
Melo et al. Journal of Software Engineering Research and Development 2013, 1:3
www.jserd.com/content/1/1/3
RESEARCH Open Access
In-depth characterization of exception flows in
software product lines: an empirical study
Hugo Melo, Roberta Coelho*, Uirá Kulesza and Demostenes Sena
* Correspondence:
souzacoelho@gmail.com
Informatics and Applied
Mathematics Department (DIMAp),
Federal University of Rio Grande do
Norte, Natal, Brazil
©
L
p

Abstract

Software Product Lines (SPLs) play an essential role in contemporary software
development, improving program quality and reducing the time to market. However,
despite its importance, several questions concerning SPL dependability did not get
enough attention yet, such as: how the exception handling code has been implemented
in SPLs? The characteristics of the exception handling code may lead to faulty SPL
products? The Exception Handling (EH) is a widely used mechanism for building robust
systems and is embedded in most of mainstream programming languages. In SPL
context we can find exception signalers and handlers spread over code assets associated
to common and variable SPL features. If exception signalers and handlers are added to a
SPL in an unplanned way, products can be generated on which variable features may
signal exceptions that remain uncaught or are mistakenly caught by common features or
other variable features. This paper describes an empirical study that categorizes the
possible ways exceptions flow through SPL features and investigates whether some of
their characteristics can lead to faulty exception handling behavior. The study outcomes
presented in this paper are helpful in several ways, such as: (i) enhancing the general
understanding of how exceptions flow through mandatory and variable features; (ii)
providing information about the potential problems related to specific kinds of flows
detected in this study; and (iii) presenting how a static analysis tool can be used to
support the identification of potentially faulty exception handling flows.

Keywords: Software product line; Exception handling; Static analysis;
Code inspection
1. Introduction
Software product line engineering advocates the development of software system fa-

milies from a specific market segment (Clements and Northrop 2001). A system family

is a set of programs that shares common functionalities and maintain specific functio-

nalities that vary according to specific systems being considered (Parnas 1976). A soft-

ware product line (SPL) is specified, designed and implemented in terms of common

and variable features. A feature (Czarnecki and Eisenecker 2000) is a system property

or functionality that is relevant to some stakeholder and is used to capture commonal-

ities or discriminate among systems in SPLs. A SPL is developed through of a design

of an extensible software architecture and subsequently implemented in terms of re-

usable code assets that address its common and variable features. The SPL develop-

ment approach promotes benefits such as cost reduction, product quality, productivity
2013 Melo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
rovided the original work is properly cited.

mailto:souzacoelho@gmail.com
http://creativecommons.org/licenses/by/2.0

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 2 of 30
www.jserd.com/content/1/1/3
and time to market (Clements and Northrop 2001). However it may bring new chal-

lenges to the software dependability.

The Exception Handling (EH) is a widely used mechanism for building robust sys-

tems (Goodenough 1975) (Garcia et al. 2001). As EH mechanisms are embedded in

most of mainstream programming languages, it is also used in SPL engineering as a

way of structuring fault detection and recovery solutions (Bertoncello et al. 2008). Ex-

ception signalers and handlers can then be found spread over code assets associated to

common and variable features. Hence, intriguing questions arise when developing an

exception-aware SPL, such as: How do exceptions flow through both variable and com-

mon features of SPLs? How do these exception flows can contribute or lead to a faulty

exception handling behavior? A faulty exception behavior may happen when code as-

sets implement common or variable features signals exceptions that are mistakenly

caught inside the system. This is an exception handling bug very difficult to detect,

known as Unintended Handler Action (Miller and Tripathi 1997).

In a previous study (Melo et al. 2012), we started seeking for answers to these

questions. We performed an empirical study based on manual inspection and static

code analysis, which presented a first categorization for the ways exceptions were

signaled and handled by variable and common features of SPLs. The study was

based on two well-known benchmark software product lines: MobileMedia (Young

2005) and Berkeley DB (Kästner et al. 2008). In this study, we have identified com-

mon ways in which exceptions are raised and handled inside the SPLs. We could

observe that in many circumstances, exceptions raised by variable features were

not adequately caught. Some of them were caught by generic handlers defined in

the core, and other ones were caught by other variable features with no explicit re-

lation between them.

This paper extends the previous study in the following ways: (i) a new medium-sized

product line was analyzed, called Prevayler (Godil and Jacobsen 2005), which imple-

ments an open-source memory database configurable system that allows persisting

serializable Java objects; (ii) an in-depth analysis of each flow was performed, which be-

sides considering the exception signaler and handler to categorize each flow, also re-

ports about the intermediate elements that compose the exception flows; (iii) a new

version of the static code analysis tool was implemented in order to support the in-

depth analysis of each flow; (iv) moreover, this work also presents an uncaught excep-

tion analysis for each SPL and it discusses about the fault-prone scenarios that may

occur in SPL products in the exception handling context.

The contributions of this work allow the developers of dependable SPLs: (i) to con-

sider the potential effects of variable features on the exception flow of SPL products;

(ii) to define/use specific variability implementation techniques to deal with such ef-

fects; and (iii) to make more informed decisions when defining the possible SPL pro-

ducts. Moreover, it also allows for the designers of Exception Handling policies and

strategies to consider improving existing EH solutions to make them more robust and

resilient to flaws in the exception handling code.

The remainder of this paper is organized as follows. Section 2 presents the study

settings. Sections 3 and 4 present the results of the two study phases. Section 5 pro-

vides further discussions and lessons learned. Section 6 describes related work. Finally,

Section 7 presents our conclusions. Due to space limitations, throughout this paper we

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 3 of 30
www.jserd.com/content/1/1/3
assume that the reader is familiar with SPL techniques and terminology (Clements and

Northrop 2001) (Czarnecki and Eisenecker 2000).
2. Study settings
This section describes the configuration of our empirical study in terms of its main

goals and research questions, the investigated SPLs (Section 2.1), the study phases

(Section 2.3), and the static analysis tool developed to support the investigation of the

SPL exception flows (Section 2.4). Section 2.2 uses a code snippet extracted from one

of the target SPLs to illustrate the exception handling concepts discussed in this study.

The main goals of our study were: (i) to analyze different Java-based SPL imple-

mentations for the purpose of characterizing the exception flows with respect to the

code assets responsible for signaling and handling exceptions, and the common and

variable features related to them; and (ii) to investigate the fault-proneness of each ex-

ception flow category identified in the study.

The research questions that guided this study were the following: (RQ1) How are ex-

ceptions signaled and handled through variable and common features of SPLs? (RQ2)

Which kinds of exception flows contribute (or may lead) to a faulty (or inadequate) ex-

ception handling behavior?
2.1. The target software product lines

One major decision that had to be made for our investigation was the selection of the

target SPLs. We have selected three medium-sized well-known benchmark SPLs

implemented in Java: MobileMedia (Young 2005), Berkeley DB (Kästner et al. 2008),

and Prevayler (Godil and Jacobsen 2005). Such SPLs implement variable behavior and

associated features using CIDE (Kästner et al. 2008). CIDE (Colored IDE) is a tool that

enables SPL developers to annotate code with feature information using background

colors (similar to #ifdefs). All SPLs were used in several empirical studies (Figueiredo

et al. 2008) (Brabrand et al. 2012) (Kästner et al. 2008) (Coelho et al. 2008)) (Godil and

Jacobsen 2005), and each of them is a representative of different application domains,

and heterogeneous realistic ways of incorporating exception handling.

The MobileMedia (MM) is a SPL of applications that manipulates media (e.g., photo,

music and video) on mobile devices. There are subsequent Java releases available. All

adopt the same architecture style (i.e., model-view-controller), varying in terms of the

number of features available and design decisions taken in each version. Our study fo-

cused on the 8th release (http://sourceforge.net/projects/mobilemedia).

Berkeley DB (BkDB) is a SPL for embeddable databases of moderate size (42 features)

that implements functionalities related to management of memory, logging, transac-

tions, concurrency, and others databases functionalities.

Prevayler (Pvl) is a SPL for the context of in-memory database systems, based on ob-

ject prevalence. Derived systems of this SPL support plain Java object persistence, snap-

shots, queries, transactions, and logging. The release analyzed in our study implements

five variable features: Replication, GZip, Censor, Monitor, and Snapshot. This release is

a subset of the original implementation that was defined in (Prevayler Project 2013).

Table 1 summarizes code characteristics of target SPLs: the number of lines of code

(LOC); the number of lines of code dedicated to exception handling (EH LOC); the number

http://sourceforge.net/projects/mobilemedia

Table 1 Summary of characteristics of target SPLs

Software product lines

Metrics MobileMedia BerkeleyDb Prevayler

LOC 3191 39233 5122

EH LOC 614 3028 458

#Throw Clauses 24 127 68

#Exception Flows 111 1522 164

#Classes and Interfaces 51 238 140

#Checked Exceptions 9 22 3

#Unchecked Exceptions 0 3 0

#Variable Features 11 42 5

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 4 of 30
www.jserd.com/content/1/1/3
of throw-clauses; number of exception flows; number of classes and interfaces; number of

user-defined checked and unchecked exceptions; and the number of variable features.

2.2. SPL exception handling code example

In order to support the reasoning about the exception handling in SPL context, we il-

lustrate the main concepts of an exception handling mechanism based on an example

extracted from MobileMedia product line. Figure 1A presents a code snippet associated

to a mandatory feature responsible for creating new albums of a given media (i.e.

photo, music, or video) from the MediaAccessor class. Besides the normal execution

flow, there are two scenarios on which the album cannot be created: either the album

name is an empty string (lines 7–8), or if the album name is already in use because

there is another album with the same name (lines 11–14). In such scenarios, the

normal execution flow should be interrupted and an error message should be presented

to the user. These scenarios are called exceptional scenarios, and they are imple-

mented using the exception handling constructs that are briefly described in the

next paragraphs.

In modern OO languages such as Java, C++ and C#, such abnormal situations are

represented by exceptions which are represented as objects. An exception may be raised

by a method whenever an abnormal computation state is detected. The exception

signaler is the method that detects the abnormal state and raises the exception. In

Figure 1A, the createNewAlbum() method from MediaAccessor class detects an

abnormal condition and raises the exception InvalidPhotoAlbumNameException
using the throw clause. Since this method is not annotated (colored in CIDE tool) with

any variable feature, we say that such signaler belongs to the SPL core.

Some languages provide constructs to associate a method’s signature with a list of ex-

ceptions that it may raise (see lines 3–4 in Figure 1A). Besides providing information

for the method’s callers, this information can be checked at compile time to verify

whether handlers were defined for each specified exception. This list of exceptions

represents the exception specification or exception interface of a method. Ideally, the ex-

ception interface should provide complete and precise information for the method user.

However, some languages, such as Java, allow the developer to bypass this mechanism.

In such languages exceptions can be of two kinds: (i) checked exception – that needs

to be declared on the method’s signature that throws it; and (ii) unchecked exception –

that does not need to be declared on the signaler method’s signature.

1. public abstract class MediaAccessor
2. {
3. public void createNewAlbum(String albumName)
4. throws PersistenceMechanismException, InvalidPhotoAlbumNameException {
5.
6. ...
7. if (albumName.equals("")){
8. throw new InvalidPhotoAlbumNameException();
9. }
10.
11. String[] names = getAlbumNames();
12. for (int i = 0; i < names.length; i++) {
13. if (names[i].equals(albumName))
14. throw new InvalidPhotoAlbumNameException();
15. }
16. ...
17. // Create new album and persist it in the file system
18. ...
19. }
20. ...
21. }

1. public class AlbumController extends AbstractController
2. {
3. public boolean handleCommand(Command command) {
4.
5. String label = command.getLabel()
6. ...
7.
8. if (label.equals("Save")) {
9. ...
10. try {
11. password = (PasswordScreen) getCurrentScreen();
12. getAlbumData().createNewAlbum(albumName.getLabelName());
13. getAlbumData().addPassword(albumName.getLabelName(), password.getPassword());
14. } catch (PersistenceMechanismException e) {
15. ...
16. } catch (InvalidPhotoAlbumNameException e) {
17. Alert alert = new Alert(..., "You have provided an invalid Photo Album name", ...);
18. ...
19. }
20. }
21. ...
22. }
23. ...
24. }

Exception propagation

Variable feature Privacy

(A)

(B)

Figure 1 Exception handling code example from MobileMedia SPL. Partial code of (A) MediaAccessor class; and (B) AbstractController class.

M
elo

et
al.Journalof

Softw
are

Engineering
Research

and
D
evelopm

ent
2013,1:3

Page
5
of

30
w
w
w
.jserd.com

/content/1/1/3

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 6 of 30
www.jserd.com/content/1/1/3
After a method signals an exception, the runtime system attempts to find the block

of code that will be responsible for handling it. The exception handler in Java should be

defined in the dynamic call chain of the method signaling the exception. In the scenario

illustrated in Figure 1B the handler of the exception signaled by the method

createNewAlbum() is caught by the method handleCommand() (lines 16–18) of

the AlbumController class. In Java programs, a try-catch block represents the block

of code responsible for handling exceptions. In this example the handler block is

colored using the CIDE tool, meaning that it belongs to the Privacy feature. We call the

exception flow a path in a program call graph that links the signaler and the handler of

an exception.

2.3. Study phases

In order to provide answers to the research questions – RQ1 and RQ2 – presented be-

fore, our study has been organized in two main phases, each of them focusing on one

of the research questions stated previously. The study phases were the following: (i) an

analysis and characterization of the exception flows in terms of variable and common

features responsible for signaling and handling the exceptions; and (ii) a detailed ana-

lysis of the exception flows (i.e., method call chains, and handler actions).

There are 3 different approaches to verify a SPL (Apel et al. 2013): (i) the product-

based strategy that analyzes every product individually; (ii) the sample-based strategy

that focuses on a subset of existing products; and (iii) the family-based strategy that an-

alyzes the design and implementation artifacts of the whole SPL in a single pass. In our

exploratory study, we discarded the product-based strategy because it is costly and im-

practical to analyze the exception flows of every possible product of the target SPLs.

The family-based strategy could not be adopted due to the non-existence of static ana-

lysis frameworks to support the interprocedural analysis of exception flows of the whole

product line at once. Hence we have decided to use the sample-based strategy by focus-

ing on the analysis of products of each investigated SPL that includes all variable fea-

tures. In our study, it was possible to derive the product of each SPL that includes all

the variable features – since the target SPLs do not define alternative features and do

not define explicit exclusion constraints between their features. These three products

are expressive and representative to be studied in order to characterize the behavior of

exception flows in SPLs. We also noticed that during our analysis most of exception

flows involved a few number of features, which means that these exception flows are

present in all products that include those features.

Phase 1: Characterization of SPL exception flows

The main goal of this phase was to answer RQ1, in other words to explore the possible

ways exceptions could flow inside a SPL. We have started this phase by manually

inspecting the target product lines but soon such task became infeasible (i.e. the excep-

tion flows were too deep and there were too many flows to be inspected). The high cost

of manual inspection led to the implementation of PLEA (Product Line Exception

Analyzer) tool, which performs a feature-oriented exception flow analysis (see Section

2.4). In this phase, the exception flows of each SPL were calculated using PLEA tool.

Every exception flow was analyzed and characterized in terms of the common and

variable features of the code assets responsible to throw and handle the exceptions.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 7 of 30
www.jserd.com/content/1/1/3
Phase 2: In-deph analysis of exception flows and SPL design issues

The main goal of this phase was to refine the answer given to RQ1 in the first phase

while looking for answers to RQ2. To do so we manually inspected the exception flow

in detail, evaluating not only the signaler and handler information, but also the inter-

mediate elements that compose a flow. In addition, we also investigated the impact of

SPL design issues on the types of flows found, and the fault proneness of each of them.

Such phase contributes to understand the exception handling policy adopted by each

investigated SPL, and which kind of flows can represent a risk for the robustness of the

execution of the SPL products. The detailed analysis and results of this phase are

presented in Section 4.
2.4. PLEA – a feature-oriented static analysis tool

The PLEA – Product Line Exception Analyzer – tool has been developed to help the

analysis and characterization of the SPL exception flows. The main aim of the tool is to

calculate the exception flows thrown from the SPL code assets, and to characterize the

classes and methods that are part of these exception flows, including the ones respon-

sible to signal and handle the exception. In addition, the tool also distinguishes the

classes from each exception flow that are implementing the SPL commonalities or vari-

abilities. Figure 2 shows a package diagram that illustrates the dependencies between

the two modules – Flow Analyzer and Feature Identifier – of PLEA, and the two exter-

nal tools – Design Wizard and CIDE – that PLEA is integrated.

2.4.1 PLEA overview

PLEA is structured as two mains modules, which are implemented as Eclipse plug-ins

(Eclipse IDE 2012): (i) the Flow Analyzer and (ii) the Feature Identifier. The Flow

Analyzer performs an inter-procedural analysis on the SPL bytecode. It implements

one of the most used algorithms for call graph construction called class hierarchy ana-

lysis (CHA) (Grove and Chambers 2001), in order to build the program dependency

graph (PDG) (Ferrante et al. 1987). It traverses the PDG, firstly looking for the checked

exceptions, explicitly thrown by the SPL code assets, and then looking for handlers that

may handle them. As a result the plug-in reports a set of exception flows. When build-

ing the PDG of a SPL, the Flow Analyzer uses the DesignWizard tool (Brunet et al.
Figure 2 Package diagram of the PLEA tool.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 8 of 30
www.jserd.com/content/1/1/3
2009), which provides an API that supports the automated analysis and inspection of

Java programs.

The Feature Identifier plug-in is responsible for accessing the configuration know-

ledge (CK) of the SPL to obtain the information concerning the features associated to

each exception flow: its signaler, handler and the intermediate methods between them.

The CK (Czarnecki and Eisenecker 2000) defines how each code asset (class, interface,

method, attribute) is mapped to the specific SPL common and variable features that

they implement. The CK format depends on the tool used for the SPL implementation

and variability management. The current version of PLEA manipulates the CK defined

by CIDE (Kästner et al. 2008), the tool used for the variability management of the ana-

lyzed SPLs.

2.4.2 PLEA detailed design

Figure 3 shows a partial class diagram of the main packages and classes of the Flow

Analyzer module. The ExceptionFlowAnalyzer class defines the analyze()
method, which parses all the SPL code assets and creates a program dependency graph

(PDG) in terms of instances of the ClassNode and MethodNode classes of the

Design Wizard tool. After that, the DesignWizardUtil class is used to search

the classes of the SPL in order to organize the relevant exceptions (EAException) and
respective constructors (EAConstructor). Finally, the tool obtains the MethodNode
that represent exception signalers and executes a depth-first search from each of these

methods in order to find all the MethodNode instances that constitute their respective

exception handlers. The depth-first search is executed over the call graph calculated for

the Flow Analyzer module. All the information collected regarding exception signalers

and handlers is organized in an EAReport instance that does not depend on the

DesignWizard API.

The Feature Identifier module is responsible for identify the features associated to

each signaler and handler methods listed in the EAReport instance. Figure 4 shows a

class diagram with the main classes of this module. The IdentifyFeatureAction
class is an action associated to a menu in the Eclipse IDE workspace that activates the

execution of the module. It creates an instance of IdentifyFeatureOperation
Figure 3 Partial class diagram of the flow analyzer module.

Figure 4 Partial class diagram of the feature identifier module.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 9 of 30
www.jserd.com/content/1/1/3
and executes its run() method, which is responsible for identify the features of each

signaler, handler and the intermediate methods of a flow. The current implementation

of PLEA retrieves the configuration knowledge (CK) from the CIDE tool, which stores

the features directly related to the code asset in the respective abstract syntax tree

(AST) that represents each of them. The information regarding the features is obtained

using the CideUtil class. In our implementation, we have extended a Visitor hier-

archy (Gamma et al. 1994) that was implemented in the CIDE tool and helps identify

the classes (ASTClassVisitor), methods (ASTMethodVisitor), methods call

(ASTCallerVisitor), catch clauses (ASTHandlerVisitor), throw clauses

(ASTSignalerVisitor) and features (ASTColorVisitor), when the ASTs asso-

ciated to each signaler and handler class are traversing. The identified features for each

method are attached to the same EAReport instance that was created in the Flow

Analyzer module.

3. Study results for phase 1: characterization of SPL exception flows
This section summarizes the study results of the first phase, which involves the general

analysis and characterization of the exception flows of the target SPLs. These results

were collected during the execution of PLEA over Mobile Media, Berkeley DB and

Prevayler. Section 3.1 presents the criteria used for exception flow categorization and

the number of exception flows found in this study characterized according to these cri-

teria. Section 3.2 compares the exception flow information obtained from the investi-

gated SPLs. Finally, Sections 3.3 and 3.4 discuss about each flow type, presenting real

examples extracted from the analyzed SPLs.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 10 of 30
www.jserd.com/content/1/1/3
3.1 Collected results for the SPL exception flow types

The main goal of this analysis and characterization phase was to explore the possible

ways exceptions could flow inside a SPL. We took into account the information con-

cerning which features were associated to the pieces of code responsible for signaling

and handling exceptions. The exception flows were characterized according to three

attributes:

(i) The feature associated with the exception signaler. The piece of code responsible

for signaling the exception can be associated to the core (C) or to a variable

feature (V);

(ii) The feature associated with the exception handler. The piece of code responsible

for handling the exception can be associated to the core (C), to a variable feature

(V), or the exception can escape from every handler and remain uncaught (E);

(iii) The exception handling action. The exception can be caught by a specialized

handler (S), a handler whose type is the same of the exception being caught, or by

a generic handler (G), a handler whose type is a supertype of the exception being

caught.

Table 2 presents the number of exception flows found in our study, characterized

according to these attributes. It also shows the percentage of each flow type in relation

to all flows found per SPL release. The flow type, first column of Table 2, is an acronym

based on the attributes values, for instance: a CC flow is an exception flow on which a
Table 2 Exception flows in MobileMedia, BerkeleyDb and Prevayler

Flow occurrences (percentage per release)

Flow Signaler Handler Handling MM BkDb Pvl All

CC Core Core Any 48 (43%) 413 (27%) 76 (46%) 537 (30%)

CCS Core Core Specialized 22 (20%) 63 (4%) 5 (3%) 90 (5%)

CCG Core Core Generic 26 (23%) 350 (23%) 71 (43%) 447 (25%)

CV Core Variable Any 28 (25%) 210 (14%) 6 (4%) 244 (14%)

CVS Core Variable Specialized 25 (22%) 62 (4%) 4 (3%) 91 (5%)

CVG Core Variable Generic 3 (3%) 148 (10%) 2 (1%) 153 (9%)

CE Core Escaped - 0 (0%) 435 (29%) 62 (38%) 497 (27%)

Subtotal (CC + CV + CE) 76 (68%) 1058 (70%) 144 (88%) 1278 (71%)

VC Variable Core Any 18 (17%) 183 (12%) 6 (4%) 207 (12%)

VCS Variable Core Specialized 18 (17%) 17 (1%) 0 (0%) 35 (2%)

VCG Variable Core Generic 0 (0%) 166 (11%) 6 (4%) 172 (10%)

VV Variable Variable Any 8 (7%) 19 (1%) 0 (0%) 27 (2%)

VVS Variable Variable Specialized 8 (7%) 19 (1%) 0 (0%) 27 (2%)

VVG Variable Variable Generic 0 (0%) 0 (0%) 0 (0%) 0 (0%)

VaVb Variable Variable Any 9 (8%) 100 (7%) 0 (0%) 109 (6%)

VaVbS Variable Variable Specialized 9 (8%) 13 (1%) 0 (0%) 22 (1%)

VaVbG Variable Variable Generic 0 (0%) 87 (6%) 0 (0%) 87 (5%)

VE Variable Escaped - 0 (0%) 162 (10%) 14 (8%) 176 (9%)

Subtotal (VC + VV + VaVb + VE) 35 (32%) 464 (30%) 20 (12%) 519 (29%)

Total 111 1522 164 1797

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 11 of 30
www.jserd.com/content/1/1/3
core asset signals an exception and another (or the same) core asset handles it.

Depending on the way the exception is caught, this flow can be sub-characterized as:

CCS - if the exception is caught by a specific handler; or CCG - if the exception is

caught by a generic handler. When the exception signaled by a core element remains

uncaught, it was classified as CE. It is worth mentioning the special flow type identified

as VaVb in Table 2. It represents the flow on which a given variable feature throws an

exception and a different variable feature handles it, and there are no inclusion con-

straints between them. The VV represents the flow on which the same feature signals

and handles the exception. Additionally, Table 3 focuses on the number of flow types

signaled only by variable features, and presents the percentage of such flows in relation

to all flows originated by variable features.

3.2. Exception flow types across different SPLs

Figure 5 illustrates the proportion of exception flows found in each investigated SPL.

We can observe that although proportion of flow types in every SPL differed, most of

the flows in all SPLs represent exceptions signaled by core elements. Considering CC,

CV and CE flows all together, they represent, 68%, 70% and 88% of all flows found in

MobileMedia, BerkeleyDb and Prevayler, respectively. Moreover, we could find excep-

tions signaled by variable features in all analyzed SPLs. In Prevayler, in particular, most

of exceptions signaled by variable features escaped (VE). In MobileMedia, most of such

exceptions were handled in the core (VC) or by other features (VV or VaVb).

Considering the way the exceptions were handled (i.e., by generic or specialized han-

dlers) – regardless of whether they represent exceptions signaled by variable or core

features – we could observe that most of the handlers in MobileMedia are specialized

handlers, while in BerkeleyDB and Prevayler, generic handlers caught most of the ex-

ceptions. Figure 6 shows the results for the exception handlers. The high number of

specialized handlers found in MobileMedia may give the impression that the exceptions

are being adequately handled inside the MM SPL, and they are inadequately caught in

other SPLs. However, only a deeper analysis can really show what is happening in the

real scenario.
Table 3 Exception flows signalized by variable features

Flow occurrences (percentage per release)

Flow Signaler Handler Handling MM BkDb Pvl All

VC Variable Core Any 18 (51%) 183 (39%) 6 (30%) 207 (40%)

VCS Variable Core Specialized 18 (51%) 17 (4%) 0 (0%) 35 (7%)

VCG Variable Core Generic 0 (0%) 166 (35%) 6 (30%) 172 (33%)

VV Variable Variable Any 8 (23%) 19 (4%) 0 (0%) 27 (5%)

VVS Variable Variable Specialized 8 (23%) 19 (4%) 0 (0%) 27 (5%)

VVG Variable Variable Generic 0 (0%) 0 (0%) 0 (0%) 0 (0%)

VaVb Variable Variable Any 9 (26%) 100 (22%) 0 (0%) 109 (21%)

VaVbS Variable Variable Specialized 9 (26%) 13 (3%) 0 (0%) 22 (4%)

VaVbG Variable Variable Generic 0 (0%) 87 (19%) 0 (0%) 87 (17%)

VE Variable Escaped - 0 (0%) 162 (35%) 14 (70%) 176 (34%)

Subtotal (VC + VV + VaVb + VE) 35 (100%) 464 (100%) 20 (100%) 519 (100%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MM BkDb Pvl

VE

VaVb

VV

VC

CE

CV

CC

Figure 5 Percentage of exception flows for the target SPLs.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 12 of 30
www.jserd.com/content/1/1/3
Next sections discuss about each flow type found in this study and presented above.

Section 3.3 details the flow types signaled by core elements. Section 3.4 discusses and

presents examples of the flow types signaled by variable features. The analysis of the

exceptions that remained uncaught in every SPLs (i.e., CE and VE flows) is left to

Section 4.

3.3 How the exceptions signaled by core elements are handled

We can observe that most of the exception flows from the target SPLs were signaled by

core elements (see CC + CV + CE subtotal in Table 2, 68% in MM, 70% BkDB, and 88%

Pvl). From this set, Figure 7 shows that a considerable amount was also caught by core

elements (CCS and CCG flows) and a more reduced amount was handled by variable

features (CVS and CVG).

The flows on which exceptions were signaled by core elements and handled by a

variable feature were found in every SPL (see CV flows in Table 2, 25% in MM and

14% in BkDb and 4% in Pvl). One instance of the CV flows from Prevayler is depicted

in Figure 8. The method run() that is defined in a variable feature calls a method

from the same variable feature, called CentralPublisher#subscribe() (line 5).

Such method calls other methods from core assets, and one of such methods signals an
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MM BkDb Pvl

Escaped

Specialized

Generic

Figure 6 Kinds of exception handlers for the target SPLs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MM BkDb Pvl

CE

CVG

CVS

CCG

CCS

Figure 7 Exception flows signaled by core elements.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 13 of 30
www.jserd.com/content/1/1/3
exception. Hence, we can observe that such flow happens when a variable feature re-

uses existing methods from core assets, Section 4 discusses in more details the causes

and consequences of such flows.

3.4 How the exceptions signaled by variable features are handled

Table 2 also shows that a considerable amount of exception flows originated from var-

iable features (32% in MM, 30% in BkDB, and 12% in Pvl). Figure 9 focuses on such ex-

ception flows, originated from variable features. From this set, most of them were

handled by core elements (51% in MM, 39% in BkDB, and 30% in Pvl). Only part of

such flows was indeed handled by the same variable feature that had signaled it (23% in

MM, 4% in BkDb, and 0% in Pvl), as illustrated by the VV flows in Table 2 and

Figure 10. We also observed flows on which a different variable feature caught the ex-

ception (26% in MM, 22% in BkDB and 0% in Pvl, see the VaVb flows in Figure 11).

Next subsections present examples of these flow types.

Exceptions signaled by a variable feature and handled in the core (VC)

In BerkeleyDB and Prevayler, most of the exceptions signaled by variable features were

captured by generic handlers defined in a core element, while in MobileMedia most of

the exceptions signaled by variable features were caught by specialized handlers in the

core (see VCG flows in Figure 9). Figure 12 illustrates a scenario on which a method

from the core of BerkeleyDB calls methods from different variable features.

The method illustrated in Figure 12 pertains to a core asset and has around 100 lines

of code. It contains method calls to 8 distinct variable features (through method calls),

which can signal specific exceptions. The code snippet only presents three of such var-

iable features that can signal instances of DatabaseException (see colored tags in

the code). Moreover, such method also accesses other core methods that can also signal

specific exceptions. Although distinct exceptions may flow in such method a single and

generic treatment is given for all of them (lines 30–34).

3.4.1 Exceptions signaled and handled by the same variable feature (VV)

In MobileMedia and BerkeleyDB, we found exceptions signaled and handled by the

same variable feature (7% in MM, 1% in BkDB). Figure 10 illustrates one of such flows

1. public void run() {
2.
3. try {
4. ...
5. publisher.subscribe(...);
6. ...
7. } catch (IOException ex) {
8. close();
9. } catch (ClassNotFoundException ex) {
10. close();
11. }
12. }

Legend:

Exception propagation

Method call

IOException

Replication

Core

ServerConnection#run

CentralPublisher#subscribe

CV Flow

PersistentJournal#update

PersistentJournal#initializeNextTransaction

Figure 8 An example of CV flow in Prevayler SPL.

M
elo

et
al.Journalof

Softw
are

Engineering
Research

and
D
evelopm

ent
2013,1:3

Page
14

of
30

w
w
w
.jserd.com

/content/1/1/3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MM BkDb Pvl

VE

VaVbG

VaVbS

VVS

VCG

VCS

Figure 9 Exception flows signaled by variable features.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 15 of 30
www.jserd.com/content/1/1/3
found in MobileMedia SPL. Inspecting such flow, we could observe that the intermedi-

ate elements (the methods called between the signaler and the handler) were also asso-

ciated to a single feature, which means that, in such flows, no core functionality were

reused.

In addition, considering the handler action associated to such flows, we observed that

all flows signaled and caught inside the feature context (the VV flows) were handled

using specialized handlers – which can lead to an adequate handling as a single feature

can have enough information to handle the exception. An interesting finding was that

even in BerkeleyDB, where most of the exceptions were handled by generic handlers

(see Figure 6), the exceptions signaled and handled in the context of a single feature

were caught by specific handlers.
Legend:

Exception propagation

Method call PersistenceMechanismException

PhotoViewController#handleCommand

AlbumData#addImageData

ImageMediaAccessor#addImageData

VV Flow

Copy Media

Figure 10 An example of VV flow in MobileMedia SPL.

1 private void incrementCountViews1. private void incrementCountViews
2. (String selectedImageName) {
3 t {

VaVb Flow
3. try {
4. ...
5. updateMedia(image);
6. ...
7. } catch (ImageNotFoundException e) {
9

MediaController#incrementCountViews

9. ...
10. } catch (InvalidImageDataException e) {
11 Alert alert new Alert ("Error“11. Alert alert = new Alert ("Error“
12. , "The image data is not valid",...);

MediaController#updateMedia

13. } catch (PersistenceMechanismException e)
14. {
15. Alert alert = new Alert("Error", "It
16. was not possible to recovery the

AlbumData#updateMediaInfo

yp
17. selected Image", ...);
1818. ...
19. }
20 }

MediaAccessor#updateMediaInfo

20. }

Legend:MusicMediaAccessor#getByteFromMediaInfo

Exception propagationSorting

Method callMusic
MusicMediaUtil#getBytesFromMediaInfo

InvalidImageDataExceptionCore

Figure 11 An example of VaVb flow in MobileMedia SPL.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 16 of 30
www.jserd.com/content/1/1/3
3.4.2 Exceptions signaled and handled by distinct variable features (VaVb)

The exception flows, whose signaler was defined on a variable feature and the handler

on a different variable feature, were found in two of the analyzed SPLs (8% in MM, and

7% in BkDb). Such flows bring out an implicit relation between features that may lead

to EH faulty behavior as illustrated in Figure 11.

Figure 11 illustrates the code snippet of a method from a variable feature of MM

called Sorting, which is responsible for sorting lists of different kinds of media. The
1. ...
2. try {y {
3. ...
4 envConfig setConfigParam ()VC Flow 4. envConfig.setConfigParam (...)
5.
6 if (readOnly) { }

VC Flow

6. if (readOnly) {...}
7. if (doAction == EVICT) {...}
8. ...
9. switch (doAction) {

DbRunAction#main

10. case CLEAN:
11.
12. env.cleanLog();
1313. ...
14. ...
15 COMPRESS15. case COMPRESS:
16. env.compress();compresscleanLog getStats
17. ...
18. case EVICT:
19. preload(env, dbName);
20. ...Legend: 20. ...
21. ...
22 case REMOVEDB:

Legend:

22. case REMOVEDB:
23. ...
2

StatisticsCleaner

24. case DBSTATS:
25. ...INCompressorOther
26. db.getStats(...);
27. ...Core
28. }
29

Core

29. ...
30. } catch (Exception e) {
31 i tSt kT ()

Exception propagation
31. e.printStackTrace();
32. ...Method call
33. System.exit(1);
34. }

D t b E ti 35. ...DatabaseException

Figure 12 An example of VC flow in BerkeleyDb SPL.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 17 of 30
www.jserd.com/content/1/1/3
updateMedia() method (line 5) transitively calls other methods as illustrated in

the call chain illustrated on Figure 11. One of such methods in the call chain be-

longs to the Music feature (i.e., getBytesFromMediaInfo()), which can signal

InvalidImageDataException (represented as IIDE in Figure 11). When such

exception is signaled by Music feature, it is caught by a specific handler (lines 11–12), and

a message related to another feature (i.e., Photo feature that may also interact with the

Sorting feature) is presented to the user. Such exception handling confusion problem is a

consequence of the implicit feature interaction in exception handling scenarios.

In the scenarios where VaVb flows were detected, there was no constraint associating

the feature that signaled the exception and the feature that handled it. The handler fea-

ture does not have enough contextual information to adequately handle the exception.

Such scenarios usually happen by mistake. In other words, the exception signaled by

the feature would remain uncaught but was mistakenly caught by a handler defined by

another feature. This is an instance of the Unintended Handler Action (Miller and

Tripathi 1997) problem, a faulty exception handling behavior very difficult to diagnose

at runtime. Such kind of interaction, which only happens in exception handling scena-

rios, was not documented in any of the SPLs analyzed in this study.
4. Study results for phase2: an in-depth analysis of exception flows
In the previous section the exception flows from the investigated SPLs were classified

according to their signalers, handlers, and the features associated to each of them. This

characterization enabled us to identify patterns related to exceptions signaling and

handling while dealing with a high number of exception flows. In order to obtain a

more fine-grained view of how exceptions are signaled and handled inside SPLs, we

performed an in-depth analysis of each flow on which: (i) we investigated the inter-

mediate methods that composed the exception flows call chains – this analysis was

based on manual inspection and guided by results provided by PLEA static analysis

tool; and (ii) we analyzed how the flow types that are related could lead to faulty or in-

adequate exception handling behavior.

Table 4 illustrates the number of flows inspected in this second study phase. All ex-

ceptions flows of MobileMedia and Prevayler were inspected, they contain 111 and 164

exceptions flows, respectively. The mean size of EH flows in MM was approximately 5,

while in PvL it was 7. Table 4 also presents the mean, minimum and maximum size of

exception flows of target SPLs. Since BerkeleyDb product line contains 1522 exception

flows, whose mean size is approximately 12, only a few of its flows were evaluated dur-

ing this study phase, which was strongly based on manual inspection. As a result, most

of the findings of our in-depth analysis were related to scenarios found in MM and Pvl.
Table 4 Exception flows information

MM BkDb Pvl

Size of shorter flow (# number of methods) 2 1 2

Size of longer flow (# number of methods) 7 31 12

Mean 4,76 11,91 7,01

Median 5 11 7

Total Number of flows 111 1522 164

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 18 of 30
www.jserd.com/content/1/1/3
4.1. Inspecting the intermediate elements of a flow

During such in-depth analysis, the exception flows were fully inspected and were sub

classified according to the following criteria: the presence of variable or core features

affecting the intermediate elements on the flow. Table 5 presents the kinds of flows

found according to such criteria.

Such in-depth analysis is worth doing because it may reveal new ways of interaction

between features which can lead to faulty exception handling behavior, as follows: al-

though the intermediate element of a flow does not catch the exception, during a main-

tenance task a general handler (e.g. catch Throwable clause) can be added to it, and

it can mistakenly catch the exception that was flowing through it – leading to the

Unintended Handler Action (Miller and Tripathi 1997). Next we present examples for

some of such sub-categories of flows, and Section 4.2 discusses about their causes and

consequences.

CC flows and their intermediate elements

In the first phase of our study (Section 3), we observed that the CC flows was the kind of

exception flow with the highest frequency in the analyzed product lines (see CC flows in

Table 2, 43% in MM and 46% in Prevayler). However, the in-depth analysis of CC flows

revealed that most of such flows was actually affected by a variable feature. Such flows were
Table 5 Amount of flow subtypes in SPLs

Flow
Type

Flow
Subtype Description

Occurrences (Percentage)

MM Pvl

CC

Pure CC All the intermediate elements pertain to the core. 6 (5%) 22 (25%)

C[V]C At least one intermediate element pertains to a
variable feature.

42 (38%) 54 (61%)

VV

Pure VV All the intermediate elements pertain to the same
variable feature.

6 (5%) 0 (0%)

V[C]V At least one intermediate element pertains to the core. 2 (2%) 0 (0%)

CV

Pure CV All intermediate elements pertain to the variable
feature that handles the exception, or to the core

that signals it.

20 (18%) 6 (7%)

C[Va]V At least one of the intermediate elements pertains to a
variable feature different from the one that handles it.

8 (7%) 0 (0%)

VC

Pure VC All intermediate elements pertain to the variable
feature that signals the exception, or to the core that

handles

8 (7%) 6 (7%)

V[Va]C At least one of the intermediate elements pertains to a
variable feature different from the one that signals it.

10 (9%) 0 (0%)

VaVb

Pure VaVb All intermediate elements pertain to the variable
feature that signals the exception, or to the one that

handles it.

2 (2%) 0 (0%)

Va[C]Vb At least one of the intermediate elements pertains to
the core.

2 (2%) 0 (0%)

Va[Vc]Vb At least one of the intermediate elements pertains to
a variable feature different from the ones that signals

or handles it.

3 (3%) 0 (0%)

Va[VcC]Vb At least one of the intermediate elements pertains to
the core and other one pertains to a variable feature
different from the ones that signals or handles it.

2 (2%) 0 (0%)

Total 111 (100%) 88 (100%)

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 19 of 30
www.jserd.com/content/1/1/3
classified as C[V]C. In this kind of flow, a core element signals an exception that propa-

gates through one or more methods of a variable feature, and it is caught by a core elem-

ent. We can observe in Table 5 that C[V]C flows represent 87% of the CC flows in MM

and 71% in Pvl. Therefore, only a few flows were indeed unaffected by a variable feature,

specifically 5% and 25% of all exception flows in MM and Pvl, respectively.

Figure 13 shows an example of a kind of C[V]C flow in Prevayler SPL. We can observe

that the initial and final method in exception propagation is related to the SPL core, al-

though there is an intermediate method related to variable feature (i.e. Snapshot).

VV flows and their intermediate elements

Another flow type found in the first phase of our study was the VV flow, 7% in MM

and 0% in Prevayler. It gives us the impression that the whole exception flow – from

signaler to handler – is composed by methods of a single variable feature. How-

ever, the in-depth analysis of the intermediate elements of VV flows revealed that

in 25% of them in MM, one or more of the intermediate elements pertained to

the core. Such flows were classified as V[C]V, and they represent a scenario on

which a variable feature element signals an exception that propagates through a

method from the core, and it was finally caught by a method from the same variable fea-

ture that had signaled it.

CV flows and their intermediate elements

The first phase of our study also revealed that the CV flows corresponded to 25% in

MM and 4% in Prevayler. In MM and Pvl SPLs, our in-depth analysis of CV flows re-

vealed that in 24% of them, one of the intermediate elements related to a variable fea-

ture is different from the one that handled it. Figure 14 shows an example of CVaV
Legend:

Exception propagation

Method call

IOException

PrevaylerFactory#createTransientPrevayler

PrevaylerFactory#create

PrevaylerFactory#snapshotManager

C[V]C Flow

GenericSnapshotManager#GenericSnapshotManager

PrevaylerDirectory#latestSnapshot

H Core

Snapshot

Figure 13 An example of C[V]C flow subtype in Prevayler.

Legend:

Exception propagation

Method call

InvalidImageDataException

MediaController#incrementCountViews

MediaController#updateMedia

AlbumData#updateMediaInfo

C[Va]V Flow

MediaAccessor#updateMediaInfo

ImageMediaAccessor#getByteFromMediaInfo

H Core

Sorting

Photo

MediaUtil#getBytesFromMediaInfo

Figure 14 An example of CVaV flow subtype in MobileMedia SPL.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 20 of 30
www.jserd.com/content/1/1/3
flow in MobileMedia. Sorting feature is responsible for sort media using amount views

criteria, and for this functionality this code piece requires core information about

loaded media. After that, a method of other variable feature is called (i.e. Photo), and,

finally, this reuses a core method. Therefore, a signalized core exception propagates by

code pieces of different variable features.

VC flows and their intermediate elements

The results of the first study phase also showed that the VC flows corresponded to 17%

in MM and 4% in Prevayler. In MM and Pvl, our in-depth analysis revealed that in 42%

of these VC flows, similarly to the previous scenario, one of the intermediate elements

related to a variable feature is different from the one that signaled the exception. Such

flows were classified as V[Va]C.

VaVb flows and its intermediate elements

The VaVb flows represented only a few ones of the analyzed as we observed in our first

study phase, specifically 8% in MM and 0% in Prevayler. Our in-depth analysis of VaVb

flows revealed others interesting scenarios, which have the following patterns: (1) Va[C]

Vb; (2) Va[Vc]Vb; and (3) Va[VcC]Vb. Figure 15 shows an example of call graph in

MobileMedia. In this example, three variable features interact by exception flow.

Neither initial, final or intermediate methods are related to SPL core, because of

that circumstances this flow subtype was classified like Va[Vc]Vb.

Legend:

Exception propagation

Method call

InvalidImageDataException

PlayVideoController#handleCommand

AlbumData#addMediaData

MediaAccessor#addMediaData

Va[Vb]Vc Flow

ImageMediaAccessor#getByteFromMediaInfo

MusicMediaUtil#getBytesFromMediaInfo

Music

Copy Media

Photo

Figure 15 An example of Va[Vc]Vb flow subtype in MobileMedia SPL.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 21 of 30
www.jserd.com/content/1/1/3
4.2 Causes and consequences of exception handling flow types

When manually inspecting the code, we observed that flows such as C[V]C, V[C]V and

C[Va]V were caused by common design strategies adopted by both SPLs: (i) variabilities

were added to the SPLs by extending their core classes that implement variation points;

and (ii) methods belonging to the core were reused by the classes that implementing

some of their variable features.

The first strategy is a well-known design technique to implement framework-based

SPLs. In this technique, the core elements are responsible to refer to abstract classes or

interfaces that must be implemented by the variable features. Hence, when a concrete

class that implements a variable feature extends or implements a framework extension

point, all handlers defined to the exceptions signaled by the parent method can be

reused. On the other hand using an annotative approach such as CIDE, the code of

variable features can be introduced in the middle of methods belonging to the core fea-

tures. In both cases the exceptions signaled by the new piece of code that are related to

an implementation of the variable feature should obey the Exception Conformance

principle (Miller and Tripathi 1997).

According to the Exception Conformance principle when a method inherits or rede-

fines another method this cannot signal a checked exception that is not a subtype of

the exceptions defined in the parent method. However, sometimes a new functionality

(added due to an inclusion of a new variable feature) may need to throw new ex-

ceptions, which are not subtypes of exceptions of the extended method. In order to

manage these exceptions, the methods defined in parent class usually use sufficiently

generalized exception types, so that any possible new exception that may be signaled by

an extension method would be a subtype. However, the generalized exception types

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 22 of 30
www.jserd.com/content/1/1/3
may be so general that they have limited value in defining a clear and consistent excep-

tion interface. The intended benefit for the Exception Conformance is that the handlers

defined to the parent method can be reused by the methods that will redefine it.

In our study, we observed that although some core methods were overriding by vari-

able features (or modified through the use of annotative mechanism), the errors (excep-

tion information) were too specific, thereby the reuse of the same handler of the parent

method cannot always be the adequately strategy. We should say that overriding of

functionality is acceptable and often desirable, but the overriding of exception informa-

tion is usually not a. We also noticed that the exception handlers defined in the core

classes were reused by many flows that were thrown by the code that implements the

variable features. Flows such as VC and C[V]C are examples of such reuse, where such

problem may happen. This problem could be minimized if the SPL developers adapt

the handler code as soon as the code of the variable feature was added. However, the

study results have shown that developers usually ignore the way the exceptions signaled

by variable features are or not adequately caught (see Section 4.3).
4.3 Uncaught exception analysis

Our study also investigated the number of exceptions that remained uncaught on each

one of the investigated SPLs. This analysis is important because uncaught exceptions

abort the program’s execution, which is one of the main causes of software crashes.

Moreover, the number of uncaught exceptions is one way of checking whether the ex-

ception handling policy is adequately implemented. The exception handling policy

states that when an exception is signaled inside the system, a handler should be defined

to deal with it. When this is not the case, the exception flows through the system and

may remain uncaught or may be mistakenly handled by any method in the call chain of

the exception flows. Another indicative that the exception might be inadequately

caught is the number of exceptions that are handled on a general catch clause. This

general clause is usually located on the entry point of the system (i.e. main method),

which only exists to avoid the exception to remain uncaught. Usually such exceptions

handled on main are only logged and abort the program’s execution.

Table 6 illustrates the number of uncaught exceptions and exceptions that are only

caught on the system entry point. We can observe that considering MM, no exceptions

remained uncaught or were caught by a general handler on the entry point. On the

other hand, a significant number of flows in the other SPLs represent exceptions that

remained uncaught – 46% of all flows in Prevayler (see Figure 16). The number of ex-

ceptions that were caught on the main method was also high in this SPL – 24% in

Prevayler.

When considering both types of flows as indicators that the exception handling policy

might not have been obeyed, we can see that in BerkeleyDb and Prevayler, 68% and
Table 6 Number of unhandled exceptions and exceptions handled on entry point

Occurrences

MM BkDb Pvl

Unhandled 0 597 76

Handled on entry point 0 440 40

Total flows 111 1522 164

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MM BkDb Pvl

Other

Handled on
entry point

Unhandled

Figure 16 Percentage of unhandled exceptions and exceptions handled on entry point.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 23 of 30
www.jserd.com/content/1/1/3
70% of the flows, respectively, escaped or was handled inside the main method (see

Figure 16). Such impressive numbers raise an alert to the reader that the exception

handling policies of such SPLs might not have received enough attention during

development.

Although such numbers indicate that the exception handling policies have not been

appropriately defined, we cannot ensure this information because the developers of

such SPLs have not made them explicit on the SPL artifacts. On the other hand, the

MobileMedia implementation has explicitly defined the exception handling as one of

the primary concerns (Figueiredo et al. 2008). The quality of the exception handling

policy is also reflected by the considerable number of user-defined exceptions in MM

(see Table 1) and specialized handler actions (see Table 2), in contrast with BkDb and

PvL on which most the exception handler actions were generic (i.e., catch Throwable
or catch Exception clauses) – see Table 2.

After discovering the number of uncaught exceptions and the exceptions handled on

the main method, we extended our analysis to include the elements responsible for sig-

naling such exceptions. Table 7 shows the number of uncaught exceptions and excep-

tions caught in main, that are signaled by core and variable features. We observed that

41% of the BerkeleyDB exceptions signaled by core elements escaped, and 21% of such

flows were handled on the entry point. In Prevayler, 43% of the exceptions signaled by

core elements escaped and 25% were handled on the entry point (see Figure 17). Focus-

ing on the exceptions signaled by variable features, our analysis showed that in

BerkeleyDB 35% of such exceptions escaped and 27% were handled on the entry point.

In Prevayler 70% escaped and 20% were caught on the entry point (see Figure 17). As

in Prevayler most of the exceptions escaped we could find only few VC flows and

neither VV nor VaVb flows.
Table 7 Signaler (core or variable) of unhandled exceptions and exception handled on
entry point

Occurrences

MM BkDb Pvl

Core Variable Core Variable Core Variable

Unhandled 0 0 435 162 62 14

Handled on entry point 0 0 314 126 36 4

Total flows 76 35 1058 464 144 20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Core Variable Core Variable Core Variable

MM BkDb Pvl

Before entry point

On entry point

Unhandled

Figure 17 Relative data about unhandled exception and exception that are handled on or before
entry point.

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 24 of 30
www.jserd.com/content/1/1/3
5. Discussions and lessons learned
This section provides further discussion of issues and lessons learned while performing

this study.

Collateral effects of specific flow types

In our study we classified all exception flows found on three SPLs according to their sig-

nalers and handlers. Such characterization enabled us to identify the most common flow

types and analyze how the characteristics of such flows could lead to faulty exception hand-

ling behaviors. It is known that the exception handling policy of a system or product lines

depends on others factors than the intrinsic ones (i.e., software architecture). Design deci-

sions, coding patterns or company-specific policies, and developer’s experience (Shah et al.

2010) may also affect the way exceptions are signaled and handled inside the system. Hence,

what is an inadequate handling for a system may be a design decision for another. However,

it is also known that specific exception handling patterns may lead to faulty exception hand-

ling behavior affecting the system robustness (e.g., Unintended Handler Action, and Generic

handling (Miller and Tripathi 1997)). In this study, by performing a deeper analysis of spe-

cific flow types, we could consistently detect such faulty scenarios in the analyzed SPLs,

such as the ones associated to VC, VaVb, and V[C]V flows presented in Sections 3 and 4.

Dealing with feature overlapping

In our study we could find pieces of code associated to more than one feature, which is

known as feature overlapping (Kästner et al. 2008). There are two main ways of feature

overlapping: (i) AND overlapping – when a piece of code is annotated with feature A AND

feature B, in this case both features should be selected in order to include a given piece of

code; and (ii) OR overlapping – a piece of code is annotated with feature A OR feature B,

and hence at least one of the features should be selected for the piece of code to be included

in a product. In CIDE, feature interactions become apparent when colors denote different

feature overlap (in this cases the colors are blended in the overlapping region). Such

blended colors represent AND overlappings. Since all target SPLs were implemented using

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 25 of 30
www.jserd.com/content/1/1/3
the CIDE tool, only AND feature overlapping could be found. Considering the feature over-

lapping on code related to exception signaling or handling, we found the following: (i) in

MobileMedia 10 out of 111 (about 10%) flows presented features overlapping on signaling

or handling code; (ii) in Berkeley DB 12 out of 1522 (less than 1%) flows presented features

overlapping on signaling or handling code; and (iii) none of the flows in Prevayler presented

feature overlapping on signaling or handling code. We adopted the following strategy for

classifying these specific scenarios: (i) if the signaler was annotated with feature A, and the

handler was annotated with feature A AND feature B, we classified such flow as VV; (ii) if

the signaler was annotated with feature A and feature B, and the handler was annotated

with feature A and feature B, we classified such flow as VV; (iii) if the signaler was anno-

tated with feature A and feature B, and the handler was annotated with feature B, we classi-

fied such flow as VaVb; and finally (iv) if the signaler was annotated with feature A, and the

handler annotated with feature B and feature C, we also classified such flow as VaVb. In

doing so, we could prevent false positives and false negatives on the feature overlapping sce-

narios found in our study.
Exception handling guidelines for software product lines

The outcomes of our study also emphasizes the need for the definition of EH guidelines

for SPLs. Such guidelines could motivate, for instance, application engineers to avoid

throwing exceptions from their variable feature implementations to the core assets. In

practice, however, there are several technical and organizational factors that impairs

the full adoption of such kind of guidelines, such as: (i) the runtime exceptions thrown

from by third-party libraries used by the variable code assets; (ii) the difficulty in coor-

dinating the work of product line and application engineers; and (iii) the natural com-

plexity of the dependencies between SPL common and variable code assets. Given such

restrictions to the full adoption of an EH guideline, feature-oriented exception flow

analysis tools, such as PLEA, would be strongly useful to detect violations of the prac-

tices defined on EH guidelines. In addition, the variability implementation techniques

must also be considered when defining exception handling guidelines for a SPL.
The implicit feature interaction and its consequences

In our work, we found an implicit relation that arises between features in the exceptional

flow (when a feature handles the exception signaled by other feature), and we observed

that it could lead to the exception handling confusion problem already mentioned in the

context of aspect-oriented development (Figueroa 2011) – the exception intended to be

handled by a given component is mistakenly handled somewhere else; because using the

current exception handling mechanism embedded in languages such as Java, we cannot

prevent one exception from being caught by a general handler on a method in the call

chain between the signaling and handling points. The in-depth analysis of the exception

flows (phase 2 of the study – Section 3) also showed us that feature interaction can be

even more complex and involve many different common and variable features.
Study limitations

One may argue that performing the characterization in a sample of three different SPLs

is a limiting factor. Even under such restriction, the study analyzed 47 KLOC of Java

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 26 of 30
www.jserd.com/content/1/1/3
source code of which around 4,1 KLOC are dedicated to EH handling. From these base

code, 1797 exception flows were found, categorized and analyzed. Another limitation of

this study is the fact that it only considered the exceptions explicitly thrown by SPL

code assets - excluding exceptions signaled from libraries and Java runtime environ-

ment. There are also the limitations inherent to the use of a static analysis tool (i.e., in-

heritance, polymorphism and virtual calls) (Robillard and Murphy 2003), however the

limitations of this study are similar to the ones imposed on the other empirical studies

with similar goals (Figueiredo et al. 2008) (Coelho et al. 2008, 2011) (Ferrari et al.

(2010). Moreover, one may also argue that during the second phase of our study the ex-

ception flows of BerkeleyDB were not analyzed, bringing another limitation to the

study. However, the different kinds of flows found represent interesting scenarios that

may happen in the exception handling of real SPLs.
6. Related work
This section presents related work organized in three categories: (i) empirical studies

investigating the exception handling code of SPLs; (ii) studies on implicit feature inter-

actions; and (iii) exception flow analysis tools and methods.
Empirical studies investigating the exception handling code of SPLs

Figueiredo et al. (2008) present an empirical study that aims to compare AO and OO

Java implementations of the MobileMedia SPL. In their study, they have analyzed the

stability of the EH feature across the SPL evolution in terms of modularization metrics

(on the EH source code). In our study we discovered the exception flows originated

from the EH code (manually and automatically through PLEA) and evaluated how such

flows differ across different MM releases. Coelho et al. (2008) performed an empirical

study considering the fault-proneness of aspect-oriented implementations for handling

exceptions. Two releases of both Java and AspectJ implementation of MobileMedia

product line were assessed as part of that study. Although the study has analyzed the

EH code of MM product line, it neither performed a feature-oriented analysis of the

EH exception flows, nor discussed the fault-proneness of specific flow types related to

variable features, as we have investigated in our work. Bertoncello et al. (2008) propose

a method for refactoring OO product line architecture in order to separate their

normal and exceptional behavior into different software components. The proposed

method motivates the introduction of variations points in the SPL core architecture to

address different choices of exception handlers during product derivation. Our ap-

proach can be seen as complementary to the refactoring method proposed. First, the

static analysis tool proposed in our work can be used to detect violations in the EH

strategies established when evolving a SPL implementation with the introduction of

new features or modification of existing ones. Second, our exploratory study also em-

phasizes the need to establish effective EH strategies to address the design and imple-

mentation of the core and variable features.
Studies on implicit feature interactions

Recent research work shows the importance and difficulty to analyze features depen-

dencies in the context of SPL implementations using conditional compilation

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 27 of 30
www.jserd.com/content/1/1/3
techniques, or similar approaches like CIDE (Kästner et al. 2008). Ribeiro et al. (2010)

propose the concept of emergent interface in order to address the analysis of feature

dependencies when evolving a software product line. An emergent interface is used to

capture the dependencies between code assets previously annotated and associated to

specific features. The Emergo tool (Ribeiro et al. 2012) is used to automatically compute

the emergent interfaces on demand based on intraprocedural or interprocedural dataflow

analysis. Brabrand et al. (2012) propose and compare three different intraprocedural data

analysis to detect the feature dependencies, in terms of undeclared variables, unused var-

iables and null pointer. One of the great benefits of their approach is the capacity to

analyze the feature dependencies for the complete SPL implementation instead of analy-

zing the code assets for each individual product separately. Similar to these works, our

work improves the code assets dependency analysis using information about the kind of

features (common or variable) they implement. However, such works address neither the

analysis of exception flows in the context of SPL implementations, nor the implicit feature

relation that comes about in the exceptional control flow.

Exception flow analysis tools and methods

Some research works propose solutions based on static analysis to calculate the excep-

tion flows of a system (Fu and Ryder 2007) (Robillard and Murphy 2003) (Coelho et al.

2011) (Garcia and Cacho 2011). None of these tools however perform a feature-

sensitive analysis as the one proposed in this study. The tool presented in this study

performs a feature-oriented analysis of the exception flows, which allows a more accu-

rate and detailed analysis of how exceptions flow through the code assets implementing

the mandatory and variable features of a SPL.

7. Conclusions
This paper reported an empirical study that characterized and quantitatively assessed

the ways exceptions flow through SPL features. Moreover, it also investigated fault-

proneness of specific exception flow types in SPL implementations. The analysis was

conducted in three existing SPLs – Mobile Media, Berkeley DB, and Prevayler – using

manual inspection and static code analysis. As part of our study, we also developed a

tool that performs an automated feature-oriented exception flow analysis. The tool can

be useful to support the developer when implementing the exception handling behavior

of variable and common features.

Overall this new study corresponds to 47KLOC of Java source code of which around

4,1KLOC are dedicated to exception handling. From such code base, 1797 exception

flows were found and characterized. Some outcomes consistently detected through this

study refined the findings of our previous work and also pin-pointed new interesting

information about the ways exceptions flow on SPLs, as follows:

� Only few exception flows of each product line were unaffected by their variable

features. We call such flows pure CC flows. In relation to the other flows they

corresponded to 5% of EH flows in MobileMedia, and 25% in Prevayler;

� Most of the flows found on this study were somehow affected by a variable feature:

95% in MobileMedia and 75% in Prevayler. They represent: (i) flows on which

exceptions are signaled or handled by a variable feature; or (ii) flows on which the

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 28 of 30
www.jserd.com/content/1/1/3
variable feature did not signal nor handle the exception but affected the method

call chain on which the exception flowed.

� Considering the flows that were signaled by variable features, most of them were

handled by core elements (51% in MobileMedia, 39% in Berkeley DB, and 30% in

Prevayler), and some by the same variable feature that signaled it (7% in

MobileMedia, 1% in Berkeley DB, and 0% in Prevayler). The study also identified

flows on which a different variable feature caught the exception thrown by another

variable feature (26% in MobileMedia, 22% in Berkeley DB and 0% in Prevayler).

� Moreover, a significant number of uncaught exceptions were found in two of the

investigated SPLs (39% in Berkeley DB, 46% Prevayler). In general, we observed a

high prevalence of uncaught exceptions and exceptions caught by the program

entry point (i.e. main method). Specially in Prevayler, most of the exceptions

signaled by variable features remained uncaught.

� Finally, we could also detect that some of the flows originated from variable

features were caught by a different variable feature (8% in MobileMedia, and 7% in

Berkeley DB).

We believe that these and the other study outcomes presented in the paper are help-

ful in several ways, such as: (i) enhancing the general understanding of how exceptions

flow through mandatory and variable features; (ii) providing information about the po-

tential problems related to specific kinds of flows detected in this study (for instance

the VaVb flows); and (iii) presenting how a feature-oriented static analysis tool can be

used to support the identification of potentially faulty exception handling flows in the

context of software product lines.

Endnote
a The unchecked exceptions may bypass this principle, but in our study we only focused

on checked exceptions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HFM implemented PLEA tool and carried out most of the manual inspections conducted during the empirical study,
and contributed with several findings found during manual inspections and during PLEA execution. RC worked on the
study design, defined the research questions and hypothesis for conducting the study, as well as analyzed the data
generated by PLEA tool and devised some of its discussions. UK also worked on the study design and analysis of data;
he was also responsible for comparing the present work with related works. DT worked on the manual inspection
step of Prevayler product line, and also contributed on the paper discussions. All authors were responsible for writing
the paper and all of them read and approved the submitted manuscript.

Authors’ information
Hugo Faria Melo holds a MSc from the Department of Informatics and Applied Mathematics (DIMAp) of the Federal
University of Rio Grande do Norte, Brazil (2010–2012). He conducted empirical studies in the context of reliability of
the product lines. His research interests include static analysis, model driven development and exception handling.
Roberta Coelho is an Associate Professor at the Department of Informatics and Applied Mathematics (DIMAp), Federal
University of Rio Grande do Norte (UFRN), Brazil. She holds a PhD (2008) from the Informatics Department of the
Pontifical Catholic University of Rio (PUC-Rio) and worked as a researcher at Lancaster University, where she conducted
empirical studies in the context of reliability of OO and AO applications. Her research interests include static analysis,
exception handling, dependability and empirical software engineering.
Uirá Kulesza is an Associate Professor at the Department of Informatics and Applied Mathematics (DIMAp), Federal
University of Rio Grande do Norte (UFRN), Brazil. He obtained his PhD in Computer Science at PUC-Rio – Brazil (2007),
in cooperation with University of Waterloo (Canada) and Lancaster University (UK). His main research interests include:
software product lines, generative development and software architecture. He has co-authored over 120 referred
papers in journals, conferences, and books. He worked as a post-doc researcher member of the AMPLE project

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 29 of 30
www.jserd.com/content/1/1/3
(2007-2009) – Aspect-Oriented Model-Driven Product Line Engineering (www.ample-project.net) at New University of
Lisbon, Portugal. He is currently a CNPq (Brazilian Research Council) research fellow level 2.
Demostenes Sena is an Associate Professor at Federal Institute of Education, Science and Technology of Rio Grande do
Norte. He is also a PhD candidate at Federal University of Rio Grande do Norte. His main research interests are
software product lines and empirical software engineering.
Acknowledgements
This work was partially supported by the National Institute of Science and Technology for Software Engineering (INES) -
CNPq under grants 573964/2008-4 and CNPQ 560256/2010-8. Roberta Coelho is also supported by CNPq under grant
484037/2010-2.

Received: 8 March 2013 Accepted: 6 August 2013
Published: 29 October 2013
References

Apel S, Von Rhein A, Wendler P, Größlinger A, Beyer D (2013) Strategies for product-line verification: case studies and

experiments, Proceedings of the 35th International Conference on Software Engineering (ICSE 2013), San Francisco.
IEEE Press Piscataway, NJ, USA, pp 482–491

Bertoncello I, Dias M, Brito P, Rubira C (2008) Explicit Exception Handling Variability in Component-based Product Line
Architectures, Proceedings of the 4th International Workshop on Exception Handling, Atlanta. ACM, New York, NY,
USA, pp 47–54, doi:10.1145/1454268.1454275

Brabrand C, Ribeiro M, Tolêdo T, Borba P (2012) Intraprocedural Dataflow Analysis for Software Product Lines,
Proceedings of the 11th International Conference on Aspect-Oriented Software Development (AOSD 2012),
Potsdam. ACM, New York, NY, USA, pp 13–24, doi:10.1145/2162049.2162052

Brunet J, Guerrero D, Figueiredo J (2009) Design Tests: An Approach to Programmatically Check your Code Against
Design Rules, Proceedings of 31st International Conference on Software Engineering (ICSE 2009). New Ideas and
Emerging Results, Vancouver, pp 255–258, doi:10.1109/ICSE-COMPANION.2009.5070995

Clements P, Northrop L (2001) Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co.,
Inc, Boston, MA, USA

Coelho R, Rashid A, Garcia A, Ferrari F, Cacho N, Kulesza U, Staa A, Lucena C (2008) Assessing the Impact of Aspects on
Exception Flows: An Exploratory Study, Proceedings of the 22nd European Conference on Object-Oriented
Programming (ECOOP 2008). Cypress, Paphos, pp 207–234, doi:10.1007/978-3-504-70592-5 10

Coelho R, Staa A, Kulesza U, Rashid A, Lucena C (2011) Unveiling and taming liabilities of aspects in the presence of
exceptions: a static analysis based approach. Information Sciences 181:2700–2720

Czarnecki K, Eisenecker U (2000) Generative Programming: Methods, Tools, and Applications. ACM Press/
Addison-Wesley Publishing Co, New York, NY, USA

Eclipse IDE (2012) Eclipse., http://www.eclipse.org/. Accessed 03 April 2012
Ferrante J, Ottenstein K, Warren J (1987) The program dependence graph and its Use in optimization. ACM

Transactions on Programming Languages and Systems (TOPLAS) 9:319–349
Ferrari F, Burrows R, Lemos O, Garcia A, Figueiredo E, Cacho N, Lopes F, Temudo N, Silva L, Soares S, Rashid A, Masiero

P, Batista T, Maldonado J (2010) An Exploratory Study of Fault-proneness in Evolving Aspect-oriented Programs,
Proceedings of the 32nd International Conference on Software Engineering, Cape Town. ACM New York, NY, USA,
pp 65–74, doi:10.1145/1806799.1806813

Figueiredo E, Cacho N, Sant'Anna C, Monteiro M, Kulesza U, Garcia A, Soares S, Ferrari F, Khan S, Castor Filho C, Dantas
F (2008) Evolving Software Product Lines with Aspects: an Empirical Study on Design Stability, Proceedings of the
30th International Conference on Software Engineering. ACM Press, Leipzig, pp 261–270, doi:10.1145/
1368088.1368124

Figueroa I (2011) Avoiding Confusion with Exception Handling in Aspect-oriented Programming, Proceedings of the
10th International Conference on Aspect-oriented Software Development. Porto de Galinhas, ACM New York, NY,
USA, pp 81–82, doi:10.1145/1960314.1960345

Fu C, Ryder B (2007) Exception-Chain Analysis: Revealing Exception Handling Architecture in Java Server Applications,
Proceedings of the 29th International Conference on Software Engineering. ACM Press, Minneapolis, pp 230–239,
doi:10.1109/ICSE.2007.35

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional

Garcia A, Rubira C, Romanovsky A, Xu J (2001) A comparative study of exception handling mechanisms for building
dependable object-oriented software. Journal of Systems and Software 59:197–222

Garcia I, Cacho N (2011) eFlowMining: An Exception-Flow Analysis Tool for .NET Applications, Proceedings of the 1st
Workshop on Exception Handling in Contemporary Software Systems, São José dos Campos., pp 1–8, doi:10.1109/
LADCW.2011.18

Godil I, Jacobsen H-A (2005) Horizontal Decomposition of Prevayler, Proceedings of the Centre for Advanced Studies
on Collaborative research (CASCON’05). IBM Press, Toronto, Canada, pp 83–100

Goodenough J (1975) Exception handling: issues and a proposed notation. Communications of the ACM 18:683–696
Grove D, Chambers C (2001) A framework for call graph construction algorithms. ACM Transactions on Programmming

Languages and Systems (TOPLAS) 23:685–746
Kästner C, Apel S, Kuhlemann M (2008) Granularity in Software Product Lines, Proceedings of the 30th International

Conference on Software Engineering, Leipzig., ACM New York, NY, USA, pp 311–320, doi:10.1145/1368088.1368131
Melo H, Coelho R, Kulesza U (2012) On a Feature-Oriented Characterization of Exception Flows in Software Product

Lines, Proceedings of the 26th Brazilian Symposium on Software Engineering (SBES)., Natal, Natal, pp 121–130,
doi:10.1109/SBES.2012.15

http://www.ample-project.net
http://www.eclipse.org/

Melo et al. Journal of Software Engineering Research and Development 2013, 1:3 Page 30 of 30
www.jserd.com/content/1/1/3
Miller R, Tripathi A (1997) Issues with Exception Handling in Object-Oriented Systems, Proceedings of the 21st
European Conference on Object Oriented Programming (ECOOP 97). Springer-Verlag, Berlin, pp 85–103

Parnas D (1976) On the design and development of program families. IEEE Transactions on Software Engineering 2:1–9
Prevayler (2013) Prevayler., http://prevayler.org/. Accessed 07 June 2013
Ribeiro M, Pacheco H, Teixeira L, Borba P (2010) Emergent Feature Modularization, Proceedings of ACM Conference on

Systems, Programming, Languages and Applications (OOPSLA 2010). Software for Humanity Onward! Reno,
pp 17–21

Ribeiro M, Tolêdo T, Winther J, Brabrand C, Borba P (2012) Emergo: A Tool for Improving Maintainability of
Preprocessor-based Product Lines, Proceedings of the 12th International Conference on Aspect-Oriented Software
Development (AOSD 2012). Hasso-Plattner-Institut, Potsdam, Hasso-Plattner-Institut, Potsdam, March 2012., ACM
New York, NY, USA, pp 23–26, doi:10.1145/2162110.2162128

Robillard M, Murphy G (2003) Static analysis to support the evolution of exception structure in object-oriented systems.
ACM Transactions on Software Engineering and Methodology 12:191–221

Shah H, Gorg C, Harrold M (2010) Understanding exception handling: viewpoints of novices and experts. IEEE
Transactions on Software Engineering 36:150–161

Young T (2005) Using AspectJ to Build a Software Product Line for Mobile Devices. University of British Columbia,
Canada, MSc Thesis
doi:10.1186/2195-1721-1-3
Cite this article as: Melo et al.: In-depth characterization of exception flows in software product lines: an
empirical study. Journal of Software Engineering Research and Development 2013 1:3.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://prevayler.org/

	Abstract
	1. Introduction
	2. Study settings
	2.1. The target software product lines
	2.2. SPL exception handling code example
	2.3. Study phases
	Phase 1: Characterization of SPL exception flows
	Phase 2: In-deph analysis of exception flows and SPL design issues

	2.4. PLEA – a feature-oriented static analysis tool
	2.4.1 PLEA overview
	2.4.2 PLEA detailed design

	3. Study results for phase 1: characterization of SPL exception flows
	3.1 Collected results for the SPL exception flow types
	3.2. Exception flow types across different SPLs
	3.3 How the exceptions signaled by core elements are handled
	3.4 How the exceptions signaled by variable features are handled
	Exceptions signaled by a variable feature and handled in the core (VC)
	3.4.1 Exceptions signaled and handled by the same variable feature (VV)
	3.4.2 Exceptions signaled and handled by distinct variable features (VaVb)

	4. Study results for phase2: an in-depth analysis of exception flows
	4.1. Inspecting the intermediate elements of a flow
	CC flows and their intermediate elements
	VV flows and their intermediate elements
	CV flows and their intermediate elements
	VC flows and their intermediate elements
	VaVb flows and its intermediate elements

	4.2 Causes and consequences of exception handling flow types
	4.3 Uncaught exception analysis

	5. Discussions and lessons learned
	Collateral effects of specific flow types
	Dealing with feature overlapping
	Exception handling guidelines for software product lines
	The implicit feature interaction and its consequences
	Study limitations

	6. Related work
	Empirical studies investigating the exception handling code of SPLs
	Studies on implicit feature interactions
	Exception flow analysis tools and methods

	7. Conclusions
	Endnote
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	References

