USA. pp 355–358

Bertolino A, Gnesi S (2004) Pluto: A test methodology for product families. Lect Notes Comput Sci Volume 3014:181–197
Bertolino A, Fantechi A, Gnesi S, Lami G (2006). In: Käkölä T, Duenas JC (eds). Software Product Lines Research Issues in

Engineering and Management. Springer, Brazil. Chap. 11 - Product Line Use Cases: Scenario - Based Specification and
Testing of Requirements

Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later: A literature review. Inf
Syst 35(6):615–636

Blanes D, Insfrãn E (2012) A comparative study on model-driven requirements engineering for software product lines.
Revista de Sistemas e Computação (RSC Journal) 2:3–13

Bonifácio R, Borba P (2009) Modeling scenario variability as crosscutting mechanisms. In: Proceedings of the 8th ACM
International Conference on Aspect-oriented Software Development. ACM, New York, NY, USA. pp 125–136

Bragança A, Machado RJ (2005) Deriving software product line‘s architectual requirements from use cases: an
experimental approach. In: Proceedings of the 2nd International Workshop on Model-BAsed Methodologies for
PErvasive and Embedded Software. Turku Centre for Computer Science, Turku, Finland

Bragança A, Machado RJ (2006) Extending uml 2.0 metamodel for complementary usages of the <<extend>>

relationship within use case variability specification. In: Proceedings of the 10th International on Software Product
Line Conference. IEEE Computer Society, Washington, USA. pp 123–130

Bonifácio R, Borba P, Soares S (2008) On the benefits of scenario variability as crosscutting. In: Proceedings of the 2008
AOSD Workshop on Early Aspects. ACM, New York, NY, USA. pp 6–168

Cheng BHC, Atlee JM (2007) Research directions in requirements engineering. In: Proceedings of the Future of Software
Engineering (FOSE ’07). IEEE Computer Society, Washington, DC, USA

Chen L, Babar MA, Ali N (2009) Variability management in software product lines: a systematic review. In: Proceedings of
the 13th International Software Product Line Conference. Carnegie Mellon University, Pittsburgh, PA, USA. pp 81–90

Cockburn A (2000) Writing Effective Use Cases. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
Choi W, Kang S, Choi H, Baik J (2008) Automated generation of product use case scenarios in product line development.

In: Proceedings of the International Conference on Computer and Information Technology. IEEE Computer Society,
Washington, DC, USA

Colanzi TE, Assunção WKG, Trindade DFG, Zorzo CA, Vergilio SR (2013) Evaluating different strategies for testing software
product lines. J Electronic Testing 29:9–24

Dahan M, Shoval P, Sturm A (2014) Comparing the impact of the oo-dfd and the use case methods for modeling
functional requirements on comprehension and quality of models. Requir Eng J 19:27–43

Erikssona M, Borstler J, Borg K (2004) Marrying features and use cases for product line requirements modeling of
embedded systems. In: Proceedings of the Fourth Conference on Software Engineering Research and Practice in
Sweden. Institute of Technology, Unitryck, Linköping University, Linköping, Sweden. pp 73–82

Eriksson M, Börstler J, Borg K (2005) The pluss approach: domain modeling with features, use cases and use case
realizations. In: Proceedings of the 9th International Conference on Software Product Lines (SPLC’05). Springer-Verlag,
Berlin, Heidelberg. pp 33–44

Eriksson M, Morast H, Börstler J, Borg K (2005) The pluss toolkit?: Extending telelogic doors and ibm-rational rose to
support product line use case modeling. In: Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering. ACM, New York, NY, USA. pp 300–304

Fantechi A, Gnesi S, Lami G, Nesti E (2004) A methodology for the derivation and verification of use cases for product
lines. In: Proceedings of the International Software Product Line Conference. Springer-Verlag, Berlin, Heidelberg

Fantechi A, Gnesi S, John I, Lami G, Dörr J (2004) Elicitation of use cases for product lines. In: Proceedings of International
Workshop on Software Product-Family Engineering. Springer-Verlag, Berlin, Heidelberg

Fant JS, Gomaa H, Pettit RG (2013) A pattern-based modeling approach for software product line engineering. In:
Proceedings of the 46th Hawaii International Conference on System Sciences (HICSS). IEEE Computer Society,
Washington, DC, USA. pp 4985–4994

Ferrari R, Miller JA, Madhavji NH (2010) A controlled experiment to assess the impact of system architectures on new
system requirements. Requir Eng J 15:215–233

Gallina B, Guelfi N (2007) A template for requirement elicitation of dependable product lines. In: Proceedings of the 13th
International Working Conference on Requirements Engineering: Foundation for Software Quality, REFSQ’07.
Springer, Berlin, Heidelberg. pp 63–77

Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P (2014) Variability in software systems - a systematic literature review.
IEEE Trans Softw Eng 40:282–306

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 28 of 29

Gomaa H (2004) Designing Software Product Lines with UML: from Use Cases to Pattern-based Software Architectures.
Addison Wesley, Redwood City, CA, USA

GREat (2015) Group of Networking, Software and Systems Engineering. http://www.great.ufc.br/index.php/en.html
Hadar I, Kuflik T, Perini A, Reinhartz-Berger I, Ricca F, Susi A (2010) An empirical study of requirements model

understanding: Use case vs. tropos models. In: Proceedings of the 2010 ACM Symposium on Applied Computing.
ACM, New York, NY, USA. pp 2324–2329

Hollander M, Wolfe DA (1999) Nonparametric Statistical Methods. John Wiley & Sons, USA
IBM (2002) The Rational Unified Process for Systems Engineering Whitepaper. ftp://ftp.software.ibm.com/software/

rational/web/whitepapers/2003/TP165.pdf
IBM (2015) Predictive Analytics Software and Solutions. http://www-01.ibm.com/software/analytics/spss/
Jeyaraj A, Sauter VL (2007) An empirical investigation of the effectiveness of systems modeling and verification tools.

Commun ACM 50(6):62–67
Jirapanthong W (2009) Analysis on relationships among software models through traceability activity. In: Proceedings of

the 3rd International Conference on Advances in Information Technology (IAIT). Springer-Verlag, Berlin, Heidelberg
John I, Muthig D (2002) Product line modeling with generic use cases. In: Proceedings of the Workshop on Techniques

for Exploiting Commonality Through Variability. Springer-Verlag, Berlin, Heidelberg
Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain analysis (foda) - feasibility study.

Technical report, Software Engineering Institute, Carnegie Mellon University
Kamsties E, Pohl K, Reis S, Reuys A (2003) Testing variabilities in use case models. In: Proceedings of the 5th International

Workshop Software Product-Family Engineering. Springer-Verlag, Berlin, Heidelberg. pp 6–18
Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering.

Technical report, EBSE Technical Report
Kuloor C, Eberlein A (2002) Requirements engineering for software product lines. In: Proceedings of the International

Conference Software Systems Engineering and Their Applications. CNAM - Conservatoire National des Arts et Métiers,
Paris, France

Mustafa BA (2010) An experimental comparison of use case models understanding by novice and high knowledge users.
In: Proceedings of the 2010 Conference on New Trends in Software Methodologies, Tools and Techniques. IOS Press,
Amsterdam. pp 182–199

Morelli LB, Nakagawa EY (2011) A panorama of software architectures in game development. In: Proceedings of the
International Conference on Software Engineering and Knowledge Engineering(SEKE). Knowledge Systems Institute
Graduate School, Skokie, USA. pp 752–757

Nakanishi T, Fujita M, Yamazaki S, Yamashita N, Ashihara S (2007) Tailoring the domain engineering process of the plus
method. In: Proceedings of the 14th Asia-Pacific Software Engineering Conference. IEEE Computer Society,
Washington, DC, USA. pp 486–493

Neiva D (2009) Riple-re: A requirements engineering process for software product lines. Master’s thesis, Federal University
of Pernambuco

Neto PAMS, Machado IC, Mcgregor JD, Almeida ES, Meira SRL (2011) A systematic mapping study of software product
lines testing. Inf Softw Technol 53:407–423

Nguyen QL (2009) Non-functional requirements analysis modeling for software product lines. In: Proceedings of the ICSE
Workshop on Modeling in Software Engineering (MISE ’09). IEEE Computer Society, Washington, DC, USA

Niu N, Easterbrook S (2008) Extracting and modeling product line functional requirements. In: Proceedings of the 16th
IEEE International Requirements Engineering Conference. IEEE Computer Society, Washington, DC, USA

Northrop LM (2002) Sei’s software product line tenets. IEEE Softw. 19:32–40
Northrop LM, Clements PC (2007) A Framework for Software Product Line Practice, Version 5.0. http://www.sei.cmu.edu/

productlines/frame_report/
Oliveira RP, Insfran E, Abrahão S, Gonzalez-Huerta J, Blanes D, Cohen D, Almeida ES (2013) A feature-driven requirements

engineering approach for software product lines. In: Proceedings of the VII Brazilian Symposium on Software
Components, Architectures and Reuse. IEEE Computer Society, Washington, DC, USA

Oliveira RP, Blanes D, Gonzalez-Huerta J, Insfran E, Abrahão S, Cohen S, Almeida ES (2014) Defining and validating a
feature-driven requirements engineering approach. J Universal Comput Sci 20(5):666–691

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software engineering. In: Proceedings of
the 12th International Conference on Evaluation and Assessment in Software Engineering. British Computer Society,
Swinton, UK, UK. pp 68–77

Reinhartz-Berger I, Sturm A (2014) Comprehensibility of uml-based software product line specifications. Empirical Softw
Eng 19(3):678–713

Santos IS, Neto PAS, Andrade RMC (2013) A use case textual description for context aware spl based on a controlled
experiment. In: Proceedings of the CAISE‘13 Fórum. CEUR-WS.org, Valencia, Spain

Santos IS, Andrade RMC, Neto PAS (2014) How to describe spl variabilities in textual use cases: A systematic mapping
study. In: Proceedings of the Eighth Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS). IEEE Computer Society, Washington, DC, USA

Santos IS (2015) Experiment Data. https://sites.google.com/site/ismaylesantos/spl-use-case-experiment
Souza EF, Falbo RA, Vijaykumar NL (2013) Knowledge management applied to software testing: a systematic mapping. In:

Proceedings of the International Conference on Software Engineering and Knowledge Engineering (SEKE).
Knowledge Systems Institute Graduate School, Skokie, USA

Tiwari S, Gupta A (2013) A controlled experiment to assess the effectiveness of eight use case templates. In: 20th
Asia-Pacific Software Engineering Conference, vol. 1. IEEE Computer Society, Washington, DC, USA. pp 207–214

Urli S, Blay-Fornarino M, Collet P (2014) Handling complex configurations in software product lines: A tooled approach. In:
Proceedings of the 18th International Software Product Line Conference - Volume 1. ACM, New York, NY, USA.
pp 112–121. http://doi.acm.org/10.1145/2648511.2648523

Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements engineering paper classification and evaluation criteria: a
proposal and a discussion. Requir Eng J 11:102–107

http://www.great.ufc.br/index.php/en.html
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/TP165.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/TP165.pdf
http://www-01.ibm.com/software/analytics/spss/
http://www.sei.cmu.edu/productlines/frame_report/
http://www.sei.cmu.edu/productlines/frame_report/
https://sites.google .com/site/ismaylesantos/spl-use-case-experiment
http://doi.acm.org/10.1145/2648511.2648523

Santos et al. Journal of Software Engineering Research and Development (2015) 3:5 Page 29 of 29

Wohlin C, Runeson P, Host M, Ohlsson M, Regnell B, Wesslen A (2000) Experimentation in Software Engineering: An
Introduction. Kluwer Publishers, Norwell, MA, USA

Yu W, Zhang W, Zhao H, Jin Z (2014) Tdl: a transformation description language from feature model to use case for
automated use case derivation. In: Proceedings of the 18th International Software Product Line Conference. ACM,
New York, NY, USA

Zhou J, Lu Y, Lundqvist K, Lonn H, Karlsson D, Liwang B (2014) Towards feature-oriented requirements validation for
automotive systems. In: Proceedings of the IEEE 22nd International Requirements Engineering Conference. IEEE
Computer Society, Washington, DC, USA. pp 428–436

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	1 Introduction
	2 Background
	3 Related work
	4 Review
	4.1 Methodology
	4.2 Research directives
	4.2.1 Research questions and search string
	4.2.2 Inclusion and exclusion criteria
	4.2.3 Sources

	4.3 Data collection
	4.4 Results
	4.4.1 Classification scheme
	Category 1: variability description
	Category 2: variability type supported

	4.4.2 Outcomes
	Results related to RQ1
	Results related to RQ2
	Results related to RQ3

	4.2.3 Systematic map

	4.5 Discussion

	5 Comparison of the SPL use case template structures
	5.1 Selected templates for the experiment
	5.1.1 Hypotheses, variables, and metrics

	5.2 Experimental study design and subjects
	5.3 Results and data analysis
	5.3.1 Answering the experiment research questions

	5.4 Discussion
	Internal validity
	External validity

	6 Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

