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Abstract

Background: The code of JUnit test cases is commonly used to characterize software
testing effort. Different metrics have been proposed in literature to measure various
perspectives of the size of JUnit test cases. Unfortunately, there is little understanding of
the empirical application of these metrics, particularly which metrics are more useful in
terms of provided information.

Methods: This paper aims at proposing a unified metrics suite that can be used
to quantify the unit testing effort. We addressed the unit testing effort from
the perspective of unit test case construction, and particularly the effort
involved in writing the code of JUnit test cases. We used in our study five unit
test case metrics, two of which were introduced in a previous work. We
conducted an empirical study in three main stages. We collected data from six
open source Java software systems, of different sizes and from different
domains, for which JUnit test cases exist. We performed in a first stage a
Principal Component Analysis to find whether the analyzed unit test case
metrics are independent or are measuring similar structural aspects of the code
of JUnit test cases. We used in a second stage clustering techniques to
determine the unit test case metrics that are the less volatile, i.e. the least
affected by the style adopted by developers while writing the code of test
cases. We used in a third stage correlation and linear regression analysis to
evaluate the relationships between the internal software class attributes and the
test case metrics.

Results and Conclusions: The main goal of this study was to identify a subset
of unit test case metrics: (1) providing useful information on the effort involved
to write the code of JUnit test cases, (2) that are independent from each
other, and (3) that are the less volatile. Results confirm the conclusions of our
previous work and show, in addition, that: (1) the set of analyzed unit test
case metrics could be reduced to a subset of two independent metrics
maximizing the whole set of provided information, (2) these metrics are the
less volatile, and (3) are also the most correlated to the internal software class
attributes.
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1 Background
Software testing plays a crucial role in software quality assurance. It is an important

part of the software development lifecycle. Software testing is, however, a time and re-

source consuming process. The overall effort spent on testing depends on many differ-

ent factors, including human factors, testing techniques, used tools, characteristics of

the software development artifacts, and so forth. We focus, in this paper, on unit test

case construction, and particularly on the effort required to write unit test cases. Soft-

ware metrics can be used to quantify different perspectives related to unit test case

construction. Different metrics have, in fact, been proposed in literature in order to

quantify various perspectives related to the size of JUnit test cases. Unfortunately, there

is little understanding of the empirical application of these metrics, particularly which

metrics provide more useful information on the effort involved to write the code of

JUnit test cases.

In a previous work (Toure et al. 2014), we extended existing JUnit test case metrics

by introducing two new metrics. We analyzed the code of the JUnit test cases of two

open source Java software systems. We used in total five unit test case metrics. We in-

vestigated, using the Principal Component Analysis technique, the orthogonal dimen-

sions captured by the studied suite of unit test case metrics. We wanted, in fact, to

better understand the structural aspects of the code of JUnit test cases measured by the

metrics and particularly determine which metrics are more useful for quantifying the

JUnit test code. Results show that, overall: (1) the new introduced unit test case metrics

are relevant in the sense that they provide useful information related to the code of unit

test cases, (2) the studied unit test case metrics are not independent (overlapping infor-

mation), and (3) the best subset of independent unit test case metrics providing the

best independent information (maximizing the variance) varies from one system to the

other. As the number of analyzed system was limited to two, we could not reasonably

draw final conclusions about the best subset of metrics. Furthermore, this preliminary

study leads us to suspect that some of the unit test case metrics are more volatile than

others, in the sense that they are more influenced by the style adopted by developers

while writing the code of unit test cases.

The empirical study presented in this paper extends our previous work and aims at

analyzing more deeply the suite of unit test case metrics. The study was conducted in

three main stages. We used the same five unit test case metrics. This time, we collected

data from six open source Java software systems for which JUnit test cases exist. The

analyzed case studies are of different sizes and from different domains. In a first stage,

we replicated the study performed in our previous work on the data we collected from

the six selected systems. We performed a Principal Component Analysis (PCA). We

used this technique to find whether the analyzed unit test case metrics are independent

or are measuring similar structural aspects of the code of JUnit test cases. We used in a

second stage clustering techniques, particularly K-Means and Univariate clustering, to

determine the unit test case metrics that are the less volatile, i.e. the less influenced by

the style adopted by developers while writing the code of unit test cases. We investi-

gated the distribution and the variance of the unit test case metrics based on three im-

portant internal software class attributes. We focused on size, complexity and coupling.

We used in a third stage correlation and linear regression analysis to evaluate the rela-

tionships between the internal software class attributes and the suite of unit test case
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metrics, and particularly to determine what are the unit test case metrics that are the

most related to the internal software class attributes. Results confirm two observations

made in our previous work: (1) the studied unit test case metrics are not independent,

i.e. they capture overlapping information, and (2) the new introduced unit test case

metrics provide useful information related to the code of JUnit test cases. Results also

show three new findings: (3) there is a couple of independent unit test case metrics that

maximizes the information, (4) these two metrics are the less affected by the style

adopted by developers while writing the code of unit test cases, and (5) these metrics

are also the most related to the internal software class attributes.

The rest of this paper is organized as follows: Section 2 gives a brief survey of related

work. The studied unit test case metrics are presented in Section 3. Section 4 presents

the different stages of the empirical study we conducted. Finally, Section 5 concludes

the paper and outlines some future work directions.

2 Related work
Several studies in literature have addressed the estimation (prediction) of the testing ef-

fort by considering various factors such as use case points, number of test cases, test

case execution, defects, cost, and so forth. Unfortunately, only few studies have focused

on the analysis (quantification) of different aspects related to the test code. Unit test

code has, however, been used in different studies addressing for example the testing

coverage (Mockus et al. 2009) or the relationships (links) between the units under test

and corresponding test code (Rompaey and Demeyer 2009, Qusef et al. 2011).

Bruntink and Van Deursen (2004, 2006) investigated factors of testability of object-

oriented software systems. The authors studied five open source Java software systems

in order to explore the relationships between object-oriented design metrics and some

characteristics of the code of JUnit test cases. Testability was measured inversely by the

number of lines of test code and the number of assert statements in the test code. Re-

sults show that there is a significant relationship between the used object-oriented de-

sign metrics and the measured characteristics of JUnit test classes. The two unit test

case metrics (the number of lines of test code and the number of assert statements in

the test code) used by Bruntink and Van Deursen were, in fact, intended to measure

two perspectives related to the size of the JUnit test cases. The authors used an adapted

version of the fish bone diagram developed by Binder in (1994) to identify testability fac-

tors. Bruntink and Van Deursen argued that the used test case metrics reflect, in fact, dif-

ferent source code factors Bruntink and Van Deursen (2004, 2006): factors that influence

the number of required test cases and factors that influence the effort involved to develop

each individual test case. These two categories have been referred as test case generation

and test case construction factors.

Singh et al. (2008) used object-oriented metrics and neural networks to predict the

testing effort. The testing effort was measured in terms of lines of code added or chan-

ged during the lifecycle of a defect. Singh and Saha (2010) focused on the prediction of

the testability of Eclipse at the package level. Testability was measured using several

metrics including the number of lines of test code, the number of assert statements in

the test code, the number of test methods and the number of test classes. Results show

that there is a significant relationship between the used object-oriented metrics and

test metrics.
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Badri et al. (2010) explored the relationship between lack of cohesion metrics and unit

testability in object-oriented software systems. Badri et al. (2011) investigated the capabil-

ity of lack of cohesion metrics to predict testability of classes using logistic regression

methods. In these studies also, testability was measured inversely by the number of lines of

test code and the number of assert statements in the test code. Results show that lack of

cohesion is a significant predictor of unit testability of classes. Badri and Toure (2012) ex-

plored the capacity of object-oriented metrics to predict the unit testing effort of classes

using logistic regression analysis. Results indicate, among others, that multivariate regres-

sion models based on object-oriented design metrics are able to accurately predict the unit

testing effort of classes. The same unit test case metrics have been used in this study.

Zhou et al. (2012) investigated the relationship between the object-oriented metrics

measuring structural properties and unit testability of a class. The investigated struc-

tural metrics cover in fact five property dimensions including size, cohesion, coupling,

inheritance, and complexity. In this study, the size of a test class is used to indicate the

effort involved in unit testing.

We can intuitively expect that all the metrics mentioned above are related to the size

of test suites. However, there is little understanding of the empirical application of these

metrics, particularly which metrics provide more useful information on the effort in-

volved to write the code of JUnit test cases. To the best of our knowledge, there is no

empirical evidence on the underlying orthogonal dimensions captured by these metrics.

Also, is that these metrics are independent or are measuring similar structural aspects

of the code of JUnit test cases (overlapping information). In addition, is that the distri-

bution of these metrics is influenced by the systems design and the style adopted by

the developers while writing the code of unit test cases? In others words, do the distri-

bution of these metrics varies significantly from one developer to another for similar

classes (test case metrics information could be strongly biased)? In the case where the

unit test case metrics vary significantly, what is the subset of metrics that are the less

sensitive to the development style variations? Furthermore, are there others structural

aspects that these metrics do not capture? Indeed, some classes, depending on the de-

sign and particularly on the collaboration between classes, will require drivers and/or

monitors to achieve unit testing. We believe that this will also affect the effort involved

in the construction of test cases. The metrics mentioned above do not seem to capture

these dimensions. This issue needs, however, to be investigated.
3 Unit test case metrics
We used in our study the following unit test case metrics:

TLOC: This metric counts the number of lines of code of a test class (Bruntink and

Van Deursen 2004). It is used to indicate the size of the test class.

TASSERT: This metric counts the number of assert statements that occur in the code

of a test class (Bruntink and Van Deursen 2004). In JUnit, assert statements are used by

the testers to compare the expected behavior of the class under test to its current be-

havior. This metric is used to indicate another perspective of the size of a test class. It

is directly related to the construction of test cases.

TNOO: This metric counts the number of methods in a test class (Singh and Saha 2010).

It reflects another perspective of the size of a test class.
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The metrics TLOC, TASSERT and TNOO, were chosen in our study because they

were used in many (related) empirical studies in literature. Size is an attribute that

strongly characterizes the effort involved in writing the code of test cases. TLOC and

TNOO are size related metrics. TNOO is, however, a little bit different from TLOC

in the way that it captures a different perspective of the size by counting the number

of methods in a test class. Furthermore, even if intuitively we can expect that the

TASSERT metric is correlated with the size of a test class, it is a little bit different

from the others size related metrics. It is rather related to the effort involved in the

verification between the expected behavior and the actual behavior of the class

under test.

We also used in our study the two unit test case metrics that we introduced in our

previous work (Toure et al. 2014):

TINVOK: This metric counts the number of direct method invocations in a test class.

It captures the dependencies needed to run the test class.

TDATA: This metric gives the number of new Java objects created in a test class.

These data are required to initialize the test.

We assume that the effort necessary to write the code of a test class is proportional

to the characteristics measured by the selected unit test case metrics.
4 Empirical study
4.1 Selected case studies

Six open source Java software systems were selected for the study: (1) ANTa: is a Java

library and command-line tool that drives processes described in build files as targets

and extension points dependent upon each other. (2) JFREECHART (JFC)b: is a free

chart library for Java platform. (3) JODA-Time (JODA)c: is the de facto standard library

for advanced date and time in Java. It provides a quality replacement for the Java date

and time classes. The design supports multiple calendar systems, while still providing a

simple API. (4) Apache Lucene Core (LUCENE)d: is a high-performance, full-featured

text search engine library. It is a technology suitable for nearly any application that re-

quires full-text search, especially cross-platform. (5) POIe: is a Java APIs for manipulat-

ing various file formats based upon the Office Open XML standards (OOXML) and

Microsoft’s OLE 2 Compound Document format (OLE2). It can read and write MS

Excel files using Java. (6) IVYf: is a popular dependency manager. It is characterized by

flexibility, simplicity and tight integration with Apache ANT.

These systems have been selected based on different requirements, such as: (1) the

source code (and test code) archives of the subject systems must be available and im-

portant enough to provide a significant data set on the systems and corresponding

JUnit test cases, (2) the subject systems must be of different overall size and from dif-

ferent domains, in order to see if our results will differ from one system to another,

(3) the subject systems must be developed in Java. Table 1 summarizes some of the

characteristics of the analyzed systems. It gives, for each system: (1) the total number

of source code classes, (2) the total number of lines of code of source code classes,

(3) the number of classes for which JUnit test cases have been developed, (4) the total

number of lines of code of JUnit test cases, (5) the percentage of source code classes

for which JUnit test cases have been developed, (6) the percentage of tested lines of



Table 1 Some statistics on the selected systems

Systems (1) (2) (3) (4) (5) (6) (7)

ANT 713 64062 111 8121 15.60% 27.50% 46.12%

JFC 496 68312 226 20657 45.60% 77.80% 38.89%

JODA 225 31591 77 46702 34.22% 55.80% 264.17%

LUCENE 659 56902 114 21997 17.30% 38.80% 99.54%

POI 1539 136005 404 41610 26.25% 43.20% 70.82%

IVY 610 50080 95 12531 15.57% 36.00% 69.44%
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code (source code classes for which JUnit test cases have been developed), and (7) the

ratio of the number of lines of test code per number of tested lines of source code.

From Table 1, it can be seen that the analyzed systems present effectively different

characteristics. We can make several observations:

– POI is the largest of the systems analyzed in terms of number of classes (with 1539

classes), and JODA is the smallest one (with 225 classes). Moreover, systems with a

relatively smaller number of classes may be large in terms of number of lines of

code. For example, JFC has a smaller number of classes compared to ANT,

LUCENE and IVY. However, in terms of number of lines of source code, JFC is the

largest one. This suggests that classes in JFC are larger, in terms of lines of code,

than those in ANT, LUCENE or IVY.

– For all systems, it can be seen that JUnit test classes have not been developed for all

source code classes. We have calculated for each system the percentage of classes

for which JUnit test classes have been developed (Table 1, column 5). From Table 1,

it can be seen that JFC is the most covered system (45.60%) followed by JODA

(34.22%). ANT and IVY present the weakest coverage rates (respectively 15.60%

and 15.57%).

– From Table 1 (column 6), it can be seen that for systems JFC and JODA the value

of the percentage of tested lines of code (source code classes for which JUnit test

cases have been developed), respectively 77.80% and 55.80%, is greater than 50%.

Moreover, it can also be seen that for systems ANT and IVY, for which the values

of the percentage of source code classes for which JUnit test cases have been

developed are comparable (Table 1 – column 5: respectively 15.60% and 15.57%),

the values of the percentage of tested lines of code (source code classes for which

JUnit test cases have been developed) are significantly different (Table 1 – column

6: respectively 27.50% and 36.00%).

– The values of the ratio of the number of lines of test code per number of tested

lines of source code (Table 1 – column 7) show two particular systems: JODA and

JFC. In the case of JODA, the value of the ratio is greater than 1, which means that

there are more lines of test code for a given line of source code. In the case of JFC,

the value of the ratio is the lowest compared to the values of the other systems.
4.2 Research methodology and data collection

We conducted an empirical analysis organized into three main stages. We used the five

unit test case metrics to collect data on the JUnit test cases of the six selected systems.
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In order to better understand the underlying orthogonal dimensions captured by the

suite of unit test case metrics, we performed in a first stage a Principal Component

Analysis (PCA). PCA is a technique that has been widely used in software engineering

to identify important underlying dimensions captured by a set of software metrics. We

used this technique to find whether the analyzed unit test case metrics are independent

or are measuring similar structural aspects of the code of JUnit test cases. Furthermore,

we used in a second stage clustering techniques, particularly K-Means and Univariate

clustering, to determine the unit test case metrics that are the less volatile, i.e. the least

affected by the style adopted by developers while writing the code of unit test cases.

We investigated the distribution and the variance of the unit test case metrics based on

three important internal software class attributes. We focused on size, complexity and

coupling. In addition, we evaluated in a third stage the relationships between the con-

sidered internal software class attributes and the suite of unit test case metrics. We

used correlation and linear regression analysis.

We selected for our study, from each of the investigated systems, only the classes for

which JUnit test cases have been developed. The same approach has been used in

others previous empirical studies that addressed the testing effort prediction problem

(e.g., Bruntink and Van Deursen (2004, 2006), Singh and Saha (2010), Zhou et al.

(2012)). JUnitg is a simple Framework for writing and running automated unit tests for

Java classes. Test cases in JUnit are written by testers in Java. JUnit gives testers some

support so that they can write those test cases more conveniently. A typical usage of

JUnit is to test each class Cs of the program by means of a dedicated test class Ct. To

actually test a class Cs, we need to execute its test class Ct. This is done by calling

JUnit’s test runner tool. JUnit will report how many of the test methods in Ct succeed,

and how many fail.

We noticed that developers usually name the JUnit test classes by adding the prefix

(suffix) “Test” (“TestCase”) into the name of the classes for which JUnit test cases were

developed. Only classes that have such name-matching mechanism with the test class

name are included in the analysis. This approach has already been adopted in others

studies (e.g., Mockus et al. 2009). However, we observed by analyzing the JUnit test

classes of the subject systems that in some cases there is no one-to-one relationship be-

tween JUnit classes and tested classes. This has also been noted in other previous stud-

ies (e.g., Rompaey and Demeyer 2009, Qusef et al. 2011). In these cases, several JUnit

test cases have been related to a same tested class. The matching procedure has been

performed on the subject systems by three research assistants separately (a Ph.D. stu-

dent (first author of this paper) and two Master students, both in computer science).

We compared the obtained results and noticed only a few differences. We rechecked

the few results in which we observed differences and chose the correct ones based on

our experience and a deep analysis of the code. For each class Cs selected, we used the

suite of unit test case metrics to quantify the corresponding JUnit test class (classes) Ct.

We used a tool that we developed (JUnit code analyzer).
4.3 Understanding the underlying dimensions captured by the unit test case metrics

Principal Component Analysis (PCA) is a statistical technique that has been widely

used in software engineering to identify important underlying dimensions captured by
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a set of software metrics (variables). It is a useful technique that aims to reduce vari-

ables. We used this technique to find whether the unit test case metrics are independ-

ent or are measuring (capturing) similar underlying dimensions (structural aspects) of

the code of JUnit test cases. PCA is a standard technique to identify the underlying, in-

dependent/orthogonal dimensions that explain relationships between variables in a data

set (Quah and Thwin 2003).

From M1, M2, M3,… Mn metrics, PCA creates new artificial components P1, P2, P3, …,

Pm such as: Pi are independent, Pi are linear combinations of Mi, and each Pi maximizes

the total variance. The linear factors are called loadings and the variables with high load-

ings require some degree of interpretation. In order to find out these variables and inter-

pret the new components, we focussed on rotated component. Orthogonal rotation is

performed to improve the interpretation of results. There are various strategies to perform

such rotation. According to literature, Varimax is the most frequently used strategy (Dash

and Dubey 2012, Aggarwal and Singh 2006). The sum of squared values of loadings that

describe the dimension is referred to as eigenvalue. Since PCA is a projection method in a

smaller dimension space, projected variables may seem close in the small dimension space

but far from each other in the real space, according to the projection direction. In order

to avoid misinterpretation of the new components, the square cosines are computed. A

value closed to zero indicates that the point is far from the projection axe. A large propor-

tion of the total variance (information captured by the unit test case metrics) is usually ex-

plained by the first few PCs. We reduce the metrics without a substantial loss of the

explained information by selecting the first PCs. Three criteria are generally used to deter-

mine the factors to retain for interpretation: (1) The Scree test (Cattell 1966) is based on

the decreasing curve of eigenvalues analysis. Only the factors that appear before the first

inflection point detected on the curve are considered. (2) The cumulative amount of vari-

ance criterion considers only the first components that cumulative amount of variance is

greater than a given value (in most cases: 80%). (3) The eigenvalue criterion considers only

factors with associated eigenvalue greater than 1 (Quah and Thwin 2003). We used in our

study criterion (2) which ensures us to consider at least 80% of variance captured by the

unit test case metrics. We used the XLSTATh tool to perform the analysis. We present in

what follows the application of the PCA technique on the data collected from each of the

selected systems and discuss the obtained results.

4.3.1 ANT

Table 2 presents the results of the application of the PCA technique on the data col-

lected from ANT. It gives the variability of new components, their correlation with unit

test case metrics, and the square cosine of the projection (metrics) in the new compo-

nents. From Table 2, it can be seen that the components F1 and F2 cumulate more

than 80% of total variance (exactly 80.337%), which leads us to interpret only the two

first components F1 and F2.

As it can be seen from Table 2, component F1 is represented by the metrics TASSERT

(0.934), TDATA (0.899) and TLOC (0.775). Component F2 is represented by the metrics

TINVOK (0.843) and TNOO (0.837). The two first components oppose the group of rela-

tively large test classes (high values of TLOC) having high verification effort and data cre-

ation (high values of TASSERT and TDATA) to the group of test classes that contain

many method invocations (high values of TINVOK) with high number of operations



Table 2 PCA results – ANT

F1 F2 F3 F4 F5

Variability (%) 46.6 33.737 12.049 4.235 3.379

% Cumulated 46.6 80.337 92.386 96.621 100

ANT (Correlation) ANT (Square-cosine)

F1 F2 F1 F2

TINVOK 0.013 0.843 0 0.71

TDATA 0.899 −0.002 0.809 0

TASSERT 0.934 0.102 0.873 0.01

TLOC 0.775 0.515 0.601 0.265

TNOO 0.217 0.837 0.047 0.701
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(TNOO). High contribution of the metrics TDATA, TASSERT and TLOC in the first

component indicates that, in large majority of test classes, data creation and number of as-

sertions increase with the size of test classes (lines of code).

The independence between F1 and F2 indicates that, in some test classes, the number

of methods and invocations increase together independently of the metrics TDATA,

TLOC, and TASSERT. The overall information (related to unit testing effort implemen-

tation) captured by the suite of unit test case metrics is distributed in the two dimen-

sions F1 and F2, which can be represented by one of the couples of {TASSERT,

TDATA, TLOC} × {TINVOK, TNOO}. The couple of metrics (TASSERT, TINVOK)

represents the best subset of independent unit test case metrics providing the best in-

dependent information (maximizing the variance).

4.3.2 JFC

The results of the application of the PCA technique on the data collected from JFC are

given in Table 3. It can be seen that the cumulated variance of the two first compo-

nents F1 and F2 (89.28%) suggests to limit the interpretation to these two components.

As it can be seen, component F1 regroups the metrics TNOO (0.887), TINVOK (0.837) and

TLOC (0.746). Component F2 is represented by the metric TDATA (0.951). TASSERT, in

spite of its relative high correlation with component F2 (0.694), is far from the projection

axe as shown by its low square cosine (0.481 < 0.5). TASSERT provides, in fact, insignificant

information in the considered set of unit test case metrics.
Table 3 PCA results – JFC

F1 F2 F3 F4 F5

Variability (%) 50.152 39.124 6.923 2.771 1.029

% Cumulated 50.15 89.28 96.2 98.97 100

JFC (Correlation) JFC (Square cosine)

F1 F2 F1 F2

TINVOK 0.837 0.358 0.701 0.129

TDATA 0.209 0.951 0.044 0.905

TASSERT 0.647 0.694 0.419 0.481

TLOC 0.746 0.634 0.556 0.402

TNOO 0.887 0.197 0.787 0.039
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For JFC, the two first components oppose the most important set of test classes con-

taining a relative high number of methods, having many invocations and large number

of lines of code, to the set of test classes with many data creation. One of the couples

of {TNOO, TINOK, TLOC} × {TDATA} could represent the set of unit test case metrics

for JFC. The couple of metrics (TNOO, TDATA) is, however, the best representative

sub set of the suite of unit test case metrics.
4.3.3 JODA

For JODA (see Table 4), the first component F1 that cumulates 93.36% of total variance is

sufficient to interpret the whole set of unit test case metrics. As it can be seen from

Table 4, the component F1 regroups all the unit test case metrics. So, the first component

captures all dimensions measured by the unit test case metrics. The effort involved in

writing, verifying and creating data are equally distributed. From Table 1, it can be seen

that the value of the ratio of the number of lines of test code per number of tested lines of

source code corresponding to JODA system (264.17%) shows that there are two times

more lines of test code than lines of source code. It is the highest value of the column 7 of

Table 1. This may suggest that the verification effort is more important for JODA rela-

tively to the others systems. In fact, by investigating this issue, we observed that the aver-

age number of assertions is of 223 assertions per tested class for JODA against 12 for

ANT, 18 for JFC, 31 for LUCENE, 22 for POI, and 30 for IVY.

For JODA, according to the results, we can say that each test case metric is a good

representative of the whole set of unit test case metrics. However, TLOC provides the

maximum information.

4.3.4 LUCENE

Table 5 gives the results of the application of the PCA technique on the data collected

from LUCENE. It can be seen that the first component F1 is, here also, sufficient

(88.965% of variance) for interpretation. Moreover, all the unit test case metrics are

closed and highly correlated to component F1. Here also the first component captures

all dimensions measured by the unit test case metrics.

From Table 5, we can also observe that the effort involved in writing, verifying and

creating data are equally distributed as in the case of JODA. In this case also, we can

observe the same trend in terms of the value of the ratio of the number of lines of test

code per number of tested lines of source code (Table 1 – column 7: 99.54%). Indeed,
Table 4 PCA results – JODA

F1 F2 F3 F4 F5

Variability (%) 93.366 2.949 2.454 0.996 0.235

% Cumulated 93.366 96.315 98.769 99.765 100

JODA (Correlation) JODA (Square cosine)

F1 F1

TINVOK 0.952 0.906

TDATA 0.953 0.908

TASSERT 0.955 0.911

TLOC 0.99 0.98

TNOO 0.982 0.964



Table 5 PCA results - LUCENE

F1 F2 F3 F4 F5

Variabilité (%) 88.965 6.462 2.144 1.429 1

% Cumulated 88.965 95.427 97.571 99 100

LUCENE (Correlation) LUCENE (Square Cosine)

F1 F1

TINVOK 0.972 0.945

TDATA 0.95 0.903

TASSERT 0.86 0.936

TLOC 0.967 0.739

TNOO 0.962 0.925
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this value indicates that there are as many lines of test code as lines of source code.

This suggests that the same effort of writing was spent for all tested classes. TINVOK

is the best representative of the suite of unit test case metric for LUCENE.

4.3.5 POI

In the case of POI, it can be seen from Table 6 that to aggregate more than 80% of vari-

ance, we have to consider the two first components F1 and F2 (84.214%) in our interpret-

ation. As we can see from Table 1, POI is the largest of the analyzed systems (with 1539

source code classes). Moreover, POI has the largest number of classes for which JUnit test

classes have been developed (403). The first component F1 is highly correlated with the

metrics TDATA (0.896) and TLOC (0.887) compared to the others unit test case metrics.

The second component F2 is more correlated with the metrics TINVOK (0.912) and

TNOO (0.758). The square cosine values of the two metrics (0.832 and 0.574) are all

greater than 0.5, which indicates that the metrics are close enough to the projection axe

to allow correct interpretation. The metric TASSERT provides here also insignificant in-

formation in the considered set of unit test case metrics. The components F1 and F2 op-

pose the set of large test classes having many data creation to the set of classes having

many methods and invocations. The first two components could be represented by each

couple in {TDATA, TLOC} × {TINVOK, TNOO}. The couple of metrics (TDATA,

TINVOK) is, however, the best representative sub set of the suite of unit test case metrics.
Table 6 PCA results – POI

F1 F2 F3 F4 F5

Variability (%) 47.43 36.784 8.409 5.713 1.664

% Cumulated 47.43 84.214 92.623 98.336 100

POI (Correlation) POI (Square cosine)

F1 F2 F1 F2

TINVOK 0.264 0.912 0.069 0.832

TDATA 0.896 0.237 0.802 0.056

TASSERT 0.697 0.467 0.486 0.218

TLOC 0.887 0.399 0.787 0.159

TNOO 0.476 0.758 0.227 0.574
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4.3.6 IVY

Table 7 gives the results of the application of the PCA technique on the data collected

from IVY. The two first components F1 and F2 (89.323% of total variance) are considered

for interpretation. As it can be seen from Table 7, component F1 regroups the metrics

TASSERT (0.923), TNOO (0.792), and TLOC (0.780). Component F2 is highly correlated

to the metrics TDATA (0.921) and TINVOK (0.748). Square cosine value greater than 0.5

shows that the metrics TDATA (with 0.851) and TINVOK (with 0.559) are close to the

component F2. For IVY, the two first components oppose the group of large test classes

containing a relatively high number of methods with many assertions to the group of test

classes with many data creation and method invocations. Any couple of metrics selected

from {TASSERT, TLOC, TNOO} × {TDATA, TINVOK} could represent the information

captured by all the unit test case metrics. The couple of metrics (TASSERT, TDATA) is,

however, the best representative subset of the suite of unit test case metrics.

4.3.7 Summary

Table 8 gives a summary of the PCA analysis. It shows, for each system, the possible cou-

ples of unit test case metrics that could represent the set of unit test case metrics for cap-

turing information (first and second columns), and the best representative couple of

independent unit test case metrics providing the maximum of information (third column).

From Table 8, it can be seen that the optimum subset (maximizing variance and not

linearly related) of unit test case metrics varies from one system to another. Some metrics

are, however, more common than others (e.g., TINVOK, TDATA). Moreover, we can also

reasonably say that TLOC could also represent the first component in the case of all sys-

tems since it has the most constant impact on the first factor F1 (significantly correlated

to the first component in the case of all considered systems). In the same vein, TINVOK

tends to represent the second component F2, since the metric appears three times on four

cases as second member of the best couples. The metrics TLOC and TINVOK could be

considered as the most independent unit test case metrics maximizing information.

Overall, we can observe from Table 8 that the two metrics TDATA and TINVOK,

which we introduced in our previous work, always appear in either of the two columns

(F1, F2). Moreover, the variations that we can observe from one system to another con-

cerning the best subset of metrics may be due to the sensitivity of (some) unit test case

metrics to the differences in the styles adopted by the developers while writing the code

of JUnit test cases.
Table 7 PCA results – IVY

F1 F2 F3 F4 F5

Variability (%) 48.525 40.798 6.483 3.782 0.412

% Cumulated 48.525 89.323 95.806 99.588 100

IVY (Correlation) IVY (Square Cosine)

F1 F2 F1 F2

TINVOK 0.529 0.748 0.280 0.559

TDATA 0.240 0.923 0.058 0.851

TASSERT 0.923 0.201 0.853 0.041

TLOC 0.780 0.613 0.609 0.375

TNOO 0.792 0.462 0.627 0.214



Table 8 Summary of the PCA results

F1 F2 Best subset

ANT TASSERT,TDATA, TLOC TINVOK, TNOO TASSERT, TINVOK

JFC TNOO, TINVOK, TLOC TDATA TNOO, TDATA

JODA Each metric TLOC

LUCENE Each metric TINVOK

POI TDATA, TLOC TINVOK, TNOO TDATA, TINVOK

IVY TASSERT, TLOC, TNOO TDATA, TINVOK TASSERT, TDATA
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In fact, we suspect that the style adopted by the developers while writing the code of

JUnit test cases can have a significant impact on the distribution of the values of the se-

lected unit test case metrics. The selected systems as mentioned above are from differ-

ent domains, of different sizes and complexities, and developed by different teams. By

analyzing the code of the unit test cases of the different systems, we observed that the

test development style, in general, differs from one system to another (which is

reflected somewhere in Table 1). For example, the number of assert statements in the

code of a test class, given by the metric TASSERT, could change according to the

adopted style. Indeed, while analyzing the code of some test classes of the selected sys-

tems, we observed in some cases that developers, for a given test class, group all assert-

True (…) calls in a single utile method that is invoked in different places in the code

instead of invoking assertTrue (…) in those places. So, before investigating this question

more deeply in the following section, we decided to group the data collected from all

systems studied to have a single set of data on which we wanted to apply the PCA tech-

nique. By doing this, we wanted to group all styles (systems design and test code) in a

single sample of data and observe how the unit test case metrics behave. Results are

given in Table 9. As we can see, the first two components capture more than 80% of

total information (exactly 91.361%). Based on the analysis of the coefficients associated

with each unit test case metric within each of the components, the principal compo-

nents are interpreted as follows: (1) F1: the first component is characterized by size.

Each of the metrics TLOC, TASSERT, TDATA and TNOO could represent this compo-

nent. (2) F2: the second component is rather characterized by invocations. It is clear

that the best representative metric is TINVOK with the highest values of correlation

and square-cosine (respectively 0.917 and 0.842). According to results, any couple of
Table 9 PCA results – all systems

All Systems F1 F2 F3 F4 F5

Variability (%) 58.040 33.321 4.968 2.048 1.623

% Cumulated 58.040 91.361 96.329 98.377 100.000

Correlation Square-cosine

F1 F2 F1 F2

TLOC 0.825 0.498 TLOC 0.680 0.248

TASSERT 0.848 0.398 TASSERT 0.718 0.159

TDATA 0.831 0.400 TDATA 0.691 0.160

TINVOK 0.395 0.917 TINVOK 0.156 0.842

TNOO 0.810 0.507 TNOO 0.656 0.257
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metrics selected from {TLOC, TASSERT, TDATA, TNOO} × {TINVOK} could repre-

sent the information captured by all unit test case metrics.

4.4 Investigating the distribution and the variance of the unit test case metrics

The previous section shows that the couple of unit test case metrics TLOC and TINVOK

is overall the best representative subset of the initial suite of unit test case metrics in the

sense that these metrics are the most independent unit test case metrics maximizing

information.

In this section, we focus on the sensitivity of the unit test case metrics when the writ-

ing style of test classes changes. In others words, we wanted to determine what are the

unit test case metrics that are the less volatile, i.e. the least affected by the style adopted

by developers while writing the code of test cases. In fact, a unit test case metric that is

strongly influenced by the style adopted by developers while writing the code of test

cases may not adequately reflect the real effort required for test cases construction.

The high variance (from one style to another) of such a metric may strongly impact its

value (distribution) and limit its applicability and its interpretation for different sys-

tems. In order to investigate this issue, we used clustering techniques: (1) to investigate

and better understand the distribution and the variance of unit test case metrics based

on different categories of classes, and (2) to determine what are the less volatile unit

test case metrics, which are the less influenced by the style adopted by the developers

while writing the code of unit test cases.

4.4.1 K-Means clustering

In a first step, we used K-Means clustering to classify the tested classes (source code

classes) in various categories based on three internal software class attributes: size,

complexity and coupling. K-means clustering is a method of cluster analysis that aims

to partition n observations (classes for which JUnit test cases have been developed in

our study) into k clusters (five in our study) in which each observation belongs to the

cluster with the nearest mean. We wanted, in fact, to reflect in the analysis five differ-

ent categories of the effort involved in writing the code of test cases: very low, low,

medium, high and very high. We used here also the XLSTAT tool, which implements

many statistic and data mining algorithms. We used this technique to partition the

tested classes in five clusters (categories) based on the three internal class attributes taken

together. Clustering provides, indeed, a natural way for identifying clusters of related ob-

jects (classes for which JUnit test cases have been developed in our study) based on their

similarity (the three internal software class attributes in our case). The resulting clusters

are to be built so that tested classes within each cluster are more comparable in terms of

size, complexity and coupling than tested classes assigned to different clusters (minimizing

intra-cluster variance and maximizing inter-cluster variance).

We used in this step of our study the group of data collected from all systems. In

total, we have 1027 observations (Java classes and corresponding JUnit test cases). To

measure the selected internal software class attributes, we used the following metrics:

LOC (size), WMC (complexity) and CBO (coupling). The LOC (Lines of Code per class)

metric counts for a class its number of lines of code. The WMC (Weighted Methods

per Class) metric gives the sum of complexities of the methods of a given class, where

each method is weighted by its cyclomatic complexity. The CBO (Coupling between
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Objects) metric counts for a class the number of other classes to which it is coupled

(and vice versa). The object-oriented metrics WMC and CBO have been proposed by

Chidamber and Kemerer (1994) and Chidamber et al. (1998). The three metrics have

been used in many empirical software engineering studies. We computed the values of

the three metrics using the Borland Together Tooli. The values of the unit test case

metrics have been computed using the tool we developed. Table 10 gives the descriptive

statistics (total of observations) of the internal class attribute metrics we used in our

study. Table 11 gives the descriptive statistics (total of observations) of the unit test

case metrics. Table 12 gives the descriptive statistics of the internal software class attri-

bute metrics and the unit test case metrics for each system separately. As we can see in

Table 12, the selected systems vary in terms of size, complexity and coupling.

We used the XLSTAT tool to perform the clustering analysis. Moreover, in order to

assess the representativeness of the different styles of design and test code (different

systems used: source code classes and corresponding JUnit test cases) in the different

clusters, we computed the IQV (index of qualitative variance) for each cluster as fol-

lows (Mueller and Schuessler 1961):

IQV ¼
k n2−

Xn

i¼0
f 2i
� �� �

n2 k−1ð Þ :

Where: n indicates the cluster size, k indicates modalities (number of systems), and fi
indicates the frequency of modality i (number of classes in cluster i). The index of qualita-

tive variance can vary from 0 to 1. When all of the cases of the distribution are in one cat-

egory, there is no diversity (or variation) and the IQV is equal to 0. The IQV reflects the

percentage of differences relative to the maximum possible differences in each distribu-

tion. As it can be seen from Table 13, the IQV values obtained are quite high (close to 1).

The relatively lowest value is observed for cluster 5, which may be explained by the size of

the cluster (17 observations – see Table 14 and Table 15) compared to the others clusters.

This index reflects the good representativeness of the different styles (different systems) in

the different clusters (different systems are represented in clusters).

Table 14 gives the descriptive statistics of the three internal software class attribute met-

rics LOC, WMC and CBO corresponding to the five clusters (1–5). As we can see from

Table 14, the mean values of the three internal software class attribute metrics, overall, in-

crease from the first cluster (1 – relatively simple classes) to the last one (5 – relatively

most complex classes). This is also true for the standard deviation of the three internal

software class attribute metrics. It can also be seen from Table 14 that the distribution of

the internal software class attribute metrics reflects properly the classification of tested

classes: the mean values of the metrics LOC, WMC and CBO increase from cluster 1 to
Table 10 Descriptive statistics of the internal class attribute metrics

CBO LOC WMC

Nb. Obs. 1027 1027 1027

Min 0 2 0

Max 111 2644 557

Mean (μ) 12.36 182.38 35.42

St. Dev. (σ) 13.45 241.36 45.82



Table 11 Descriptive statistics of the unit test case metrics

TLOC TASSERT TDATA TINVOK TNOO

Nb. Obs. 1027 1027 1027 1027 1027

Min 6 0 0 0 0

Max 4063 1156 758 516 242

Mean (μ) 147.63 36.77 21.20 35.06 10.26

St. Dev. (σ) 288.87 96.36 51.08 42.44 22.19
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cluster 5 (most complex classes). We can also observe from Table 14 (standard deviation)

that the internal software class attribute metric that varies the least is CBO, followed by

the WMC metric.

Table 15 gives the descriptive statistics of the five unit test case metrics correspond-

ing to the five clusters (1–5). As we can see from Table 15 and Figure 1, the mean

values of the five unit test case metrics, overall, increase from the first cluster (1) to the

last one (5). This is also true, overall, for the standard deviation of the five unit test case

metrics. The only exceptions that we can observe from Table 15 are for the unit test

case metrics TASSERT and TNOO between clusters 4 and 5, where the standard devi-

ation of the two metrics decreases.
Table 12 Descriptive statistics of the metrics for each system

Statistics CBO LOC WMC TLOC TASSERT TDATA TINVOK TNOO

ANT Nb. Obs. 111 111 111 111 111 111 111 111

Min 0 5 1 8 0 0 20 1

Max 39 846 178 493 165 47 118 40

Mean 10.49 158.64 31.31 73.16 12.03 4.56 83.72 6.43

JFC Nb. Obs. 226 226 226 226 226 226 226 226

Min 0 7 1 18 1 4 5 2

Max 67 2041 470 635 143 265 118 45

Mean 16.19 235.02 46.89 91.40 17.96 23.93 22.15 5.77

JODA Nb. Obs. 77 77 77 77 77 77 77 77

Min 0 14 1 27 6 1 3 5

Max 29 1760 176 2624 1156 482 401 242

Mean 10.55 229.60 44.81 606.52 220.95 88.69 92.97 56.60

LUCENE Nb. Obs. 114 114 114 114 114 114 114 114

Min 0 8 1 8 0 0 0 0

Max 55 2644 557 4063 329 758 516 148

Mean 9.90 193.84 35.89 192.96 30.66 31.28 32.48 9.68

POI Nb. Obs. 404 404 404 404 404 404 404 404

Min 0 2 0 6 0 0 0 1

Max 111 1427 374 2379 396 188 138 72

Mean 10.39 145.42 28.42 103.00 22.36 8.44 20.94 5.42

IVY Nb. Obs. 95 95 95 95 95 95 95 95

Min 0 5 1 10 0 0 1 1

Max 92 1039 231 1019 528 191 92 41

Mean 18.23 189.97 34.47 131.91 29.75 21.64 25.07 9.10



Table 13 IQV rate for each cluster

Clustering All systems Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

K-means (5) 0.910 0.867 0.923 0.968 0.886 0.839

Toure et al. Journal of Software Engineering Research and Development  (2014) 2:14 Page 17 of 32
Overall, the distribution of the unit test case metrics reflects properly the classifica-

tion of tested classes and corresponding JUnit test cases: the values of the metrics

TLOC, TASSERT, TDATA, TINVOK and TNOO increase from cluster 1 to cluster 5

(most complex classes). Also, Table 15 gives the distribution of the CV (coefficient of

variation) of each unit test case metric, based on the five clusters. We compared test

cluster variance by using CV to limit the variable scale effects. As we can see, the

metric TINVOK has the lowest coefficient of variation values, except for the last cluster

(5), followed by the metric TLOC. Results suggest therefore that the TINVOK metric is

the test case metric that varies the least followed by TLOC. So, we can conclude that

for comparable classes in terms of size, complexity and coupling (based on the per-

formed clustering), the metric TINVOK is the less volatile. Two main factors may ex-

plain the low value of CV for TINVOK: (1) the possible lack of relationship between

TINVOK and the internal software class attributes, and/or (2) the impact of the vari-

ation of the test code writing style in the different systems. The increasing mean value

of TLOC and TINVOK observed in Figure 1 with respect of clusters (from relatively

simple to relatively high), suggests that there is a relationship between internal software

class attribute metrics and unit test case metrics TLOC and TINVOK. Then, the low

value of CV does not appear to be due to the lack of correlation. This question will be

investigated in the following section (4.5).

From Table 15, Figure 2 and Figure 3, we can also observe that the unit test case met-

rics which vary the most are TASSERT and TDATA (respectively for the three first

clusters and for the two last clusters).

4.4.2 Univariate clustering

We used, in a second step, the univariate clustering technique to optimally cluster in k

(5 here also) homogeneous groups the source code classes of the analyzed systems
Table 14 Descriptive statistics of the internal class attribute metrics (K-means clustering)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Nb. Obs. 587 267 118 38 17

CBO Min 0 0 0 4 3

Max 44 68 57 92 111

Mean (μ) 6.06 14.461 24.56 43.03 43.71

Std. Dev (σ) 5.42 10.03 12.33 19.90 28.83

LOC Min 2 124 292 592 1134

Max 128 288 562 1039 2644

Mean (μ) 61.57 192.56 387.11 770.45 1458.24

Std. Dev (σ) 33.27 48.30 77.07 134.68 406.54

WMC Min 0 3 16 10 10

Max 86 98 157 231 557

Mean (μ) 13.33 38.69 77.86 137.34 224.29

Std. Dev (σ) 8.68 13.99 22.52 48.71 154.63



Table 15 Descriptive statistics of the unit test case metrics (K-means clustering)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Nb. Obs. 587 267 118 38 17

TLOC Min 6 8 10 16 18

Max 1280 2035 2236 2624 4063

Mean (μ) 84.78 146.99 289.71 399.08 779.59

Std. Dev (σ) 110.60 208.20 434.08 605.59 996.46

Coef. of var (Cv = σ/μ) 1.304 1.416 1.498 1.517 1.278

TASSERT Min 0 0 0 1 2

Max 329 1058 1014 1156 396

Mean (μ) 17.76 36.88 84.70 130.40 149.35

Std. Dev (σ) 34.36 86.89 165.35 243.50 136.26

Coef. of var (Cv = σ/μ) 1.935 2.356 1.952 1.867 0.912

TDATA Min 0 0 0 0 0

Max 324 482 393 482 758

Mean (μ) 11.64 22.31 43.62 56.79 98.94

Std. Dev (σ) 21.62 44.61 75.64 106.23 172.48

Coef. of var (Cv = σ/μ) 1.857 2 1.734 1.871 1.743

TINVOK Min 0 2 1 6 2

Max 175 192 401 399 516

Mean (μ) 26.28 34.34 60.75 72.87 86.29

Std. Dev (σ) 27.04 31.10 61.49 84.23 114.92

Coef. of var (Cv = σ/μ) 1.029 0.906 1.012 1.156 1.332

TNOO Min 0 1 1 1 3

Max 153 164 242 238 148

Mean (μ) 6.19 10.27 21.09 30.74 29.65

Std. Dev (σ) 10.38 17.74 39.20 53.56 35.95

Coef. of var (Cv = σ/μ) 1.678 1.728 1.859 1.743 1.213
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based this time on a single variable (an internal class attribute in our case). We wanted

to investigate here also how the unit test case metrics vary according to the different

clusters obtained using separately the three different internal software class attributes:

size, complexity and coupling. Here also, we grouped the data collected from all sys-

tems studied to have a single set of data.

The univariate clustering clusters n one-dimensional observations (tested classes in

our case), described by a single quantitative variable (an internal software class attribute
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Figure 1 K-means clustering – Distribution of the mean values of the unit test case metrics.



0.000

0.001

0.001

0.002

0.002

0.003

Cv TLOC Cv TASSERT Cv TDATA Cv TINVOK Cv TNOO

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 2 K-means clustering – Distribution of the CV of the unit test case metrics.
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in our case), into k homogeneous clusters (five in our case, indicating different levels of

size, complexity and coupling). Homogeneity is measured here using the sum of the

within-cluster variances. To maximize the homogeneity of clusters, we therefore try to

minimize the sum of the within-cluster variances. This method can be seen as a process

of turning a quantitative variable (one internal software class attribute in our case) into

a discrete ordinal variable.

We used the univariate clustering algorithm of the XLSTAT toolh. Here also, we

computed the IQV (index of qualitative variance) for each cluster as previously. As it

can be seen from Table 16, the values obtained are in most cases quite high (close to

1), and this for each univariate clustering. This reflects the good representation of dif-

ferent styles of writing test code in different clusters. The lowest values for the IQV are

observed for cluster 5. This may be explained by the size of this cluster (5 elements

only – see Tables 17, 18 and 19) compared to the others clusters. Tables 17, 18 and 19

give the descriptive statistics of the unit test case metrics corresponding to the five

clusters obtained respectively for the variables size (LOC), complexity (WMC) and

coupling (CBO).

The first univariate clustering we performed was based on the variable size (LOC). As

we can see from Table 17 and Figure 4, the mean values of the unit test case metrics,

overall, increase from the first cluster (1) to the last one (5), except for cluster 4 and

this for unit test case metrics TASSERT, TDATA, TINVOK and TLOC. This is also true

for the standard deviation of the unit test case metrics, here also except for cluster 4

and this, for all unit test case metrics. Overall, results suggest that the TINVOK metric

is the test case metric that varies the least, followed by TLOC. Results suggest therefore

that the TINVOK metric, for classes comparable in terms of size (based on the per-

formed univariate clustering), is the least volatile. From Table 17 and Figure 4, we can

also observe that the unit test case metrics which vary most are TASSERT and TDATA.
0.000

0.001

0.001

0.002

0.002

Cv TLOC Cv TASSERT Cv TDATA Cv TINVOK Cv TNOO

Mean

Mean

Figure 3 K-means clustering – Mean values of the CV of the unit test case metrics.



Table 16 IQV rate for each cluster

Clustering All systems Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

WMC 0.910 0.869 0.941 0.957 0.889 0.672

LOC 0.877 0.943 0.912 0.895 0.768

CBO 0.842 0.946 0.952 0.806 0.762
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The second univariate clustering we performed was based on the variable complexity

(WMC). As we can see from Table 18 and Figure 5, the mean values of the unit test

case metrics, overall, increase from the first cluster (1) to the last one (5). Unlike the

first univariate clustering, in this case the growth of the mean values of the unit test case

metric is continuous, from the first cluster to the fifth one. This is also true for the stand-

ard deviation of the unit test case metrics, here also except for cluster 4 and this for all the

unit test case metrics. Overall, results suggest here also that the TINVOK metric is the test

case metric that varies the least, followed by the TLOC metric. Results suggest therefore

that the TINVOK metric, for classes comparable in terms of complexity (based on the

performed univariate clustering), is the least volatile. From Table 18 and Figure 5, we can

also observe that the unit test case metrics which vary most are TASSERT and TDATA.
Table 17 Descriptive statistics of the unit test case metrics (Univariate clustering - LOC)

LOC Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Nb. Obs. 707 236 53 26 5

TLOC Min 6 8 23 16 323

Max 1620 2035 2624 2379 4063

Mean (μ) 93.92 193.04 406.76 437.58 1344.8

Std. Dev (σ)) 124.39 287.19 658.85 516.76 1407.67

Coef. of var (Cv = σ/μ) 1.324 1.488 1.62 1.181 1.047

TASSERT Min 0 0 1 1 79

Max 615 1058 1156 528 329

Mean (μ) 20.45 49.39 142.28 129.73 146.8

Std. Dev (σ) 40.98 107.48 269.95 153.84 92.81

Coef. of var (Cv = σ/μ) 2.004 2.176 1.897 1.186 0.632

TDATA Min 0 0 0 0 9

Max 482 326 482 323 758

Mean (μ) 13.11 30.42 56.93 47.65 214.8

Std. Dev (σ) 27.33 53.84 108.95 68.07 275.09

Coef. of var (Cv = σ/μ) 2.085 1.77 1.914 1.428 1.281

TINVOK Min 0 2 1 2 17

Max 175 327 401 138 516

Mean (μ) 27.08 44.64 75.60 58.85 157

Std. Dev (σ) 26.94 42.80 92.46 40.06 182.80

Coef. of var (Cv = σ/μ) 0.995 0.959 1.223 0.681 1.164

TNOO Min 0 1 1 1 3

Max 164 156 242 94 148

Mean (μ) 6.86 13.19 33.40 22.69 42.6

Std. Dev (σ) 11.68 23.99 60.92 23.50 53.45

Coef. of var (Cv = σ/μ) 1.704 1.82 1.824 1.035 1.255



Table 18 Descriptive statistics of the unit test case metrics (Univariate clustering - WMC)

WMC Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Nb. Obs. 632 279 93 18 5

TLOC Min 6 8 20 16 408

Max 1358 1745 2624 2280 4063

Mean (μ) 83.97 175.68 375.18 473.28 1224.6

Std. Dev (σ) 109.76 234.83 585.26 548.94 1422.32

Coef. of var (Cv = σ/μ) 1.307 1.337 1.56 1.16 1.161

TASSERT Min 0 0 0 1 104

Max 528 615 1156 832 391

Mean (μ) 17.57 42.33 120.12 143.67 217.4

Std. Dev (σ) 36.70 76.55 232.38 197.31 118.50

Coef. of var (Cv = σ/μ) 2.089 1.808 1.935 1.373 0.545

TDATA Min 0 0 0 1 19

Max 161 482 482 323 758

Mean (μ) 10.90 27.34 54.66 59 223.2

Std. Dev (σ) 16.16 52.08 94.16 93.15 270.37

Coef. of var (Cv = σ/μ) 1.483 1.905 1.723 1.579 1.211

TINVOK Min 0 1 1 6 82

Max 154 216 401 323 516

Mean (μ) 25.67 39.88 66.95 82.39 188.4

Std. Dev (σ) 25.55 35.83 75.98 71.34 165.06

Coef. of var (Cv = σ/μ) 0.995 0.898 1.135 0.866 0.876

TNOO Min 0 1 1 1 11

Max 82 164 242 188 148

Mean (μ) 5.76 12.92 26.55 33.5 44

Std. Dev (σ) 7.64 21.94 49.65 45.04 52.21

Coef. of var (Cv = σ/μ) 1.328 1.698 1.87 1.345 1.187
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The third univariate clustering we performed was based on the variable coupling

(CBO). As we can see from Table 19 and Figure 6, the mean values of the unit test case

metrics, overall, increase from the first cluster (1) to the last one (5), except for cluster

4 and this for all the unit test case metrics. The same observation was made in the case

of the first clustering. This is also true for the standard deviation of the unit test case

metrics, here also except for cluster 4 and this for all unit test case metrics. The same

trend is also observed for the coefficient of variation of the unit test case metrics. Over-

all, results suggest here also that the TINVOK metric is the unit test case metric

that varies the least, followed by the TLOC metric. Results suggest therefore that the

TINVOK metric, for classes comparable in terms of coupling (based on the performed

univariate clustering), is the least volatile. From Table 19 and Figure 6, we can also ob-

serve that here also (overall) the unit test case metrics which vary most are TASSERT

and TDATA.

4.4.3 Summary

Figure 7 summarizes the distribution of the coefficient of variation of the five unit test

case metrics studied according to the three variables (internal software class attributes)



Table 19 Descriptive statistics of the unit test case metrics (Univariate clustering - CBO)

CBO Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Nb. Obs. 506 284 153 64 20

TLOC Min 6 9 12 18 16

Max 1620 2379 2624 1353 4063

Mean (μ) 91.81 175.62 236.54 149 477.85

Std. Dev (σ) 144.91 298.76 421.83 206.07 854.09

Coef. of var (Cv = σ/μ) 1.578 1.701 1.783 1.383 1.787

TASSERT Min 0 0 0 1 1

Max 615 1058 1156 305 391

Mean (μ) 20.32 46.26 65.52 38.31 93.3

Std. Dev (σ) 42.41 116.36 161.77 58.25 101.53

Coef. of var (Cv = σ/μ) 2.087 2.515 2.469 1.52 1.088

TDATA Min 0 0 0 0 0

Max 482 393 482 223 758

Mean (μ) 12.84 25.68 33.76 22.05 70.35

Std. Dev (σ) 31.17 52.80 67.72 30.42 161.49

Coef. of var (Cv = σ/μ) 2.427 2.056 2.006 1.38 2.295

TINVOK Min 0 0 3 1 6

Max 175 401 399 190 516

Mean (μ) 25.22 38.76 54.06 35.69 84.05

Std. Dev (σ) 26.18 42.52 59.67 30.24 107.34

Coef. of var (Cv = σ/μ) 1.038 1.097 1.104 0.847 1.277

TNOO Min 0 1 1 1 1

Max 164 242 238 54 148

Mean (μ) 6.76 11.05 19.46 8.66 21.85

Std. Dev (σ) 13.15 22.79 37.89 10.39 33.04

Coef. of var (Cv = σ/μ) 1.941 2.063 1.947 1.2 1.512
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used in the univariate clustering. It can be seen that the coefficient of variation of the

unit test case metrics varies according to the used variable. It can also be seen that the

coefficients of variation of the unit test case metrics for the clustering based on WMC

are smaller compared to the coefficients of variation obtained for the other two classifi-

cations. This suggests that the internal software class attribute WMC is the most deter-

mining (compared to the others internal class attributes LOC and CBO) in the sense

that it impacts the most the distribution (values) of the unit test case metrics. In others

words, we can expect that source code classes having comparable values of WMC will

likely have test classes that are comparable. Here also, we can observe that the TINVOK

metric varies less than the others test case metrics (followed by the TLOC metric), which

seems suggesting that this metric is the least affected by the development style used by

the developers while writing the code of unit test cases.

Overall, as we have seen in this section, results of both K-Means and Univariate clus-

tering show clearly that the TINVOK metric is the unit test case metric that varies the

least followed by TLOC. As in the previous step, two main factors may explain the low

values of Cv for the two unit test case metrics TINVOK and TLOC: (1) The two unit

test case metrics TINVOK and TLOC are weakly or not correlated to the internal
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software class attribute metrics, and/or (2) The two unit test case metrics TINVOK

and TLOC are the less affected by the styles adopted by developers while writing the

code of unit test cases. Here also, the increasing mean values of TINVOK and TLOC

observed in Tables 17, 18 and 19, tends to exclude the lack of correlation as an explain-

ing factor of low variance of TINVOK and TLOC metrics.

Moreover, in order to better understand the decrease in the mean values of the unit

test case metrics for cluster 4, and particularly why the cluster 4 is an exception com-

pared to the four others clusters, we decided to investigate the ratio (RT) of the num-

ber of lines of test code per number of tested lines of source code (as in Table 1,

column 7) for all the clusters, according to each univariate clustering variable (internal
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software class attribute). We found, as it can be seen from Table 20 that this ratio is

particularly low for cluster 4 and this for the three univariate clustering (based separ-

ately on LOC, CBO and WMC). This suggests that partial tests were conducted (corre-

sponding JUnit test code) on some large classes of cluster 4. We analyzed the source

code of the classes of cluster 4. We found that 5 of the 18 classes that contains cluster

4, which are large and containing many methods, have only one complex method for

which JUnit test code has been developed. As a consequence, the values of the unit test

case metrics of the JUnit test cases corresponding to cluster 4 are relatively low, know-

ing that corresponding Java classes are relatively large. The measures of these five clas-

ses have an impact on the mean values of the unit test case metrics of cluster 4.
4.5 Exploring the relationships between the internal software class attributes and the

unit test case metrics

4.5.1 Correlation between metrics

In this section, we investigate the relationships between the three internal software

class attributes used in the clustering analysis and the unit test case metrics. We tested

the following hypothesis:

Hypothesis: There is a significant relationship between an internal software class attri-

bute and the unit test case metrics.
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Figure 7 Univariate clustering: coefficient of variation distribution.



Table 20 RT ratio for each cluster

Clustering All systems 1 2 3 4 5

LOC 0.809 1.235 0.703 0.699 0.409 0.673

CBO 1.072 1.032 0.855 0.292 0.462

WMC 1.097 0.755 0.730 0.493 0.684
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In order to validate the hypothesis, we analyzed the correlations between each in-

ternal class attribute (LOC, WMC and CBO) and the unit test case metrics. We per-

formed statistical tests using correlation. We used both Spearman’s and Pearson’s

correlation coefficients in our study. These techniques are widely used for measuring

the degree of relationship between two variables. Correlation coefficients will take a

value between −1 and +1. A positive correlation is one in which the variables increase

(or decrease) together. A negative correlation is one in which one variable increases as

the other variable decreases. A correlation of +1 or −1 will arise if the relationship be-

tween the variables is exactly linear. A correlation close to zero means that there is no

linear relationship between the variables.

We used the XLSTAT tool to perform the analysis. We applied the typical signifi-

cance threshold (α = 0.05) to decide whether the correlations were significant. Tables 21

and 22 give the results of the correlation analysis respectively for Spearman and Pear-

son techniques. The obtained correlation values between each internal software class

attribute and the suite of unit test case metrics are all significant (according to the used

significance threshold), and this between all pairs of metrics (internal software class at-

tribute metric, unit test case metric). Moreover, this is also true for the correlation

values between the internal software class attribute metrics, and between the unit test

case metrics. Overall, we can also observe from Table 21 and Table 22 that the internal

software class attributes WMC and LOC are better correlated to the unit test case met-

rics than CBO. Furthermore, as we can see, the correlation values between particularly

the three internal software class attribute metrics and the unit test case metrics TLOC

and TASSERT are all significant, which confirms the results of many previous studies

that addressed the relationship between object-oriented metrics (including the three

used metrics LOC, WMC and CBO) and unit test case metrics (e.g., Bruntink and Van

Deursen (2004, 2006), Singh and Saha (2010), Badri et Toure (2012)). We can also see

that the correlation values between the three internal software class attributes and the

unit test case metrics that we introduced in our previous work, TDATA and TINVOK,
Table 21 Correlations between metrics (Spearman)

Metrics TLOC TASSERT TDATA TINVOK TNOO LOC WMC CBO

TLOC 1 0.786 0.716 0.581 0.794 0.429 0.439 0.321

TASSERT 0.786 1 0.581 0.471 0.611 0.393 0.420 0.236

TDATA 0.716 0.581 1 0.417 0.561 0.339 0.366 0.305

TINVOK 0.581 0.471 0.417 1 0.588 0.355 0.369 0.342

TNOO 0.794 0.611 0.561 0.588 1 0.365 0.389 0.296

LOC 0.429 0.393 0.339 0.355 0.365 1 0.936 0.710

WMC 0.439 0.420 0.366 0.369 0.389 0.936 1 0.655

CBO 0.321 0.236 0.305 0.342 0.296 0.710 0.655 1



Table 22 Correlations between metrics (Pearson)

Metrics TLOC ASSERT TDATA TINVOK TNOO LOC WMC CBO

TLOC 1 0.866 0.881 0.778 0.887 0.449 0.459 0.180

TASSERT 0.866 1 0.765 0.706 0.891 0.312 0.343 0.149

TDATA 0.881 0.765 1 0.703 0.828 0.364 0.420 0.148

TINVOK 0.778 0.706 0.703 1 0.776 0.360 0.436 0.224

TNOO 0.887 0.891 0.828 0.776 1 0.284 0.326 0.127

LOC 0.449 0.312 0.364 0.360 0.284 1 0.885 0.684

WMC 0.459 0.343 0.420 0.436 0.326 0.885 1 0.715

CBO 0.180 0.149 0.148 0.224 0.127 0.684 0.715 1
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are also all significant. In some case, the unit test case metrics TDATA and TINVOK

are better correlated to the internal software class attributes than the metric TASSERT.

Moreover, the correlation values between the three internal software class attributes

and the suite of unit test case metrics are positive. A positive correlation, as mentioned

previously, is one in which both variables (internal software class attribute, unit test

case metric) increase together. These results are plausible and not surprising. In fact, a

class with a high value of LOC (WMC and CBO) is more likely to require a high testing

effort (in terms of test case construction) than a class with a low value of LOC (WMC

and CBO).

Also, it can be seen from Table 21 and Table 22, that overall WMC and LOC metrics

are relatively better correlated to the unit test case metrics than CBO metric. As stated in

the previous section, the unit test case metrics are less volatile in the clustering based on

the WMC and LOC metrics compared to the clustering based on CBO (Figure 7). These

results support therefore our hypothesis.

The unit test case metrics TLOC and TINVOK, which emerged from our previous

analyses (as the most independent and the less volatile unit test case metrics) have in

most cases (Table 21 and Table 22) the highest or comparable (to the others unit test

case metrics) correlation values with the internal software class attribute metrics. The

high correlation values of the unit test case metrics TLOC and TINVOK confirm that

their low volatility observed previously is not due to their lack of correlation with the

software attributes (LOC, WMC and CBO). We can then reasonably conclude that

the unit test case metrics TINVOK and TLOC are the unit test case metrics that are

the least sensitive to the changes in the style of test code writing.
Table 23 SLR analysis - results

SLR TLOC TASSERT TDATA TINVOK TNOO

LOC R2 0.201 0.096 0.132 0.129 0.080

beta 0.449 0.312 0.364 0.360 0.284

pvalue <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

WMC R2 0.210 0.117 0.176 0.189 0.106

beta 0.459 0.343 0.420 0.436 0.326

pvalue <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

CBO R2 0.031 0.021 0.021 0.049 0.015

beta 0.180 0.149 0.148 0.224 0.127

pvalue <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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4.5.2 Linear regression analysis

Linear regression is a commonly used statistical technique. It is used to modeling the

relationship between a dependent variable y and one or more explanatory variables de-

noted X. Linear regression analysis is of two types: The case of one explanatory variable

is called simple linear regression (SLR). For more than one explanatory variable, it is

called multiple linear regression (MLR). In this study, we used the SLR analysis, which

is based on: Y = β0 + β1 X, where Y is the dependent variable (unit test case metric) and

X is the independent variable (internal software class attribute metric).

We used the SLR technique to explore the capacity of each internal software class attri-

bute metric to predict the unit test case metrics and quantify the strength of the relation-

ship between each pair of metrics (internal software class attribute metric and unit test

case metric). Table 23 gives the results of the SLR analysis. Moreover, the linear regression

analysis here is not intended to be used to determine or to build the best prediction

model, based on one internal software class attribute or combining the internal software

class attribute metrics. Such a model, and multiple linear regression analysis, is out of the

scope of this paper. Instead, our analysis intends only to investigate (and compare) the ef-

fect of each internal software class attribute metric on the unit test case metrics.

From Table 23, it can be seen that, overall, all the linear regression models based on

the internal software class attribute metrics are significant (p-value < 0.0001). We can

also see that the linear regression model based on WMC has the highest R2, followed

by the linear regression model based on LOC. The R2 value is the coefficient of deter-

mination of the model. It varies from 0 to 1. It is interpreted as the proportion of the

variability of the dependent variable explained by the model. The more the R2 value is

close to 1, better is the model. Moreover, it can be seen that, overall, the unit test case

metrics TLOC, TDATA and TINVOK are better predicted by the three linear regres-

sion models based respectively on WMC, LOC and CBO than the unit test case metrics

TASSERT and TNOO.

Furthermore, the issue of training and testing data sets is very important during the

construction and evaluation of prediction models. If a prediction model is built on one

data set (used as training set) and evaluated on the same data set (used as testing set),

as was done in the previous step, then the accuracy of the model may be artificially in-

flated. A common way to obtain a more realistic assessment of the predictive ability of

the model is to use cross validation (k-fold cross-validation), which is a procedure in

which the data set is partitioned in k subsamples (groups of observations). The regres-

sion model is built using k − 1 groups and its predictions evaluated on the last group.

This process is repeated k times. Each time, a different subsample is used to evaluate

the model, and the remaining subsamples are used as training data to build the model.

We used the validation option of the XLSTAT tool to validate the linear regression

models. We used the option that consists of choosing randomly a subset of the data

(10% of the observations) as a testing set, and the rest of the data (90% of the observa-

tions) as a training set. As mentioned previously, the total number of observations in

our study is 1027, which corresponds to the total number of classes for which JUnit test

classes have been developed. We repeated this process 10 times. Table 24 gives the

mean values of the R2 and coefficient of each internal software class attribute metric.

All the predictions are significant (pvalue < 0.0001). Again, we can observe that the re-

sults follow the same trend as before.



Table 24 SLR analysis – models validation

Mean 10 cross-validation TLOC TASSERT TDATA TINVOK TNOO

LOC R2 0.193 0.096 0.124 0.124 0.078

beta 0.438 0.311 0.350 0.351 0.280

WMC R2 0.213 0.115 0.178 0.194 0.107

beta 0.463 0.341 0.423 0.442 0.328

CBO R2 0.032 0.021 0.022 0.049 0.016

beta 0.182 0.149 0.150 0.223 0.129
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Furthermore, according to results (particularly in Section 4.5.1 and Section 4.5.2),

WMC is better correlated to the unit test case metrics TLOC and TINVOK. Further-

more, results of Section 4.4 showed particularly that: (1) the unit test case metrics,

overall, are less volatile in the clustering based on WMC compared to the two others

clustering based respectively on LOC and CBO, (2) the TINVOK metric, followed by

the TLOC metric, are the least affected by the development style used by the devel-

opers while writing the code of unit test cases, and (3) WMC is the most determining

(compared to the others internal software class attribute metrics LOC and CBO) in the

sense that it impacts the most the distribution (values) of the unit test case metrics. So, ac-

cording to all these results, we can reasonably conclude that the couple of unit test case

metrics (TLOC, TINVOK) is the best subset of unit test case metrics which are the most

impacted by the systems design (characterized by the internal software class attributes),

the least affected by the style adopted by developers while writing the code of unit test

cases, and providing the best independent information that maximizes the variance.

4.6 Threats to validity

The study has been performed on open source systems, which may not be representa-

tive of all industrial domains. However, the use of open-source systems in empirical

studies is a common practice in the software engineering research community. We ana-

lyzed more than 1 000 Java classes and corresponding JUnit test cases. Even if we be-

lieve that the analyzed data set is large enough to allow obtaining significant results, we

do not claim that our results can be generalized to all systems. The study presented in this

paper should be replicated on a large number of OO software systems to increase the gen-

erality of our findings. The findings in this paper should be viewed as exploratory and in-

dicative rather than conclusive. Moreover, there are a number of factors that may affect

the results of the study and limit their interpretation and their generalization.

4.6.1 Internal validity threats

An important internal threat to validity is from the identification of the links be-

tween Java classes and corresponding JUnit test cases. As mentioned in the paper

(Section 4.2), we noticed by analyzing the code of the JUnit test cases of the investi-

gated systems that, in some cases, there is no one-to-one relationship between JUnit

test cases and corresponding Java classes. In these cases, several JUnit test cases have

been related to a same Java class. Even if we followed a systematic approach for asso-

ciating the JUnit test cases to the corresponding Java classes, which was not an easy

task, unfortunately we were not able to match all test classes. The loss of this part of

the information on the effort involved in writing the test code of the analyzed
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systems, due to the few test classes that we were not able to match with Java classes,

may affect the results of our analysis.

Moreover, the used matching procedure, which has also been adopted in other re-

lated studies in literature as mentioned in the paper, is based on a static analysis of the

code of test cases. In some cases, test classes are reused using the inheritance mechan-

ism. This may also bias the results. Adopting an approach based on dynamic analysis

could reduce this bias. Dynamics analysis is out of the scope of this paper and could be

considered in our future work.

For our study, and particularly in the second stage, we have deliberately chosen five

clusters. We wanted, in fact, to reflect in the analysis five different categories of the ef-

fort involved in writing the code of test cases: very low, low, medium, high and very

high. When changing the number of clusters, the distribution of classes in the different

categories will probably differ. This may affect our results. In our future work, we plan

to select different number of clusters (for example, three for reflecting low, medium

and high testing effort) in order to investigate the impact of changes in the number of

clusters on the volatility of analysis.

4.6.2 External validity threats

The JUnit test cases used in our study were developed only for a part of classes of

each analyzed system (Table 1, columns 3 and 5). The testing coverage, in terms of

Java classes for which JUnit test cases have been explicitly developed, differs from

one system to another. In addition, the classes for which JUnit test cases have been

developed were generally relatively large and complex. This is true for the six sub-

ject systems. It is often due to the adopted testing strategy and/or the criteria used

by the developers while selecting the software classes for which they developed test

cases (randomly or depending on their size or complexity e.g., or on other criteria).

It would be interesting to replicate this study using systems for which JUnit test

cases have been developed for a maximum number of classes, for example, in a

controlled environment. This threat could limit the applicability of the study to

other systems.

Furthermore, we observed by analyzing the code of test classes that in some

cases, the developed JUnit classes do not cover all the methods of the correspond-

ing software classes but only one or two complex methods. Since the internal soft-

ware class attribute metrics are computed using the whole class source code, the

potential testing effort predicted by the internal software class attribute metrics in

these cases will not match the actual effort spent for writing these partial tests.

Since this observation depends on the testing strategy adopted by developers, it

could limit the applicability of the study to other systems. Here also, using a con-

trolled environment, in which JUnit test cases cover all the methods of each tested

Java class (or at least a large number of methods), could help to eliminate (or

reduce) the effect of this bias.

Finally, the study has been performed using only case studies for which JUnit test

classes have been developed by programmers. It would be interesting to replicate the

study on systems for which JUnit test cases have been generated automatically using

tools such as Codepro. We expect that this will reduce the impact on the distribution

of the unit test case metrics and produce more generalizable results.
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4.6.3 Construct threats

In Section 4.4, we wanted to investigate the effect of the test code writing style on the

distribution of the unit test case metrics, and to determine which metrics are the less

affected by the writing style variations. This goal leads us to group the classes of the six

open source systems used in our study, with different development styles, and cluster

them in five subgroups of comparable classes (in terms of size, complexity and coupling).

We ensured of the good representativeness of each development style in the different

clusters, by computing and analyzing the index of qualitative variance (IQV) of each

cluster. The variances of unit test case metrics (standard deviation σ, coefficient of vari-

ance σ/μ) were analyzed to determine those that undergo the least of variations. Results

show that two of the analyzed unit test case metrics (TLOC, TINVOK) vary the less in

the subgroups. Pearson, Spearman and linear regression analyzes show that those metrics

are also the most correlated to the considered internal software class attribute metrics

(LOC, WMC, and CBO). The tight relationship between the unit test case metrics (TLOC

and TINVOK) and internal software class attribute metrics confirms that their little vari-

ance observed in the five clusters is not due to their insensitivity to the internal software

class attributes, but to the test code writing style. Since we fixed the number of categories

to five, one of major construct threats of validity coming from this constraint could be the

relative high intra-cluster variances (high variance of internal software class attributes) ob-

tained with the K-Means or Univariate clustering. To reduce the effect of this threat we

could, in a controlled environment, and for the same software, use different test suites de-

veloped by different groups of testers. We could analyse, for each software class, the vari-

ances of the different unit test class attributes produced by different groups of testers.
5 Conclusions and future work
We analyzed, in this paper, the JUnit test cases of six open source Java software sys-

tems. We used five metrics to quantify different perspectives related to their code. We

conducted an empirical analysis organized into three main stages. The main goal of the

study was to identify a subset of independent unit test case metrics: (1) providing useful

information reflecting the effort involved in writing the code of unit test cases, and

(2) that are the less volatile, i.e. the least affected by the style adopted by developers

while writing the code of test cases.

In order to find whether the analyzed unit test case metrics are independent or are

measuring similar structural aspects of the code of JUnit test cases, we performed in a first

stage a Principal Component Analysis (PCA). We used in a second stage clustering tech-

niques to determine the unit test case metrics that are the less volatile by investigating the

distribution and the variance of the unit test case metrics based on three important in-

ternal software class attributes (size, complexity and coupling). We evaluated in a third

stage the relationships between the internal software class attribute metrics and the suite

of unit test case metrics. We used correlation and linear regression analyzes.

While confirming the results of our previous work, our current results show that:

(1) the metrics TLOC and TINVOK maximize the independent information cap-

tured by all the unit test case metrics, and (2) these metrics are the less affected by

changes in the test code writing style and the most correlated with internal software

class attributes.
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The performed study should, however, be replicated using many other case studies in

order to draw more general conclusions. The findings in this paper should be viewed

as exploratory and indicative rather than conclusive. As future work, we plan to repli-

cate the present study using case studies for which JUnit test cases have been generated

automatically using tools such as Codepro.

Endnotes
aThe Apache Ant Project [http://ant.apache.org].
bJFreeChart [http://www.jfree.org/jfreechart].
cJoda-Time Java date and time API [http://www.joda.org/joda-time].
dApache Lucene Core [http://lucene.apache.org].
eJava API for Microsoft Documents [http://poi.apache.org].
fThe agile dependency manager [http://ant.apache.org/ivy].
gA programmer-oriented testing framework for Java [http://www.junit.org].
hXLSTAT [www.xlstat.com].
iBorland Solutions [http://www.borland.com].
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